Подвижность и дрейфовая скорость электронов в селективно-легированных гетероструктурах InAIAs/InGaAs/InAIAs

© И.С. Васильевский^{+*}, Г.Б. Галиев^{+*}, Е.А. Климов⁺, К. Пожела[‡], Ю. Пожела^{‡¶}, В. Юцене[‡], А. Сужеделис[‡], Н. Жураускене[‡], С. Кершулис[‡], В. Станкевич[‡]

⁺ Национальный исследовательский ядерный университет "МИФИ",

* Институт СВЧ полупроводниковой электроники Российской академии наук,

117105 Москва, Россия

[‡]Институт физики полупроводников Центра физических и технологических наук,

01108 Вильнюс, Литва

(Получена 15 февраля 2011 г. Принята к печати 21 февраля 2011 г.)

Экспериментально получено повышение подвижности и дрейфовой скорости электронов в сильных электрических полях в квантовых ямах селективно-легированных гетероструктур InAlAs/InGaAs/InAlAs путем регулирования состава полупроводников, составляющих интерфейс. В метаморфной структуре In_{0.8}Ga_{0.2}As/In_{0.7}Al_{0.3}As с высокой мольной долей In (0.7–0.8) на интерфейсе подвижность электронов достигает $12.3 \cdot 10^3$ см² · B⁻¹ · c⁻¹ при комнатной температуре. Получено увеличение подвижности электронов в 1.1-1.4 раза при введении тонких (1–3 нм) слоев InAs в квантовую яму селективно-легированных гетероструктур In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As. Максимальная дрейфовая скорость достигает $2.5 \cdot 10^7$ см/с в электрических полях 2-5 кВ/см. Величина порогового поля F_{th} для междолинного $\Gamma-L$ переброса электронов (эффект Ганна) в квантовой яме InGaAs в 2.5-3 раза выше, чем в объемном материале. Установлен эффект двух/трехкратного снижения величины порогового поля F_{th} в квантовой яме InGaAs при увеличении мольной доли In в барьере InAlAs, а также при введении тонких InAs-вставок в квантовую яму InGaAs.

1. Введение

Управление взаимодействием электронов с полярными оптическими (ПО) и интерфейсными (ИФ) фононами путем введения тонких (1-5 нм) полупроводниковых барьеров в квантовую яму (КЯ) и регулированием состава полупроводников, составляющих гетероструктуру, является эффективным инструментом, контролирующим электрические и фотоэлектрические свойства полупроводниковых структур [1-12]. В частности, удается увеличить подвижность электронов в каналах InGaAs/AlGaAs транзисторов с высокой подвижностью электронов (НЕМТ) [13-20], которые являются базовыми элементами СВЧ электроники в области сотен ГГц, а в последнее время нашли применение как детекторы и генераторы электромагнитного излучения терагерцевой частоты [21-23]. Особенно сильные (радикальные) изменения параметров проводимости канала квантовой ямы (КЯ) от состава полупроводников предсказываются для селективно-легированных гетероструктур [6,16–18].

В селективно-легированных структурах вследствие разделения в пространстве ионизованных примесных центров и свободных электронов в КЯ образуется сильное поперечное плоскости КЯ поле, F_{\perp} , захватывающее электроны в узкую КЯ. В узких КЯ рассеяние на ИФ фононах является доминирующим механизмом рассеяния электронов, лимитирующим возможности повышения подвижности электронов в сильном поле. В работах [6,11,12] показано, что скорость рассеяния

электронов на ИФ фононах можно понизить, подбирая состав полупроводниковых соединений, образующих интерфейс.

В настоящей работе экспериментально определяется зависимость подвижности и дрейфовой скорости электронов в сильных электрических полях в квантовых ямах селективно-легированных гетероструктур $In_y Ga_{1-y} As/In_x Al_{1-x} As$ от мольных долей In и Al соответственно в KЯ и ограничивающих ее барьерах, а также от конструкции слоев KЯ.

2. Подвижность электронов в структурах In_vGa_{1-v}As/In_xAI_{1-x}As

В работе [6] получено, что расчетное максимальное уменьшение скорости рассеяния на ИФ фононах в структуре $\ln_y Ga_{1-y}As/\ln_x Al_{1-x}As$ имеет место при высокой мольной доле In (x = 0.8) в составе барьера. Для получения гетероструктуры с максимальной подвижностью методом молекулярно-лучевой эпитаксии на подложке InP была выращена метаморфная структура с содержанием In x = 0.7 в барьерном слое $\ln_x Al_{1-x}As$. Эта техника позволила увеличить содержание In до y = 0.8 в псевдоморфно-напряженном слое КЯ.

Таким образом, с использованием комбинации псевдоморфной и метаморфной технологии роста экспериментально была выращена структура нового типа In_{0.8}Ga_{0.2}As/In_{0.7}Al_{0.3}As с δ -Si-легированием в барьерном слое и шириной КЯ 16 нм. В соответствии с предсказанием эта структура имела очень высокую подвижность электронов. Обозначим ее как НЕМ-структура.

¹¹⁵⁴⁰⁹ Москва, Россия

[¶] E-mail: pozela@pfi.lt

Таблица 1. Схема слоев четырех типов структур $In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As$

Барьер In _{0.52} Al _{0.48} As		As	Канал In _{0.53} Ga _{0.47} As	Барьер In _{0.52} Al _{0.48} As		
	δ-Si				δ-Si	
	++++		I		+++	
InAs						
	+++	Ga	As InAs InAs Ga	aAs	-	
	H In _{0.5}	Барьер In _{0.52} Al _{0.48} δ -Si + + + +	Барьер In _{0.52} Al _{0.48} As δ -Si + + + + Gau	Барьер Канал $In_{0.52}Al_{0.48}As$ $In_{0.53}Ga_{0.47}As$ δ -Si + + + InAs + GaAs InAs InAs Ga	Барьер Канал $In_{0.52}Al_{0.48}As$ $In_{0.53}Ga_{0.47}As$ In δ -Si $InAs$ + + + InAs + + InAs + InAs	Барьер In $_{0.52}$ Al $_{0.48}$ AsКанал In $_{0.53}$ Ga $_{0.47}$ AsБарье In $_{0.52}$ Al $_{0}$ δ -Si \sim δ -Si \sim δ -Si++++++++++GaAsInAsInAs

Примечание. Толстыми линиями показаны вставки InAs и GaAs в канале.

Таблица 2. Холловская подвижность $\mu_{\rm H}$ и концентрация электронов $n_{s\rm H}$ в выращенных структурах, а также подвижность μ_B и концентрация n_{sB} полученные из измерений магнитосопротивления образцов с омическими контактами, при $T = 300 \,\rm K$

Тип структуры	$\mu_{\rm H}$, см ² · B ⁻¹ · c ⁻¹	$n_{sH}, 10^{12} \mathrm{cm}^{-2}$	$\mu_B, \ \mathrm{cm}^2 \cdot \mathrm{B}^{-1} \cdot \mathrm{c}^{-1}$	$n_{sB},$ $10^{12} \mathrm{cm}^{-2}$
HEM	12300	1.44	10100	1.5
B1	8400	1.22	8300	1.5
A1	6100	2.53	6100	2.6
В	6200	0.98	6500	1.4
А	5500	3.49	5900	3.2

Измеренные холловская подвижность ($\mu_{\rm H}$) и концентрация электронов ($n_{s\rm H}$) в КЯ In_{0.8}Ga_{0.2}As равны: $\mu_{\rm H} = 12\,300\,{\rm cm}^2\cdot{\rm B}^{-1}\cdot{\rm c}^{-1}$, $n_s = 1.44\cdot10^{12}\,{\rm cm}^{-2}$ при температуре 300 К и $\mu_{\rm H} = 50\,500\,{\rm cm}^2\cdot{\rm B}^{-1}\cdot{\rm c}^{-1}$, $n_s = 1.3\cdot10^{12}\,{\rm cm}^{-2}$ при 77 К.

Таким образом, впервые большое увеличение подвижности электронов в КЯ селективно-легированной структуры $In_v Ga_{1-v} As/In_x Al_{1-x} As$ получено путем состава полупроводников изменения барьера И КЯ. Важно отметить, что значение подвижности $12\,300\,{\rm см}^2 \cdot {\rm B}^{-1} \cdot {\rm c}^{-1}$ при 300 К, полученное в структуре In_{0.8}Ga_{0.2}As/In_{0.7}Al_{0.3}As, относится к лучшим когдаопубликованным в НЕМТ-гетероструктурах либо InAlAs/InGaAs значениям: $10\,000 - 16\,000 \,\text{см}^2 \cdot \text{B}^{-1} \cdot \text{c}^{-1}$ при 300 К [16-18]. Наивысшие значения подвижности в структуре InAlAs/InGaAs, полученные в работах [16,17] при содержании In x = 0.75 на интерфейсе, соответствуют оценкам минимального значения скоростей рассеяния электронов на ИФ фононах [6].

Другая возможность увеличения подвижности в селективно-легированных гетероструктурах состоит в введении слоев InAs — фононных стенок в КЯ InGaAs [3,5,11,12]. Введение тонких барьеров InAs в КЯ разбивает фононную яму для ПО фононов на ряд более узких фононных ям, сильно снижая электрон-фононное рассеяние.

Для экспериментального исследования возможностей подавления рассеяния электронов на захваченных в фононные ямы ПО и ИФ фононах и, следовательно, увеличения подвижности электронов путем введения тонких фононных стенок InAs в КЯ InGaAs были выращены четыре типа гетероструктур. В табл. 1 схематически показан послойный состав двух пар структур (A, A1 и B, B1). Структуры с вставками InAs обозначены как A1 и B1, а без вставок InAs как A и B соответственно. Тонкие (1.1 нм) слои GaAs вблизи внешних барьеров КЯ InGaAs в структурах B и B1 способствуют снижению рассеяния электронов на ИФ фононах [11,12]. Толщины КЯ составляют 17 нм в структурах А-типа и 16 нм в структурах В-типа.

Измеренные при 300 К значения холловской подвижности $\mu_{\rm H}$ и концентрации электронов $n_{s\rm H}$ в выращенных гетероструктурах приведены в табл. 2. Как видим, подвижность электронов в структуре A1 с одной вставкой InAs превышает подвижность в структуре A без вставки в 1.2 раза. Соответственно в структуре B1 с двумя вставками InAs подвижность в 1.4 раза выше, чем в структуре B без вставок InAs.

Заметим, что вставки GaAs в структурах В-типа снижают частоту ИФ фононов интерфейса InGaAs/InAlAs. Подвижность электронов в структуре В-типа превышает подвижность в структурах А-типа. Однако подвижность электронов в структуре В-типа остается почти в 2 раза ниже подвижности в НЕМ-структуре с максимальным снижением рассеяния на ИФ фононах.

Таким образом, теоретически предсказываемое значительное увеличение подвижности электронов в селективно-легированной структуре вследствие снижения рассеяния на захваченных ПО фононах при введении тонких дополнительных стенок InAs в КЯ In_{0.53}Ga_{0.47}As подтверждается экспериментально.

Подвижность и дрейфовая скорость электронов в сильных электрических полях в квантовых ямах InGaAs

Измерения полевой зависимости проводимости канала КЯ селективно-легированных структур InGaAs/InAlAs проводились на образцах, представляющих собой мезаструктуру шириной 100 мкм с нанесенными омическими контактами Au/Ni/Ge площадью 100×100 мкм². Расстояние между контактами (длина образца) равно d = 10 мкм.

Для измерений использовались импульсы напряжения длительностью 80 нс.

На рис. 1 показаны экспериментально измеренные зависимости тока стока I через беззатворный канал образца от среднего поля $F_D = V_D/d$, где V_D — приложенное к образцу напряжение.

Экспериментально наблюдаемые зависимости $I(F_D)$ во всех селективно-легированных структурах InGaAs/

Рис. 1. Полевые зависимости тока канала КЯ в различных типах селективно-легированных структур с длиной стокисток 10 мкм. Стрелки показывают пороговое поле токовых неустойчивостей.

InAlAs радикально отличаются от таковых в объемном InGaAs.

Прежде всего это большое различие величин порогового поля $F_{\rm th}$ (отмечены стрелками) междолинного переброса (эффекта Ганна) для разных типов структур.

Видно, что величина $F_{\rm th}$ уменьшается с ростом низкополевой подвижности $\mu_{\rm H}$. При этом в структуре НЕМ пороговое поле $F_{\rm th} = 2.5$ кВ/см даже ниже, чем пороговое поле эффекта Ганна в объемном образце $F_{\rm th \, bulk} = 3-4$ кВ/см, в то время как пороговое поле в образцах В1 (4.5 кВ/см) и В (7 кВ/см) значительно выше.

Теоретически рассчитанные в работе [6] полевые зависимости дрейфовой скорости электронов показали, что в отличие от объемного материала в КЯ $In_{0.53}Ga_{0.47}As$ селективно-легированной структуры пороговое поле F_{th} зависит от величины рассеяния электронов ИФ фононами, которое определяет изменение подвижности электронов в широких пределах. Таким образом, экспериментально наблюдаемое изменение порогового поля в широких пределах с изменением подвижности коррелирует с теоретическим прогнозом [6].

Другая отличительная черта характеристик $I(V_D)$ в селективно-легированных структурах — это сильный сублинейный характер полевой зависимости тока.

С целью выделить вклад изменения дрейфовой скорости электронов в полевую зависимость тока *I* из измерений геометрического магнитосопротивления (**B** \perp **I**) были определены подвижности μ_B и концентрации электронов n_{sB} в образцах разных типов. Низкополевые значения μ_B и n_{sB} , измеренные в магнитном поле B = 1 Тл в образцах длиной d = 10 мкм и шириной 100 мкм, приведены в табл. 2.

Полевые зависимости $\mu_B(F_D)$ и $n_{sB}(F_D)$ для исследованных образцов показаны на рис. 2, *a* и *b* соответственно. Как видим, подвижность во всех структурах падает в 1.5 раз с ростом электрического поля в интервале 0-4 кВ/см. При этом подвижность в структурах А1 и В1 с барьером InAs остается выше подвижности в структурах А и В. Однако в образце типа НЕМ с наивысшей низкополевой подвижностью подвижность уменьшается в 2 раза уже при величине поля до 2.5 кВ/см. Это уменьшение μ_B можно связывать с междолинным перебросом электронов и низким значением порогового поля F_{th} в структурах с высокой подвижностью [6]. Об этом свидетельствует и снижение концентрации подвижных носителей заряда Г-долины n_s в НЕМ-структуре в поле выше 1-1.5 кB/см (рис. 2, *b*). Отметим, что в структурах типа А, А1 и В с высоким значением порогового поля, $F_{\rm th} = 7 \, {\rm kB/cm}$, междолинный переброс электронов в полях в интервале 0-4 кВ/см не имеет места и концентрация носителей не меняется. В образце с высокой подвижностью В1 пороговое поле Fth близко к 4.5 кВ/см и междолинный переброс и уменьшение концентрации подвижных носителей Г-долины наблюдаются уже в поле 2.5 кВ/см.

Концентрация носителей n_{sB} в слабых полях, измеренная в образцах с нанесенными омическими контактами, отличается от концентрации $n_{\rm H}$, определенной из холловских измерений на выращенных структурах, в

Рис. 2. Полевые зависимости подвижности μ_B (*a*) и концентрации n_{sB} (*b*) электронов в КЯ InGaAs для структур A1, B1 с InAs-вставками (сплошные линии) и для структур A, B без вставок (штриховые линии).

Физика и техника полупроводников, 2011, том 45, вып. 9

то время как подвижность в обоих типах измерений одинакова: $\mu_{\rm H} = \mu_B$ (см. табл. 2).

Мы полагаем, что вблизи омических контактов в селективно-легированных структурах искажается поперечное КЯ поле F_{\perp} , образованное в спейсер-слое барьера КЯ между слоем доноров и свободными электронами в слое КЯ [14]. Изменение F_{\perp} означает изменение величины индуцированного заряда Δn электронов в КЯ: $q\Delta n \approx CF_{\perp}l$, где q — заряд, l — толщина и C — емкость спейсерного слоя. Искажение поля F_{\perp} вблизи контакта зависит от технологии нанесения контактного слоя и может различаться от образца к образцу [14].

Полевая зависимость тока в селективно-легированных структурах $In_{0.53}Ga_{0.47}As I(V_D)$, в отличие от объемного материала, имеет сублинейный характер и стремится к насыщению в поле ниже порогового электрического поля F_{th} .

Несмотря на большое различие $F_{\rm th}$ для образцов разных типов, экспериментальные значения максимальной дрейфовой скорости электронов $v_{\rm max}$ лежат в интервале $(2.0-2.5)\cdot 10^7$ см/с и почти не зависят от величины порогового поля. Теоретические расчеты также отмечают лишь относительно слабый рост $v_{\rm max}$ с ростом $F_{\rm th}$ [6].

4. Заключение

Таким образом, экспериментально подтверждено, что в селективно-легированных структурах $\ln_y Ga_{1-y} As/ \ln_x Al_{1-x} As$ доминирующее рассеяние электронов на ИФ фононах регулируется составом полупроводниковых соединений, образующих интерфейс, в широких пределах. Это позволяет создать структуры с наивысшей подвижностью электронов. В метаморфной структуре $\ln_{0.8}Ga_{0.2}As/In_{0.7}Al_{0.3}As$ с содержанием In x = 0.7-0.8 на интерфейсах подвижность электронов превышает $12 \cdot 10^3 \text{ см}^2 \cdot \text{B}^{-1} \cdot \text{c}^{-1}$ при комнатной температуре. При введении тонких (1-3 нм) слоев InAs в квантовую яму $\ln_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As$ получено увеличение подвижности электронов в 1.1-1.4 раза.

Регулирование рассеяния электронов на ИФ фононах позволяет многократно изменять величину порогового поля для эффекта Ганна в пределах 2–7 кВ/см. При этом в сильных полях максимальная скорость электронов $v_{\rm max}(F_{\rm th})$ изменяется лишь в узких пределах $(2.0-2.5)\cdot 10^7$ см/с.

Работа поддержана проектами ФЦП "Кадры" № НК-616П(39), Министерства образования и науки № 2010-218-02-136 и программой президиума РАН (проект № 21).

Список литературы

- [1] B.K. Ridley. Phys. Rev. B, 39, 5282 (1989).
- [2] R. Haupt, L. Wendler. Phys. Rev. B, 44, 1850 (1991).
- [3] J. Požela, A. Namajūnas, K. Požela, V. Jucienė. J. Appl. Phys., 81, 1775 (1997).
- 5 Физика и техника полупроводников, 2011, том 45, вып. 9

- [4] M.A. Stroscio, M. Dutta. *Phonons in Nanostructures* (Cambridge University Press, Cambridge, 2001).
- [5] Ю. Пожела, К. Пожела, В. Юцене. ФТП, 41, 1093 (2007).
- [6] Ю. Пожела, К. Пожела, Р. Рагуотис, В. Юцене. ФТП, 45, 778 (2011).
- [7] D.R. Anderson, N.A. Zakhleniuk, M. Babiker, B.K. Ridley, C.R. Bennet. Phys. Rev. B, 63, 245 313 (2001).
- [8] V.A. Kulbachinskii, I.S. Vasil'evskii, R.A. Lunin, G. Galistu, A. de Visser, G.B. Galiev, S.S. Shirokov, V.G. Mokerov. Semicond. Sci. Technol., 22, 222 (2007).
- [9] Г.Б. Галиев, И.С. Васильевский, Е.А. Климов, В.Г. Мокеров, А.А. Черечукин. ФТП, 40, 1479 (2006).
- [10] И.С. Васильевский, Г.Б. Галиев, Е.А. Климов, В.Г. Мокеров, С.С. Широков, Р.М. Имамов, И.А. Субботин. ФТП, 42, 1102 (2008).
- [11] В.Г. Мокеров, И.С. Васильевский, Г.Б. Галиев, Ю. Пожела, К. Пожела, А. Сужеделис, В. Юцене, Ч. Пашкевич. ФТП, 43, 478 (2009).
- [12] J. Požela, K. Požela, A. Shkolnik, A. Sužiedėlis, V. Jucienė, S. Mikhrin, V. Mikhrin. Phys. Status Solidi C, 6, 2713 (2009).
- [13] И.С. Васильевский, Г.Б. Галиев, Ю.А. Матвеев, Е.А. Климов, Ю. Пожела, К. Пожела, А. Сужеделис, Ч. Пашкевич, В. Юцене. ФТП, 44, 928 (2010).
- [14] J. Požela, K. Požela, V. Jucienė, A. Shkolnik. Semicond. Sci. Technol., 26, 014025 (2011).
- [15] J. Požela, K. Požela, A. Sužiedėlis, V. Jucienė, Č. Paškevič. Lithuan. J. Phys., 50, 397 (2010).
- [16] X. Wallart, B. Pinsard, F. Mollot. J. Appl. Phys., 97, 053 706 (2005).
- [17] V. Drouot, M. Gendry, C. Santinelli, P. Victorovitch, G. Hollinger. J. Appl. Phys., 77, 1810 (1995).
- [18] M. Tacano, Y. Sugiyama, Y. Takeuchi, Y. Ueno. J. Electron. Mater., 20, 1081 (1991).
- [19] K. Onda, A. Fujihara, A. Vakejima, E. Mizuki, T. Nakayama, H. Miyamoto, Y. Ando, M. Kanamori. IEEE Electron. Dev. Lett., **19**, 300 (1998).
- [20] H. Zhao, Y-T. Chen, J.H. Yum, Y. Wang, F. Zhou, F. Xue, J.C. Lee. Appl. Phys. Lett., 96, 102 101 (2010).
- [21] M. Dyakonov, M. Shur. Phys. Rev. Lett., 71, 2465 (1993).
- [22] N. Dyakonova, A. El Fatimy, J. Lusakowski, W. Knap. Appl. Phys. Lett., 88, 141 906 (2006).
- [23] N. Dyakonova, F. Teppe, J. Lusakowski, W. Knap, M. Levinshtein, A.P. Dmitriev, M. Shur, S. Bollaert, A. Cappy. J. Appl. Phys., 97, 114 313 (2005).

Редактор Л.В. Шаронова

Electron mobility and drift velocity in selectively-doped InAIAs/InGaAs/InAIAs heterostructures

I.S. Vasil'evskii^{+*}, G.B. Galiev^{+*}, E.A. Klimov⁺, K. Požela[‡], J. Pžela[‡], V. Jucienė[‡], A. Sužiedėlis[‡], N. Žurauskienė[‡], S. Keršulis[‡], V. Stankevič[‡]

⁺ National Research Nuclear University MEPhI, 115409 Moscow, Russia,
^{*} Institute of Microwave Semiconductor Electronics, Russian Academy of Sciences, 117105 Moscow, Russia
[‡] Semiconductor Physics Institute, Center for Physical Sciences and Techology, 01108 Vilnus, Lithuania

Abstract The enhancement of electron mobility and highfield drift velocity in quantum well channels of selectivelydoped InAlAs/InGaAs/InAlAs heterostructures by tuning electronphonon interaction is considered. A large increase in the mobility up to $12.3 \cdot 10^3 \, \text{cm}^2 \, \text{V}^{-1} \, \text{s}^{-1}$ at room temperature is achieved in the novel metamorphic In_{0.8}Ga_{0.2}As/In_{0.7}Al_{0.3}As structure with a high In content at the interface of the heterostructure. The enhancement of the electron mobility (1.1-1.4 times) by inserting thin (1-3 nm) InAs layers into the In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As quantum well is obtained. The maximal electron drift velocity at electric fields of 2-5 kV/cm achieves $2.5 \cdot 10^7 \text{ cm/s}$ in the structures with the InAs inserts. The threshold electric field for the electron intervalley $\Gamma - L$ transfer is 2.5-3 times higher than in bulk InGaAs material. It is found that the threshold field in the InGaAs quantum well decreases by several times as a mole fraction of In in the InAlAs berrier increases and also when thin InAs layers is inserted into the InGaAs quantum well.