Вольт-амперные характеристики высоковольтных 4*H*-SiC-диодов с барьером Шоттки высотой 1.1 эВ

© П.А. Иванов[¶], И.В. Грехов, О.И. Коньков, А.С. Потапов, Т.П. Самсонова, Т.В. Семенов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 28 марта 2011 г. Принята к печати 11 апреля 2011 г.)

Измерены и проанализированы вольт-амперные характеристики высоковольтных 4*H*-SiC-диодов с барьером Шоттки высотой ~ 1.1 эВ. Прямые вольт-амперные характеристики в диапазоне температур 295–470 К оказались близкими к "идеальным". Обратные вольт-амперные характеристики при напряжениях до 2 кВ в диапазоне температур 361–470 К хорошо описываются в модели термоэлектронной эмиссии, если дополнительно учесть понижение высоты барьера с ростом изгиба зон в полупроводнике.

1. Введение

Классическая диодная теория (теория термоэлектронной эмиссии) предсказывает для диодов Шоттки (ДШ) следующую зависимость тока I от напряжения V [1]:

$$I = SA^*T^2 \exp\left(-\frac{\Phi_{B0}}{kT}\right) \left[\exp\left(\frac{qV}{kT}\right) - 1\right], \qquad (1)$$

где q — элементарный заряд, A^* — постоянная Ричардсона, S — площадь контакта Шоттки, Φ_{B0} — высота барьера (в классической теории она считается неизменной), V — приложенное напряжение (положительное для прямого направления и отрицательное для обратного), T — абсолютная температура, k — постоянная Больцмана. Вольт-амперные характеристики (ВАХ) реальных диодов Шоттки обычно отличаются от ВАХ идеализированных диодов. В прямом направлении эти отличия, как правило, не столь значительны, так что прямые ВАХ $I_f(V_f)$ можно описать эмпирической формулой

$$I_f = I_0 \left[\exp\left(\frac{qV_f}{nkT}\right) - 1 \right],\tag{2}$$

которая отличается от выражения (1) тем, что в ней фигурируют эмпирические величины — ток "насыщения" I_0 и коэффициент идеальности n. По величине коэффициента n принято судить о качестве диодов Шоттки. Считается, что для хороших ДШ коэффициент идеальности должен быть меньше 1.1.

Классическая формула (1) предсказывает, что обратный ток в диодах Шоттки должен насыщаться при напряжениях, составляющих несколько единиц kT/q, на уровне

$$I_0 = SA^*T^2 \exp\left(-\frac{\Phi_{B0}}{kT}\right).$$
 (3)

Однако на практике этого никогда не бывает, а всегда имеет место постепенное и довольно значительное увеличение тока с ростом обратного смещения. Утечки могут быть вызваны дефектами в полупроводнике, неоднородностями распределения высоты барьера по площади контакта, конструктивными особенностями диодов, приводящими к преждевременному краевому пробою, и др. Даже в однородных контактах с совершенной структурой обратный ток может возрастать по нескольким физическим причинам: 1) вследствие зависимости высоты барьера от напряжения смещения, 2) вследствие полевой и термополевой эмиссии электронов из металла в полупроводник, 3) вследствие термической генерации электронно-дырочных пар в области пространственного заряда (ОПЗ) и др.

Ранее нами были изготовлены высоковольтные 4H-SiC-диоды с барьером Шоттки высотой 1.5 эВ [2]. В дипазоне температур 298-522 К прямые ВАХ этих диодов хорошо описывались формулой (2) с коэффициентом идеальности, близким к единице. Однако в обратном направлении ток оказался избыточным по отношению к надбарьерной эмиссии. В работе [2] нами была предложена модель протекания избыточного обратного тока за счет локальной инжекции электронов из металла в полупроводник в местах выхода на поверхность полупроводника дислокаций. Можно ожидать, что при достаточно низких барьерах и (или) при повышенных температурах ток термоэлектронной эмиссии в 4H-SiCдиодах Шоттки будет больше тока, обусловленного дефектами. В настоящей работе приводятся результаты исследований высоковольтных 4H-SiC-диодов с барьером Шоттки высотой ~ 1.1 эВ. Показано, что ВАХ как в прямом, так и в обратном (до 2кВ) направлении хорошо описываются в модели термоэлектронной эмиссии, если дополнительно учитывается понижение высоты барьера с ростом изгиба зон в полупроводнике.

2. Образцы и методика измерений

Диоды изготавливались на основе коммерческого эпитаксиального материала фирмы Сree Inc.: концентрация доноров в базовом *n*-слое $N = 9 \cdot 10^{14}$ см⁻³, толщина *n*-слоя d = 34 мкм. Схематическое изображение поперечного сечения диодного чипа приведено на рис. 1. На поверхности базового эпитаксиального *n*-слоя сформирован контакт Шоттки с размерами 1.2×1.2 мм из напыленного никеля. Поверх никеля нанесен слой

[¶] E-mail: Pavel.Ivanov@mail.ioffe.ru

Рис. 1. Схематическое изображение поперечного сечения 4*H*-SiC-диода Шоттки: 1 — подложка *n*-типа проводимости (удельное сопротивление $0.02 \text{ OM} \cdot \text{см}$, толщина 370 мкм), 2 — буферный эпитаксиальный *n*-слой (концентрация доноров $1 \cdot 10^{18} \text{ см}^{-3}$, толщина 8 мкм), 3 — базовый эпитаксиальный *n*-слой (концентрация доноров $9 \cdot 10^{14} \text{ см}^{-3}$, толщина 34 мкм), 4 — охранные *p*-кольца, 5 — пассивирующий окисел, 6 — металл контакта Шоттки (анод), 7 — металл омического контакта (катод), 8 — герметик (силиконовый гель).

Рис. 2. Прямые ВАХ 4*H*-SiC-диодов Шоттки. Точки — эксперимент, сплошные линии — аппроксимации по формуле (2). Температура *T*, К: *1* — 295, *2* — 334, *3* — 361, *4* — 380, *5* — 411, *6* — 449, *7* — 470.

Рис. 3. График Ричардсона.

алюминия. На обратной стороне структуры сформирован омический контакт из напыленного и термически вожженного слоя никеля. Поверх контактного металла нанесен слой серебра. Для подавления преждевременного краевого пробоя в структуре ДШ использована охранная система из плавающих *p*-колец, формируемых неравновесной диффузией бора из имплантированного источника. Поверхность базового эпитаксиального *n*-слоя пассивирована термическим окислом SiO₂. Чип залит силиконовым гелем.

Для измерений ВАХ использовался специальный столик, снабженный прижимной иглой и системой подогрева кварцевой лампой до температуры 500 К (точность поддержания температуры ± 2 К). Измерения проводились в вакууме. Прямые ВАХ измерялись в диапазоне токов $10^{-11}-10^{-3}$ А, а обратные — в диапазоне $10^{-11}-10^{-4}$ А. Для измерений были отобраны несколько диодных чипов, которые при комнатной температуре имели утечку не более 10 нА при напряжении 1000 В.

3. Экспериментальные результаты и их обсуждение

3.1. Прямые вольт-амперные характеристики

На рис. 2 точками показаны типичные прямые ВАХ изготовленных 4*H*-SiC-диодов Шоттки, измеренные при разных температурах в диапазоне 295–470 К. На участке, предшествующем ограничению тока последовательным сопротивлением блокирующей базы диода, измеренные ВАХ были аппроксимированы согласно формуле (2) (в этом случае I_0 и *n* выступали в качестве подгоночных параметров). При всех температурах показатель идеальности лишь немногим отличался от единицы: $n \approx 1.02$. На рис. 3 точками показана зависимость $\ln(I_0/T^2)$ от 1/nkT (график Ричардсона), по наклону которой можно определить эффективную высоту барьера: $\Phi_{Beff} = 1.12$ эВ. Таким образом, прямые ВАХ во всем диапазоне температур оказались довольно близкими к идеальным.

3.2. Обратные вольт-амперные характеристики

На рис. 4 точками показаны типичные обратные ВАХ $I_r(V_r)$ изготовленных диодов, измеренные при напряжениях до 2 кВ в диапазоне температур 361-470 К. Отметим, что при напряжениях $V_r = 3kT/q$ заметный обратный ток появлялся при температуре $T \approx 380$ К. В двойном логарифмическом масштабе измеренные ВАХ выглядят как "мягко" нарастающие зависимости тока от напряжения: при увеличении напряжения от 0.1 до 1000 В обратный ток возрастает по меньшей мере на 3 порядка величины. Таким образом, обратные ВАХ, в отличие от прямых, очень сильно отличаются от "идеальных" и это является предметом последующего обсуждения.

Рис. 4. Обратные ВАХ 4*H*-SiC-диодов Шоттки. Точки — эксперимент, сплошные линии — аппроксимация формулой (9). Температура *T*, K: *I* — 361, *2* — 380, *3* — 411, *4* — 470.

Как говорилось выше, возможные механизмы, ответственные за наблюдаемый рост обратного тока, это неоднородное распределение высоты барьера по площади контакта [3], туннелирование, тепловая генерация носителей в ОПЗ, зависимость высоты барьера от напряжения смещения.

Близость коэффициента идеальности *n* к единице говорит о том, что распределение высоты барьера по площади, по всей видимости, довольно однородно. Поэтому этот фактор можно сразу исключить.

Туннелирование. При увеличении обратного напряжения энергетический барьер сужается, так что увеличивается вероятность туннельного прохождения электронов из металла в полупроводник. В теории туннельного прохождения Падовани–Стреттона [4] был введен параметр qE_{00} , имеющий размерность энергии и представляющий собой высоту барьера, при которой вероятность туннельного прохождения равна e^{-1} . Потенциал E_{00} зависит от эффективной массы электрона m^* в полупроводнике и концентрации доноров N:

$$E_{00} = \frac{h}{4\pi} \sqrt{\frac{N}{m^* \varepsilon_s}}.$$
 (4)

Здесь h — постоянная Планка, ε_s — диэлектрическая проницаемость полупроводника. В самом грубом приближении можно считать, что термоэмиссия будет доминировать над туннелированием, если тепловая энергия $kT \gg qE_{00}$. В случае n-4H-SiC с концентрацией доноров $N = 9 \cdot 10^{14}$ см⁻³ расчет по формуле (4) дает $qE_{00} = 0.33$ мэВ. Уже при T = 300 К тепловая энергия kT = 26 мэВ, что в 80 раз больше qE_{00} . Отсюда можно сделать вывод, что в рассматриваемом нами случае туннелирование не должно играть существенной роли.

Тепловая генерация носителей. При увеличении обратного напряжения ОПЗ в полупроводнике расширяется, так что может нарастать генерационная компо-

Физика и техника полупроводников, 2011, том 45, вып. 10

нента обратного тока (так же, как в диодах с p-n-переходом):

$$I_g = \frac{q n_i W}{2\tau} S, \tag{5}$$

где n_i — концентрация собственных носителй в полупроводнике, τ — эффективное время жизни носителей в ОПЗ, W — ширина ОПЗ. В p-n-диодах на основе такого широкозонного полупроводника, как 4*H*-SiC, заметный генерационный ток обычно появляется лишь при температурах выше 700 K [5] (действительно, при T = 700 K концентрация собственных носителей $n_i \sim 10^7$ см⁻³; полагая $\tau \sim 10^{-8}$ с, W = 34 мкм, $S = 10^{-2}$ см², получим $I_g \sim 1$ нА). Отсюда можно сделать вывод, что тепловая генерация носителей также не должна играть существенной роли в рассматриваемом нами случае.

Полевая зависимость высоты барьера. В классической диодной теории высота барьера считается неизменной, однако существуют по меньшей мере две причины понижения высоты барьера с ростом обратного напряжения. Первая причина — это влияние сил изображения на форму и высоту потенциального барьера (эффект Шоттки [1]). Вторая причина — это наличие между металлом и полупроводником тонкого промежуточного диэлектрического слоя, на котором есть небольшое падение напряжения, уменьшающее высоту барьера [6].

1. Понижение барьера, обусловленное эффектом Шоттки, составляет

$$\Delta \Phi_1/q = \sqrt{\frac{qE_m}{4\pi\varepsilon_s}},\tag{6}$$

где E_m — величина электрического поля на поверхности полупроводника. Необходимо сразу отметить, что в ДШ на основе 4*H*-SiC электрическое поле E_m может достигать значений ~ 10⁶ В/см (это на порядок больше по сравнению с диодами на основе кремния и арсенида галлия). При таких полях понижение высоты барьера достигает $\Delta \Phi_1 = 0.12$ эВ. Соответствующий рост обратного тока I_r при T = 470 К составит

$$\frac{I_r}{I_0} = \exp\left(\frac{\Delta\Phi_1}{kT}\right) \approx 20. \tag{7}$$

2. Понижение барьера, обусловленное наличием промежуточного слоя, составляет

$$\Delta \Phi_2/q = \frac{\varepsilon_s \delta}{\varepsilon_\delta + q \delta D_s} E_m,\tag{8}$$

где δ и ε_{δ} — толщина и диэлектрическая проницаемость промежуточного слоя соответственно, $D_s[B^{-1} \cdot cm^{-2}]$ — энергетическая плотность поверхностных состояний на уровне Ферми в металле. В случае 4*H*-SiC промежуточным слоем может быть тонкий естественный окисел SiO_x на поверхности. Положим $\delta = 5$ Å и $\varepsilon_{\delta} = 2$, тогда при $E_m = 10^6$ В/см в пределе Мотта ($D_s \rightarrow 0$) получим $\Delta \Phi_2 = 0.25$ эВ. Соответствующий рост обратного тока при T = 470 K составит

$$\frac{I_r}{I_0} = \exp\left(\frac{\Delta\Phi_2}{kT}\right) \approx 500.$$

Таким образом, при высоких полях суммарное понижение высоты барьера в 4*H*-SiC-диодах Шоттки может достигать 0.37 эВ, что означает рост обратного тока до 10000 раз по сравнению с током насыщения *I*₀.

С учетом полевой зависимости высоты барьера аппроксимационная формула для обратного тока может быть записана в следующем виде:

$$I_r = I_0 \exp\left[\frac{\Delta \Phi_B(V_r)}{kT}\right] \left[1 - \exp\left(-\frac{qV_r}{kT}\right)\right], \qquad (9)$$

где

$$\Delta \Phi_B = \sqrt{\frac{qE_m}{4\pi\varepsilon_s}} + \alpha E_m, \qquad (10)$$

$$\alpha = \frac{\varepsilon_s \delta}{\varepsilon_\delta + q \delta D_s}.$$
 (11)

При обратных напряжениях, существенно превышающих изгиб зон в полупроводнике при нулевом смещении, электрическое поле E_m выражается через обратное напряжение V_r в следующем виде:

$$E_m = \sqrt{\frac{2qNV_r}{\varepsilon_s}}.$$
 (12)

Аппроксимация экспериментальных обратных ВАХ по формуле (9) требует подгонки только одного параметра — α . Результат этой аппроксимации показан на рис. 4 (сплошные линии). Как видно, экспериментальные результаты очень хорошо описываются формулой (9) при $\alpha = 1.2 \cdot 10^{-7}$ см (одинаковом при всех температурах). Если предположить, что $\varepsilon_{\delta} = 2$ для слоя SiO_x, то при $\delta = 5$ Å (один моноатомный слой) получим $D_s = 2 \cdot 10^{13}$ В⁻¹ · см⁻². Такие толщины естественного окисла и значения плотности состояний представляются вполне разумными для реальной поверхности 4*H*-SiC.

Важно отметить, что наличие тонкого естественного окисла практически не сказывается на величине коэффициента идеальности *n*. Действительно, в работе [6] показано, что при наличии промежуточного слоя величину *n* можно оценить по формуле

$$n = 1 + \frac{\delta \varepsilon_s}{W_0(q\delta D_s + \varepsilon_\delta)},\tag{13}$$

где W_0 — толщина ОПЗ при нулевом смещении. Даже в пределе Мотта $(D_s \rightarrow 0)$ и относительно толстом окисле ($\delta = 20$ Å, $\varepsilon_{\delta} = 2$) рассчитанный по формуле (13) показатель идеальности остается близким к единице: n = 1.01.

4. Заключение

Из проведенного анализа обратных ВАХ видно, что главным механизмом, ответственным за рост обратного тока в исследованных 4*H*-SiC-диодах при больших обратных напряжениях, является, по всей видимости, понижение высоты барьера, обусловленное наличием промежуточного слоя в виде естественного окисла на поверхности 4H-SiC. Из этого следует, что изготовление диодов в условиях, способствующих образованию толстого промежуточного слоя, может негативно сказываться на токах утечки (еще в работе [7] было показано, что вследствие уменьшения высоты барьера обратный ток диода с относительно толстым промежуточным слоем может быть больше тока диода с тонким слоем).

Список литературы

- [1] С. Зн. Физика полупроводниковых приборов (М., 1984) т. 1.
- [2] П.А. Иванов, И.В. Грехов, А.С. Потапов, Т.П. Самсонова, Н.Д. Ильинская, О.И. Коньков, О.Ю. Серебренникова. ФТП, 44, 680 (2010).
- 3] R.T. Tung. Phys. Rev. B, 45, 13509 (1992).
- [4] F.A. Padovani, R. Stratton. Sol. St. Electron., 9, 695 (1966).
- [5] П.А. Иванов, М.Е. Левинштейн, Т.Т. Мнацаканов, J.W. Palmour, A.K. Agarwal. ФТП, **39**, 897 (2005).
- [6] Э.Х. Родерик. Контакты металл-полупроводник (М., 1982).
- [7] H.C. Card, E.H. Rhoderick. Sol. St. Electron., 16, 365 (1973).

Редактор Л.В. Шаронова

Current–voltage characteristics of high voltage 4*H*-SiC Schottky barrier (1.1 eV) diodes

P.A. Ivanov, I.V. Grekhov, O.I. Kon'kov, A.S. Potapov, T.P. Samsonova, T.V. Semenov

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Current–voltage characteristics of 4*H*-SiC based high voltage diodes with Schottky barrier height of 1.1 eV have been measured and analysed. Forward current–voltage characteristics measured at temperatures 295-470 K are close to "ideal" ones. Reverse current–voltage characteristics measured up to 2 kV voltage at temperatures 361-470 K are described well by thermal emission model if lowering of the barrier height due to increase of band bending is taken into account.