Проявление избыточных центров рождения электронно-дырочных пар, возникших в результате полевого и термического стрессов и их последующей аннигиляции, в динамических вольт-амперных характеристиках Si-MOП структур со сверхтонким окислом¹

© Е.И. Гольдман, Н.Ф. Кухарская, В.Г. Нарышкина, Г.В. Чучева ¶

Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук, Фрязинский филиал, 141190 Фрязино, Россия

(Получена 12 января 2011 г. Принята к печати 14 января 2011 г.)

Исследовано образование центров рождения электронно-дырочных пар у границы раздела кремний-окисел при полевом и термическом воздействиях на Si-MOП структуры со сверхтонким окислом, а также послестрессовая аннигиляция этих образований. Концентрации центров генерации неосновных носителей заряда (дырок) определялись из экспериментальных динамических вольт-амперных характеристик Si-MOП диодов путем фиксации продолжительности накопления равновесной плотности дырок у поверхности, разделяющей полупроводник и диэлектрик при переходе образца из состояния глубокого обеднения в состояние сильной инверсии. Показано, что МОП структуры со сверхтонким окислом гораздо более "податливы" полевому и термическому стрессам по сравнению с образцами с толстым изолирующим слоем: объекты со сверхтонким окислом легче повреждаются внешними воздействиями, но и быстрее восстанавливаются в исходное состояние при комнатной температуре.

Исследования радиационной, полевой и термической стабильности сверхтонких (с толщиной менее 5 нм) изолирующих слоев SiO₂ становятся все более актуальными в связи с прогрессом в создании и началом использования интегральных схем с нанометровыми размерами активных элементов металл-окисел-полупроводник (МОП). Такого рода работы в отношении МОП структур с относительно "толстыми" диэлектрическими слоями (с толщиной более 10 нм) проводятся с 70-х годов прошлого века [2]. Полевой стресс (в допробойных условиях) и облучение приводят к обратимым, но долговременным изменениям свойств SiO₂, выражающихся в накоплении у границы раздела (ГР) кремний-окисел встроенного заряда, в образовании в объеме изолятора локализованных электронных состояний и в генерации на этой ГР поверхностных состояний — центров рождения электронно-дырочных пар [3]. У полученных по современной технологии Si-МОП структур поверхностные уровни соответствуют парамагнитным состояниям атомов кремния с неспаренным электроном, связанным с тремя атомами в объеме полупроводника, $\equiv Si_3Si \bullet$ так называемым Р_b-центром [4]. Концентрация этих оборванных связей составляет 8 · 10¹⁴ см⁻², а наблюдаемые значения плотности локализованных электронных состояний $10^{10} - 10^{12} \text{ см}^{-2}$ [4]. Такая разница обусловлена пассивацией Р_b-центров водородом. Ионы водорода в оксиде кремния подвижны — энергия активации их коэффициента диффузии лежит в диапазоне 0.6-0.8 эВ [5,6]. Поэтому водород, с одной стороны, уменьшает плотность поверхностных состояний, а с другой — является источником нестабильности структур. Изменение концентрации Р_b-центров в результате полевого или радиационного воздействий объясняется так называемой двухшаговой моделью [6,7]. Первый шаг — это возникновение свободных ионов водорода в объеме SiO₂. В процессе поглощения излучения или в результате пролета свободного носителя заряда, попавшего в окисел туннельным образом из полупроводника при полевом стрессе, рождаются электронно-дырочные пары. Электроны в окисле гораздо более подвижны, чем дырки (у дырок перенос дисперсионный). Поэтому электрон покидает окисел, а дырка успевает подойти к центру, удерживающему водород (комплексы Si-H, Si-OH), захватиться на него и тем самым освободить ион водорода. Второй шаг — это дрейф или диффузия ионов водорода к ГР с последующим взаимодействием с пассивированными оборванными связями.

Имеется несколько возможных схем реакций ионов водорода у поверхности кремния [8,9]. В частности, подошедший к ГР протон образует с водородом, пассивирующим оборванную связь кремния, молекулу H₂. В результате оборванная связь становится активной — на поверхности кремния образуется P_b -центр. Еще раз подчеркнем основополагающую роль водорода в стрессовых явлениях в окисле: высвобождением H⁺ с ловушек в объеме изолятора объясняется образование дефектов структуры SiO₂ в процессе времязависимого пробоя [10].

Особенностью МОП структур со сверхтонким (с толщиной менее 5 нм) окислом является высокая прозрачность потенциального барьера, создаваемого изолирующим слоем. В таких структурах сразу же после нарушения детального равновесия становятся заметными токи утечки, обусловленные туннелированием электронов

[¶] E-mail: gvc@ms.ire.rssi.ru

¹ Краткое содержание этой работы было опубликовано в докладе [1].

сквозь потенциальный рельеф в изоляторе, практически не возмущенный внешними электрическими полями. Аналогично и переходы носителей заряда между локализованными состояниями в диэлектрике и разрешенными зонами полупроводника и затвора имеют место также сразу после нарушения детального равновесия.² Таким образом, обратимые долговременные изменения свойств сверхтонких изолирующих слоев могут быть стимулированы как полевым стрессом или облучением, так и нагревом или освещением. Следует указать, что свойства сверхтонких окислов, такие как высота потенциального барьера, отделяющего полупроводник от полевого электрода, и эффективные массы для туннелирования электронов и дырок отличаются от аналогичных параметров "толстых" диэлектриков (см. [12] и имеющиеся в этой работе ссылки). Дело в том, что переход между решетками кремния и окисла принципиально не может быть резким. Переходный слой по толщине должен быть не менее двух монослоев SiO2, т.е. занимать примерно 1 нм [13]. Учитывая, что переходных слоев два, они в целом должны составлять 40% или более от изолирующего слоя. Поэтому непонятно, насколько в сверхтонких окислах проявляются обусловленные ближним порядком зонные свойства массивного SiO₂. Скорее всего, для таких пленок высота барьера и масса для описания туннелирования электрона должны быть эффективными параметрами, зависящими от толщины диэлектрика. Естественно, что и параметры P_b-центров в сверхтонких и толстых окислах различаются [14].

Образование встроенного заряда в сверхтонком изоляторе при полевом стрессе должно модифицировать профиль потенциального барьера и приводить к росту туннельных токов. Такого рода нестабильности изучались ранее [3,15]. В данной работе мы сосредоточимся на исследовании генерации центров рождения электронно-дырочных пар у ГР кремний-(сверхтонкий окисел) при полевом и термическом воздействиях на Si-МОП структуры. Изменение концентрации Р_b-центров удобно отслеживать, фиксируя продолжительность накопления неосновных носителей заряда (ННЗ) у ГР полупроводник-диэлектрик при переходе образца из состояния глубокого обеднения в состояние сильной инверсии. Этот процесс релаксации Si-МОП диода происходит в условиях квазиравновесия между основными носителями заряда, захваченными на расположенные под полевым электродом поверхностные центры генерации электронно-дырочных пар, и свободными ННЗ у ГР [16,17]. Поэтому наполнение канала инверсии идет относительно медленно. За времена порядка 100-1000 с оно главным образом обусловлено натеканием ННЗ, родившихся по периферии полевого электрода, в подзатворную область полупроводника. Окончание процесса, т.е. переход к равновесию вдоль всей поверхности образца, характеризуется "ступенчатым" спадом темпа рождения электронно-дырочных пар [18,19].

Рис. 1. Общий вид динамических вольт-амперных характеристик Si-MOП структур: 1 — до стресса, 2 — после полевого стресса, 3 — равновесная вольт-фарадная характеристика идеальной Si-MOП структуры с теми же параметрами, что и у экспериментальных образцов (концентрация доноров $N_d = 2 \cdot 10^{15}$ см⁻³, площадь $S = 1.6 \cdot 10^{-3}$ см², толщина окисла h = 40 Å). Значение емкости *C* умножалось на скорость полевой развертки β .

Мы использовали измерения динамических вольтамперных характеристик (ДВАХ) Si-МОП структур, аналогичные описанным в работе [20]. Общий вид ДВАХ показан на рис. 1. Напряжение на полевом электроде V_{o} изменялось со временем t с постоянной скоростью, $\beta = dV_g/dt = 16 \text{ мB/c}$, от значений, соответствующих плоским зонам, до обедняющего -1.5 В, после чего с той же скоростью возвращалось к начальной величине. Регистрировался ток I в цепи затвор-подложка. На графиках проявляются два различающихся по физической природе участка. На первом — прямые и часть обратных ветвей — фактически фиксируется туннельный ток через изолятор, который превалирует над токами смещения и генерации дырок. Туннельная проводимость относительно слабо растет в связи с увеличением электрического поля в окисле из-за накопления ННЗ у ГР Si-SiO₂. На обратной ветви генерация ННЗ продолжается и, как только их концентрация приблизится к значениям, соответствующим стационарным условиям при текущем V_a, произойдет переход ко второму участку — отрезку графика квазиравновесной вольт-фарадной характеристики (КР ВФХ) МОП структуры в интервале от сильной до слабой инверсии (по терминологии [21]). Визуально данный переход проявляется в виде растущей ветви (до максимума тока) кривой ДВАХ. Причем, поскольку ток смещения зависит от направления изменения полевого напряжения, на переходе от первого ко второму участку І изменяет знак. В области КР ВФХ превалирует рекомбинация дырок, которая идет гораздо быстрее, чем их генерация. Поэтому после максимума, где темпы генерации и рекомбинации ННЗ уже приближенно

² Этот эффект наблюдался в [11].

равны, ДВАХ резко переходит в КР ВФХ. Такие резкие переходы к квазиравновесным кривым проявляются не только в методе ДВАХ, но и в других подходах, например при измерениях высокочастотных ВФХ [22]. Скорость полевой развертки В подбиралась достаточно высокой, чтобы туннельные токи через изолятор были бы существенно меньше емкостных токов в режиме сильной инверсии поверхности Si. Амплитуду изменения напряжения на затворе ограничивали до 1.5 B, а опыты проводили только в области обеднения полупроводника, чтобы тестирование свойств диэлектрика после стресса не приводило к дополнительным полевым воздействиям на изолятор. При такой постановке эксперимента внешнее напряжение падает в основном на полупроводнике,³ а на окисел приходится не более 0.1 В. Причем близкое к 0.1 В напряжение на изоляторе падает только в короткий промежуток времени на втором участке ДВАХ (в окрестности максимума тока), когда у ГР накопится равновесная концентрация ННЗ.

Исследования проводились с помощью компьютеризированной установки [20] на Si-MOП структурах с полевым электродом $A1-n^+$ -Si: P (концентрация доноров $N_d^+ \approx 10^{20} \,\mathrm{cm}^{-3}$, площадь $S = 1.6 \cdot 10^{-3} \,\mathrm{cm}^2$), изолированным от (100) n-Si-подложки (концентрация электронов $2 \cdot 10^{15} \, \text{сm}^{-3}$) слоем пирогенного окисла с оптической толщиной ~ 40 Å. Образцы подвергались полевому стрессу при комнатной температуре: выдерживались до 30 мин при $V_g = 3.1 \,\mathrm{B}$ или до 120 мин при $V_g = -3.8 \, \text{B}$. Разные времена выдержки и абсолютные величины потенциала полевого электрода выбирались так, чтобы можно было сопоставить опыты с максимально близкими условиями полевого стресса изолятора для противоположных полярностей Vg. Таким образом, для состояния обеднения полупроводника основными носителями заряда, учитывались, во-первых, задержка стресса в связи с постепенным нарастанием поля в SiO₂ из-за медленного накопления дырок у ГР⁴ и, во-вторых, падение внешнего напряжения в Si (~0.6 B) в стационарном состоянии. Термическому стрессу образцы подвергались при V_g = -0.2 В (для таких напряжений на затворе полевым воздействием на изолятор можно пренебречь) путем нагрева структур до температуры 420 К в течение 850 с и последующего охлаждения до комнатной температуры за 1 ч.

На рис. 2–6 показаны фрагменты графиков обратных ветвей ДВАХ в окрестности максимумов тока для структур, подвергнутых либо полевому, либо термическому стрессу. Изменение (по отношению к состоянию до стресса) количества локализованных состояний, через

2. Рис. Фрагменты динамических вольт-амперных характеристик Si-MOП структур после полевого стресса при $V_{g} = 3.2 \,\mathrm{B}$ в течение 80 с: 1 — до стресса, 2 — сразу после стресса, 3 — через 4 ч после стресса, 4 — через сутки после стресса, 5 — через двое суток после стресса. Темпы генерации дырок для кривых 1-5: $N_{g1} =$ $= 2.56 \cdot 10^8 \,\mathrm{cm}^{-2} \mathrm{c}^{-1},$ $N_{g2} = 4.30 \cdot 10^8 \,\mathrm{cm}^{-2}\mathrm{c}^{-1},$ $N_{g3} =$ $= 3.17 \cdot 10^8 \,\mathrm{cm}^{-2} \mathrm{c}^{-1}$ $N_{g4} = 2.53 \cdot 10^8 \,\mathrm{cm}^{-2} \mathrm{c}^{-1},$ $N_{g5} =$ $= 2.58 \cdot 10^8 \,\mathrm{cm}^{-2} \mathrm{c}^{-1}$ соответственно.

которые рождаются электронно-дырочные пары, находилось из соотношения:

$$N_g t_m = p_{sm}.$$

Здесь N_g — усредненный по площади структуры темп генерации ННЗ, он прямо пропорционален числу центров генерации электронно-дырочных пар; t_m — продолжительность натекания ННЗ под полевой электрод в условиях, когда рекомбинацией дырок можно пренебречь. Мы отсчитывали t_m от момента прохождения положения, когда уровень Ферми полупроводника на ГР окажется в середине запрещенной зоны,⁵ до максимума тока на обратной ветви ДВАХ; p_{sm} — концентрация дырок, которые накопились у ГР за время t_m . Величина p_{sm} определялась из уравнения

$$C(p_{sm})=\frac{I_m}{\beta}$$

где $C(p_{sm})$ — табулированная зависимость емкости идеальной Si-MOП структуры от концентрации HH3, I_m — значение тока в максимуме ДВАХ. Функция

³ При $|V_g| > 2$ В по мере накопления дырок в канале инверсии напряжение на окисле возрастает и, как только энергия электронов, протуннелировавших из полевого электрода, станет достаточной для рождения электронно-дырочных пар в полупроводнике, начнется самоускоряющийся процесс генерации ННЗ [19]. В результате бо́льшая часть внешнего напряжения окажется приложенной к изолирующему слою.

⁴ При данном V_g процесс натекания ННЗ продолжается 3120 с.

⁵ Напряжение на полевом электроде в этот момент $V_{gfb} - E_g/2q \approx -0.76$ В, где $V_{gfb} \approx -0.2$ В — напряжение плоских зон, E_g — ширина запрещенной зоны Si, q — элементарный заряд.

Рис. 3. Фрагменты динамических вольт-амперных характеристик Si-MOП структур после полевого стресса при $V_g = 3.2$ В в течение 680 с: I — до стресса, 2 — сразу после стресса, 3 — через 4 ч после стресса, 4 — через сутки после стресса, 5 — через двое суток после стресса. Темпы генерации дырок для кривых I-5: $N_{g1} = 2.56 \cdot 10^8 \text{ см}^{-2} \text{c}^{-1}$, $N_{g2} = 4.78 \cdot 10^8 \text{ см}^{-2} \text{c}^{-1}$, $N_{g3} = 2.85 \cdot 10^8 \text{ см}^{-2} \text{c}^{-1}$, $N_{g4} = 2.53 \cdot 10^8 \text{ см}^{-2} \text{c}^{-1}$, $N_{g5} = 2.58 \cdot 10^8 \text{ см}^{-2} \text{c}^{-1}$ соответственно.

 $C(p_s)$ рассчитывалась по формулам, приведенным в [21]. Естественно, такой подход является приближенным. Вопервых, величина N_g , вообще говоря, зависит от времени из-за изменения эффективной площади периферии полевого электрода (где, собственно говоря, и рождаются ННЗ) при росте и уменьшении V_g . Во-вторых, представления о мгновенности переходов к началу и концу генерации ННЗ в образце являются условными (т. е. необходимо, чтобы экспериментальные значения t_m были много больше, чем характерные времена соответствующих переходов).

Чтобы оценить влияние указанных факторов на определяемые значения N_g , была проведена серия измерений ДВАХ с различными скоростями β в диапазоне от 4 до 40 мВ/с на структуре, не подвергнутой полевым и тепловым воздействиям. Оказалось, что разброс величин N_g составил менее 10%. Это и есть оценка точности наших результатов, полученных при обработке данных измерений.

Отметим, что на экспериментально определяемую величину N_g не влияет перезарядка локализованных электронных состояний в SiO₂ и на ГР, если она отсутствует в момент времени, когда достигается максимум *I* на обратной ветви ДВАХ. Именно такая ситуация

реализовалась в наших опытах, поскольку кривые квазиравновесных ветвей ДВАХ и зависимости емкостного тока от напряжения V_g для идеальной Si-MOП структуры оказались параллельными в окрестности значений $I \approx I_m$.

Из рис. 2 и 3 явствует, что продолжительность полевого стресса при положительной полярности приложенного напряжения практически не влияет на число образующихся центров генерации дырок. Фактически, процесс образования состояний, через которые рождаются ННЗ, заканчивается в течение 1 мин. При отрицательной полярности полевого стресса (см. рис. 4 и 5) число образующихся центров генерации дырок сублинейно увеличивается с ростом времени выдержки изолирующего слоя в сильном поле. Время жизни избыточных центров генерации ННЗ после выдержки в поле исчисляется 2–3 сутками (при $V_g > 0$ скорость аннигиляции выше, чем при $V_g < 0$; это значительно меньше, чем в "толстых" изоляторах, для которых типичны времена порядка 1000 ч [23]. Нагрев до 150°С приводит к существенному повреждению Si-MOП структур со сверхтонким окислом (см. рис. 6) — темп генерации дырок возрастает более чем в 2 раза.

Таким образом, отличие генерации центров рождения электронно-дырочных пар у ГР Si-SiO₂ в МОП

Рис. 4. Фрагменты динамических вольт-амперных характеристик Si-MOП структур после полевого стресса при $V_g = -3.8$ В в течение 3200 с: I — до стресса, 2 — сразу после стресса, 3 — через 4 ч после стресса, 4 — через сутки после стресса, 5 — через двое суток после стресса. Темпы генерации дырок для кривых I-5: $N_{g1} = 2.56 \cdot 10^8 \text{ см}^{-2} \text{c}^{-1}$, $N_{g2} = 3.54 \cdot 10^8 \text{ см}^{-2} \text{c}^{-1}$, $N_{g3} = 3.17 \cdot 10^8 \text{ см}^{-2} \text{c}^{-1}$, $N_{g4} = 2.32 \cdot 10^8 \text{ см}^{-2} \text{c}^{-1}$, $N_{g5} = 2.57 \cdot 10^8 \text{ см}^{-2} \text{c}^{-1}$ соответственно.

структурах со сверхтонким окислом при полевом и термическом стрессах от таких же явлений в образцах с толстым изолирующим слоем заключается в том, что объекты со сверхтонким окислом гораздо более "податливы" — они легче повреждаются внешними воздействиями, но и быстрее восстанавливаются в исходное состояние при комнатной температуре. По-видимому, это объясняется высокой туннельной прозрачностью потенциального барьера, создаваемого сверхтонким изолирующим слоем. Он гораздо слабее ограничивает переходы дырок из полупроводника и полевого электрода на комплексы в окисле, удерживающие водород. Тем самым устраняется существующее в структурах с толстым окислом препятствие для высвобождения ионов H⁺ с ловушек в объеме изолятора. Наблюдается определенная асимметрия полевого стресса при положительной и отрицательной полярностях приложенного напряжения: при V_g < 0 процессы образования и аннигиляции центров рождения электронно-дырочных пар носят более длительный характер, чем при $V_g > 0$. Это может быть связано с разными реакциями водорода: в случае $V_g > 0$ протон, подошедший к ГР, образует с водородом, пассивирующим оборванную связь кремния, молекулу H₂; в случае V_g < 0 активизация оборванной связи кремния обусловлена высвобожде-

5.0 4.0 4.0 2 2 2 2 2 1 1 1 1 0 -1.2 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -0.6 -0.6-0.4

Рис. 5. Фрагменты динамических вольт-амперных характеристик Si-МОП структур после полевого стресса при $V_g = -3.8$ В в течение 3800 с: I — до стресса, 2 — сразу после стресса, 3 — через 4 ч после стресса, 4 — через сутки после стресса, 5 — через двое суток после стресса. Темпы генерации дырок для кривых I-5: $N_{g1} = 2.56 \cdot 10^8$ см⁻²c⁻¹, $N_{g2} = 4.62 \cdot 10^8$ см⁻²c⁻¹, $N_{g3} = = 3.09 \cdot 10^8$ см⁻²c⁻¹, $N_{g4} = 3.17 \cdot 10^8$ см⁻²c⁻¹, $N_{g5} = = 2.57 \cdot 10^8$ см⁻²c⁻¹ соответственно.

Рис. 6. Фрагменты динамических вольт-амперных характеристик Si-МОП структур после термического стресса: I — до стресса, 2 — сразу после стресса, 3 — через сутки после стресса, 4 — через двое суток после стресса. Темпы генерации дырок для кривых I-4: $N_{g1} = 2.56 \cdot 10^8 \text{ см}^{-2} \text{c}^{-1}$, $N_{g2} = 6.48 \cdot 10^8 \text{ см}^{-2} \text{c}^{-1}$, $N_{g3} = 5.32 \cdot 10^8 \text{ см}^{-2} \text{c}^{-1}$, $N_{g4} = 3.17 \cdot 10^8 \text{ см}^{-2} \text{c}^{-1}$ соответственно.

нием водорода из комплекса \equiv Si₃Si-H на контакте Si-SiO₂.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 08-07-00360-а, грант № 09-07-13594-офи_ц) и при частичном финансировании по программе фундаментальных исследований президиума РАН "Основы фундаментальных исследований нанотехнологий и наноматериалов".

Список литературы

- [1] Е.И. Гольдман, В.Г. Нарышкина, Г.В. Чучева. Матер. XVI Междунар. науч.-техн. конф. "Высокие технологии в промышленности России" 9–11 сентября, 2010 (М., Россия, ЦНИТИ "Техномаш", 2010) с. 181.
- [2] E.H. Poindexter. Semicond. Sci. Technol., 4, 961 (1989).
- [3] G. Cellere, S. Gerardin, Al. Paccagnella. In: *Defects in Mic-roelectronic Materials and Devices*, ed. by D.M. Fleetwood, S.T. Pantelides and R.D. Schrimpf. CRC Press (2008) ch. 17, p. 497.
- [4] В.А. Гриценко. УФН, 179 (9), 921 (2009).
- [5] J. Nissan-Cohen. Appl. Surf. Sci., 39, 511 (1989).

6.0

- [6] T.R. Oldham, F.B. McLean, H.E. Boesch, J.M. McCarrity. Semicond. Sci. Technol., 4, 986 (1989).
- [7] F.B. McLean. IEEE Trans. Nucl. Sci., 27, 1651 (1980).
- [8] M.L. Reed. Semicond. Sci. Technol., 4, 980 (1989).
- [9] M. Durr, Z. Hu, A. Biedermann, U. Hofer, T.F. Heinz. Phys. Rev. B, 63, 121 315 (R) 1–4 (2001).
- [10] J.S. Suehle. In: *Defects in Microelectronic Materials and Devices*, ed. by D.M. Fleetwood, S.T. Pantelides and R.D. Schrimpf, CRC Press (2008) ch. 15, p. 437.
- [11] Е.И. Гольдман, Ю.В. Гуляев, <u>А.Г. Ждан</u>, Г.В. Чучева. ФТП. **44**, 1050 (2010).
- [12] Е.И. Гольдман, А.Г. Ждан, Н.Ф. Кухарская, М.В. Черняев. ФТП, 42, 94 (2008).
- [13] А.П. Барабан, В.В. Булавинов, П.П. Коноров. Электроника слоев на кремнии (Л., 1988).
- [14] J.H. Stathis, D.A. Buchanan, D.L. Quinlan, A.H. Parsons. Appl. Phys. Lett., 62, 2682 (1993).
- [15] K. Komiya, Y. Omura. J. Appl. Phys., 92, 2593 (2002).
- [16] Е.И. Гольдман, А.Г. Ждан, А.М. Сумарока. ФТП, 26, 2048 (1992).
- [17] Е.И. Гольдман, А.Г. Ждан. Микроэлектроника, 23, 3 (1994).
- [18] А.Г. Ждан, Г.В. Чучева, Е.И. Гольдман. ФТП, **40**, 195 (2006).
- [19] А.Г. Ждан, Е.И. Гольдман, Ю.В. Гуляев, Г.В. Чучева. ФТП, 39, 697 (2005).
- [20] Е.И. Гольдман, А.Г. Ждан, Г.В. Чучева. ПТЭ, № 6, 110 (1997).
- [21] S.M. Sze, K.Ng. Kwok. *Physics of semiconductor devices* (N.J., John Willey and Sons, Ins., 2007).
- [22] Е.А. Боброва, Н.М. Омельяновская. ФТП. 42, 1380 (2008).
- [23] T.P. Ma. Semicond. Sci. Technol., 4, 1061 (1989).

Редактор Т.А. Полянская

The manifestation of excessive centers of the electron-hole pair generation, appeared as a result to field and thermal stresses, and their subsequent annihilation in the dynamic current-voltage characteristics of Si-MOS-structures with the ultrathin oxide

E.I. Goldman, N.F. Kukharskaya, V.G. Narishkina, G.V. Chucheva

The Institute of Radioengineering and Electronics Russian Academy of Sciences, 141190 Fryazino, Russia

Abstract The formation of centers of the generation of electronhole pairs at the silicon–oxide interface in field and thermal effects on Si-MOS-structures with the ultrathin oxide and the post-stress annihilation of these formations is investigated. Concentrations of generation centers of minority carriers (holes) were determined from experimental dynamic voltage-current characteristics of Si-MOS-diodes by fixing the accumulation duration of the equilibrium density of holes at the surface, separating the semiconductor and insulater at the sample transition from a deep depletion state to at strong inversion state. It is shown, that MOS-structures with the ultrathin oxide are much more "pliable" to field and thermal stresses compared to samples with a thick insulating layer: objects with the ultrathin oxide is easily damaged by external influences, but quickly recovered to its original state at the room temperature.