Влияние встроенного электрического поля на оптические и электрофизические свойства Р-НЕМТ наногетероструктур AIGaAs/InGaAs/GaAs

© Р.А. Хабибуллин[¶], И.С. Васильевский, Г.Б. Галиев⁺, Е.А. Климов, Д.С. Пономарев, В.П. Гладков, В.А. Кульбачинский^{*}, А.Н. Клочков^{*,+}, Н.А. Юзеева⁺

Национальный исследовательский ядерный университет «МИФИ»,

* Московский государственный университет им. М.В. Ломоносова,

119991 Москва, Россия

⁺ Институт сверхвысокочастотной полупроводниковой электроники Российской академии наук,

117105 Москва, Россия

(Получена 1 ноября 2010 г. Принята к печати 8 ноября 2010 г.)

Посвящается светлой памяти чл.-корр. РАН В.Г. Мокерова, д-ра физ.-мат. наук, профессора, основателя и первого директора ИСВЧПЭ РАН, основателя и первого заведующего кафедры 67 "Физика наноразмерных гетероструктур и СВЧ наноэлектроники" НИЯУ МИФИ.

Исследованы спектры фотолюминесценции и электрофизические параметры P-HEMT структур AlGaAs/InGaAs/GaAs с различной глубиной залегания L_b квантовой ямы относительно поверхности. Образцы изготавливались с постоянной концентрацией электронов в квантовой яме при уменьшении слоя L_b . Установлено, что в спектрах фотолюминесценции для всех образцов присутствуют пики в областях энергии $\hbar\omega = 1.28 - 1.30$ и $\hbar\omega = 1.35 - 1.38$ эВ, отношение интенсивности которых увеличивается при уменьшении L_b . Расчеты зонной структуры показали, что изменение спектров связано с увеличением встроенного электрического поля при приближении квантовой ямы к поверхности.

Введение

Полевые транзисторы с двумерным электронным газом высокой подвижности и высокой плотности широко используются для создания современных приборов СВЧ электроники. Р-НЕМТ (pseudomorphic high electron mobility transistor) наногетероструктуры типа AlGaAs/InGaAs/GaAs, обладающие большей подвижностью μ_e и большей концентрацией n_s двумерного электронного газа (2D-газ) по сравнению с гетероструктурой AlGaAs/GaAs, в настоящее время широко используются для создания современных приборов СВЧ электроники [1–4].

Наногетероструктура и ее электрофизические параметры при выбранном технологическом маршруте изготовления СВЧ прибора и размере затвора определяют основные СВЧ параметры изготовляемого прибора. При этом, если концентрация и подвижность 2D-электронов определяют ток стока, то толщина широкозонного барьера AlGaAs (L_b) в значительной степени определяет крутизну транзистора.

В отличие от традиционных структур типа *n*-GaAs/ *i*-GaAs или *n*-AlGaAs/GaAs, P-HEMT структуры с псевдо морфнонапряженной квантовой ямой (КЯ) типа AlGaAs/InGaAs/GaAs и высокой подвижностью электронов — более конструктивно сложные и продуманные, причем толщины активных слоев составляют десятки нанометров. Поэтому данные наногетероструктуры наиболее чувствительны к изменению параметров конструкции: толщины и состава активных слоев, уровня легирования электроактивными примесями. Кроме того, свойства гетероструктур зависят и от технологических условий их формирования [5]. Концентрация и подвижность электронов определяют ток стока транзистора, а толщина широкозонного барьера, т.е. расстояние от КЯ до поверхности (или затвора транзистора), определяет крутизну транзистора.

Как известно, спектроскопия фотолюминесценции $(\Phi \Pi)$ является одним из самых информативных и широко используемых методов для исследования свойств гетероструктуры с КЯ — в первую очередь энергетического спектра в сложных гетероструктурах [6–11]. В литературе встречается большое количество работ по исследованию спектров $\Phi \Pi$ Р-НЕМТ гетероструктур. Зависимость энергетического спектра от концентрации 2D-газа, толщины и состава КЯ исследована в [12,13], а влияние внешнего электрического поля на энергетический спектр КЯ обсуждалось в работах [14–17].

В отличие от спектров ФЛ нелегированных КЯ GaAs/InGaAs/GaAs, в которых из-за правил отбора присутствует одиночный пик [16], на спектрах ФЛ от несимметричных легированных КЯ могут присутствовать два пика, связанных с рекомбинацией электронов первой и второй подзон размерного квантования с тяжелыми дырками. По отношению интенсивностей данных пиков при изменении уровня легирования и при прочих равных условиях можно судить о симметрии профиля потенциала и степени заполнения электронами КЯ. Таким образом, по отношению интенсивности пиков ФЛ можно судить и о влиянии встроенного электрического поля на энергетический спектр КЯ. Так, в работе [17] представлены результаты влияния встроенного электрического

¹¹⁵⁴⁰⁹ Москва, Россия

[¶] E-mail: khabibullin_r@mail.ru

N⁰	N_d , $10^{12} \mathrm{cm}^{-2}$	<i>L</i> _b , нм	$n_{\rm H}, \ 10^{12} {\rm cm}^{-2}$			$n_{\rm SdH}, \ 10^{12} {\rm cm}^{-2}$	$\mu_{ m H},~{ m cm}^2/({ m B}\cdot{ m c})$		
			300 K	77 K	4.2 K	4.2 K	300 K	77 K	4.2 K
718	4.1	18	1.54	1.50	1.54	1.53	6600	19 400	21 380
719	4.7	15	1.69	1.60	1.55	1.55	7800	30 300	35 500
724	6.2	11	1.71	1.63	1.71	1.68	6620	25 560	36 800

Значения холловской $n_{\rm H}$ и рассчитанной по эффекту ШдГ $n_{\rm SdH}$ концентраций, подвижности $\mu_{\rm H}$ электронов в образцах с разным расстоянием от поверхности L_b и концентрацией легирующей примеси N_d

поля на спектры $\Phi \Pi$ при изменении толщины спейсерного слоя AlGaAs, пространственно отделяющего ионизированные атомы доноров кремния от 2*D*-газа.

.

Кроме того, в $Al_x Ga_{1-x} As$ уровень Ферми закреплен на поверхностных состояниях с большой емкостью вблизи середины запрещенной зоны, что создает достаточно сильное встроенное электрическое поле в обедненной области между поверхностью и КЯ, заполненной электронами. При приближении КЯ с двумерным электронным газом к поверхности влияние встроенного электрического поля в гетероструктуре становится все более заметным, что отражается на электрофизических и оптических свойствах структур. Поэтому учет этих факторов является крайне важным при проектировании современных транзисторных гетероструктур [18].

Однако в работах [12–18] не учитывается одновременного действия двух факторов на особенности спектра ФЛ при изменении легирования: первый — изменение встроенного электрического поля в активных слоях гетероструктуры и нарушение симметрии КЯ, второй изменение концентрации электронов в подзонах размерного квантования.

В настоящей работе исследуется влияние встроенного электрического поля на энергетический спектр и электрофизические параметры P-HEMT гетероструктур AlGaAs/InGaAs/GaAs в специально продуманном приближении — при сохранении суммарной концентрации электронов в подзонах КЯ, когда вклад второго фактора искусственно ограничен.

1. Образцы и методики измерений

Исследуемые образцы гетероструктур были выращены методом молекулярно-лучевой эпитаксии (МЛЭ) на подложках полуизолирующего GaAs диаметром 2 дюйма с ориентацией (100). Структура исследуемых образцов схематически представлена на рис. 1. Толщина КЯ InGaAs во всех образцах составляла 11 нм. Толщина барьерого слоя L_b составляла 18, 15 и 11 нм для образцов № 718, 719 и 724 соответственно, что соответствует характерным значениям толщин барьерных слоев при изготовлении малошумящих СВЧ транзисторов.

Сверхрешетка AlGaAs/GaAs введена с целью подавления возможной сегрегации случайных примесей с подложки в буферный слой GaAs, а также для уменьшения дефектов кристаллической структуры растущего слоя. В данной работе температура роста слоев AlGaAs была

Рис. 1. Структура исследуемых образцов с КЯ AlGaAs/InGaAs/GaAs.

600°С, слоев GaAs — 590°С, слоев InGaAs — 500°С, а мольные доли компонент в тройных соединениях $Al_xGa_{1-x}As$ и $In_yGa_{1-y}As$ равнялись x = 0.23 и y = 0.20 для всех выращенных образцов. Образцы имели одностороннее δ -легирование кремнием. Некоторые параметры образцов приведены в таблице.

Подвижность и концентрация электронов измерялись при температурах 300, 77 и 4.2 К при помощи эффекта Холла на мезаструктурах в форме холловских мостиков. При температуре 4.2 К в квантующем магнитном поле до 6 Тл исследовались эффект Холла и осцилляции Шубникова–де-Газа (ШдГ). Спектры ФЛ измерялись с помощью стандартной методики. Возбуждающее излучение от твердотельного лазера с длиной волны $\lambda = 532$ нм фокусировалось на квадратных образцах размером 5×5 мм, находящихся на специальном криостатическом держателе при температуре T = 77 К. Рекомбинационное излучение при помощи световода и системы линз фокусировалось на входной щели монохроматора и регистрировалось в диапазоне энергий фотонов от 1.2 до 1.6 эВ.

2. Результаты измерений и их обсуждение

С помощью самосогласованного решения системы уравнений Шредингера и Пуассона были рассчитаны

Рис. 2. Изолинии постоянной концентрации электронов в КЯ. Изолинии I, 2 и 3 соответственно концентрациям (1.7, 1.4 и $1.1) \cdot 10^{12}$ см⁻². Пунктирная изолиния соответствует выбору концентрации для экспериментальной серии образцов.

и проанализированы пространственный профиль края зоны проводимости U(z), уровни энергии электронов E_i , огибающие волновые функции электронов в подзонах $\psi_i(z)$ и распределение электронной плотности n(z) при изменении толщины барьерного слоя и концентрации доноров аналогично работе [19]. Все расчеты были проведены для температуры 300 К.

Для фиксированного уровня легирования расчеты показывают, что при увеличении L_b квантово-размерные уровни Е_i смещаются в сторону меньших энергий, тем самым увеличивая разницу E_F-E_i, что соответствует увеличению концентрации электронов в подзонах КЯ. Причина такого поведения — ослабление поверхностного потенциала по мере удаления КЯ от поверхности. Было рассчитано компенсирующее увеличение степени легирования слоя δ -Si при уменьшении L_b , необходимое для сохранения постоянной концентрации электронов в КЯ. Результаты расчета представлены на рис. 2. На основании данных расчетов методом МЛЭ были выращены три образца с близкой концентрацией 2D-газа в КЯ, отличающихся толщиной барьерного слоя $L_b = 18$, 15 и 11 нм и степенью легирования $N_d = (4.1, 4.7 \text{ и } 6.2) \cdot 10^{12} \text{ см}^{-2}$. Зонная диаграмма исследуемых структур представлена на рис. 3 и 4.

Экспериментальные данные показывают, что концентрация 2*D*-электронов во всех трех образцах действительно оказалась близкой, $n_{\text{SdH}} = (1.53 - 1.68) \cdot 10^{12} \text{ см}^{-2}$ (4.2 К, из эффекта ШдГ, см. таблицу). На рис. 2 видно, что экспериментальные значения концентрации электронов в образцах 718, 719 и 724 хорошо согласуются с расчетной зависимостью. Для всех трех исследуемых образцов при низких температурах наблюдается сильное увеличение холловской подвижности μ_{H} электронов по сравнению со значениями μ_{H} при комнатной температуре, что связано с достаточно большим вкладом фононов в рассеяние при комнатной температуре. Помимо рассеяния на фононах существует дополнительный механизм

рассеяния на удаленной ионизированной примеси донорах кремния, отделенных от двумерного электронного газа слоем AlGaAs — спейсером. Все выращенные образцы имеют одинаковую толщину спейсера и отличаются толщиной барьерного слоя и уровнем легирования. Из данных таблицы видно, что холловская подвижность µ_Н немонотонно зависит от толщины барьерного слоя AlGaAs. При температурах 300 и 77 К максимальная подвижность электронов наблюдается в образце 719 с промежуточным значением L_b . При $T = 4.2 \, {\rm K}$ низкотемпературная подвижность оказалась наибольшей в образце 724. Таким образом, при низких температурах, несмотря на увеличение легирования на 30%, рассеяние на удаленных донорах кремния уменьшилось. Уменьшение подвижности при малых L_b можно объяснить увеличением проникновения волновой функции электронов из КЯ в спейсерный слой. При уменьшении L_b происходит понижение энергии в области V-образной

Рис. 3. Профиль зоны проводимости U_C для образцов 718, 719 и 724, приведенный к одной точке на границе КЯ. На вставке — профиль U_C КЯ в увеличенном масштабе.

Рис. 4. Профиль зоны проводимости U_C , первый и второй уровни размерного квантования E_0 и E_1 , волновые функции электронов ψ_0 и ψ_1 для образца 724. Нуль энергии соответствует уровню Ферми.

Физика и техника полупроводников, 2011, том 45, вып. 5

потенциальной ямы, образованной δ -слоем кремния, так как увеличивается степень легирования (рис. 3). Поэтому уменьшение подвижности при малых L_b связано с увеличением рассеяния на удаленной ионизированной примеси Si, несмотря на сохраняющуюся толщину спейсера.

Уменьшение подвижности при больших L_b мы также связываем с изменением профиля зоны проводимости из-за уменьшения встроенного поля в области δ -Si. При уменьшении степени легирования склоны V-образного потенциала становятся более пологими, тем самым увеличивая эффективную ширину V-образной ямы δ -слоя, что эквивалентно уменьшению толщины спейсерного слоя.

Для определения заполнения электронами подзон размерного квантования было проведено экспериментальное исследование низкотемпературного электронного магнетотранспорта для всех исследуемых образцов. В качестве примера на рис. 5 представлены результаты измерения магнетосопротивления для двух образцов 718 и 724. Характер монотонной составляющей продольного магнетосопротивления $\rho_{xx}(B)$ отвечает случаю двумерных систем с началом заполнения второй подзоны размерного квантования, поскольку при одной заполненной подзоне наблюдается близкое к линейному отрицательное магнетосопротивление. Для всех образцов наблюдались осцилляции ШдГ. Из эффекта ШдГ при помощи фурье-анализа определена частота осцилляций и концентрация электронов n_{SdH} в заполненной зоне размерного квантования в КЯ с высокой подвижностью электронов. Фурье-спектры осцилляций образцов (см. вставку на рис. 5) показывают, что концентрации электронов имеют близкие значения во всех образцах, а холловская концентрация немного больше чем n_{SdH}. Интенсивность пика на фурье-спектре образца 724 значительно больше интенсивности пика образца 718, что говорит о более высоких подвижностях электронов в случае образца 724. Разность $n_{\text{SdH}} - n_{\text{H}}$ не превышает 3%, однако при увеличении температуры заполнение второй подзоны возрастает, а концентрация электронов в нижней подзоне уменьшается. В Р-НЕМТ структурах подвижность электронов в нижней и верхней подзонах различается, с этим связано температурное изменение холловской концентрации, которая в данном случае связана с усреднением по двум подзонам.

В спектрах ФЛ для всех образцов присутствуют две полосы люминесценции, в области энергии $\hbar\omega_1 = 1.28 - 1.30$ и $\hbar\omega_2 = 1.35 - 1.38$ эВ, которые идентифицированы как переходы из первой и второй электронных подзон в первую подзону тяжелых дырок, e1-h1 и e2-h1 соответственно. Представленные на рис. 6 спектры характерны для случая, когда уровень Ферми находится между уровнями первой (E_0) и второй (E_1) подзон размерного квантования (рис. 4). Положение двух основных пиков $\hbar\omega_1$ и $\hbar\omega_2$ от образца к образцу смещается ненамного, на ~ 20 мэВ. Также изменяется интенсивность обоих пиков. Кроме того,

Рис. 5. Осцилляции Шубникова-де-Гааза для образцов 718 и 724. На вставке приведен фурье-спектр осцилляций.

Рис. 6. Спектры фотолюминесценции образцов 718, 719 и 724 при 77 К.

при уменьшении L_b возрастает интенсивность пика, отвечающего переходу e2-h1. Обычно изменение интенсивности оптических переходов связывают с двумя факторами [12–14]. Первый фактор — это изменение матричного элемента переходов и нарушение правил отбора при изменении встроенного электрического поля. Он связан с симметрией КЯ, так как перекрытие волновых функций электронов и дырок зависит от встроенного электрического поля. Второй фактор это изменение соотношения концентраций электронов в подзонах КЯ. В других работах эффект изменения спектра наблюдался при увеличении энергии Ферми и концентрации электронов в КЯ, и заполнении верхней подзоны размерного квантования E_1 . При этом второй фактор выступал всегда совместно с первым.

В данной работе суммарная концентрация электронов и положение уровня Ферми в КЯ выбраны постоянными, а встроенное поле и симметрия КЯ варьируются только за счет изменения профиля потенциала в барьерном слое AlGaAs и δ -слое доноров. Как показывают расчеты зонной структуры, увеличение интенсивности перехода e2-h1 при уменьшении L_b связано с увеличением встро-

енного электрического поля при приближении КЯ к поверхности. Уменьшение Lb приводит к тому, что энергия зоны проводимости в области КЯ увеличивается, что ведет к уменьшению концентрации 2D-газа в КЯ. Для сохранения постоянной концентрации в КЯ мы увеличивали напряженность встроенного электрического поля в области барьера AlGaAs за счет увеличения доноров в δ-слое Si. Однако при этом происходит увеличение кривизны дна зоны проводимости в области б-слоя и КЯ (рис. 3). Для удобства сравнения изменений зонной структуры на рис. З профиля потенциалы зоны проволимости в исследуемых образцах приведены к одной точке — верхней границе КЯ. При этом координата поверхности Δz не совпадает в различных образцах, но поверхностный потенциал $\phi_s = 0.7 \, \text{эВ}$ для всех образцов. В результате перекрытие волновых функций электронов e2 и дырок h1 возрастает по мере увеличения кривизны дна КЯ, что приводит к увеличению интенсивности пика e2-h1. Увеличение встроенного поля в КЯ может приводить к сближению уровней размерного квантования электронов и дырок, как это наблюдалось в работе [20] для широкой КЯ. Это объясняет смещение пиков ФЛ в сторону меньших энергий. Таким образом, наблюдаемое изменение положений пиков и изменение интенсивности переходов e2-h1 следует связывать с изменением встроенного поля в структуре и изменением перекрытия электронных и дырочных волновых функций в КЯ.

3. Заключение

В данной работе исследовалось влияние встроенного электрического поля на оптические и электрофизические свойства гетероструктур с КЯ AlGaAs/ InGaAs/GaAs. Было проведено моделирование влияния толщины барьерного слоя AlGaAs L_b и уровня легирования кремнием на энергетический спектр и концентрацию электронов. Рассчитаны изолинии постоянной концентрации электронов в КЯ при уменьшении L_b, по результатам расчета изготовлены AlGaAs/InGaAs/GaAsструктуры с близкой суммарной концентрацией электронов в подзонах КЯ. В таком специально созданном случае концентрация электронов в двух нижних подзонах размерного квантования КЯ практически не изменяется, однако встроенное поле в области КЯ и спейсера увеличивается при уменьшении L_b. В образцах наблюдается немонотонная зависимость холловской подвижности µ_H от толщины барьерного слоя, обусловленная изменениями профиля зоны проводимости в области V-образного потенциала δ-слоя. На спектрах $\Phi\Pi$ при уменьшении L_b возрастает интенсивность пика, отвечающего рекомбинации электронов второй подзоны размерного квантования и тяжелых дырок e2-h1. Таким образом, определяющую роль в изменении соотношения интенсивностей оптических переходов играет встроенное поле и симметрия КЯ, а не изменение заполнения подзон КЯ.

Работа выполнена при финансовой поддержке программы президиума РАН (проект № 21).

Список литературы

- C. Gaquiere, J. Grünenütt, D. Jambon, E. Delos, D. Ducatteau, M. Werquin, D. Treron, P. Fellon. IEEE Electron Dev. Lett., 26 (8), 533 (2005).
- [2] Z. Huang, R. Yu, C. Jiang, T. Lin, Z. Zhang, J. Chu. Phys. Rev. B, 65, 205 312 (2002).
- [3] X. Cao, Y. Zeng, M. Kong, L. Pan, B. Wang, Zh. Zhu. Sol. St. Electron., 45, 751 (2001).
- [4] D.Y. Lee, J.Y. Leem, S.K. Kang, J.S. Kim, J.S. Son, I.H. Bae. Phys. E, **19**, 349 (2003).
- [5] A. Jasik, A. Wnuk, J. Gaca, M. Woucik, A. Wojcik-Jedlinska, J. Muszalski, W. Strupinski. J. Cryst. Growth, **311**, 4423 (2009).
- [6] J. Gilperez, J. Sanches-Rojas, E. Munoz, E. Calleja, J.P.R. David, M. Reddy, G. Hill, J. Sanchez-Dehesa. J. Appl. Phys. 76, 5931 (1994).
- [7] D. Lin, S. Liang, Y.S. Huang, K.K. Tiong, F.H. Pollak, K.R. Evans. J. Appl. Phys., 85, 8235 (1999).
- [8] L. Pavesi, M. Guzzi. J. Appl. Phys., 75, 4779 (1994).
- [9] Z.Ya. Zhuchenko, G.G. Tarasov, S.R. Lavorik, Yu.I. Mazur, M.Ya. Valakh, H. Kissel, W.T. Masselink, U. Mueller, C. Walther. SQO, 2 (3), 103 (1999).
- [10] M. Wojtowicz, D. Pascua, A.C. Han, T.R. Block, D.C. Streit. J. Cryst. Growth, **175**, 930 (1997).
- [11] S.K. Brierley, A. Torabi, P.S. Lyman. J. Appl. Phys., 86 (2), 914 (1999).
- [12] H. Brugger, H. Mussig, C. Wolk, K. Kern, D. Heitmann. Appl. Phys. Lett., 59 (21), 2739 (1991).
- [13] C. Colvard, N. Nouri, H. Lee, D. Ackley. Phys. Rev. B, 39, 8033 (1989).
- [14] K.R. Lefebvre, A.F.M. Anwar. Semicond. Sci. Technol., 12, 1226 (1997).
- [15] W. Trzeciakowski, M. Gurioli. Phys. Rev. B, 44, 3880 (1991).
- [16] Г.Б. Галиев, В.Г. Мокеров, Ю.В. Федоров, А.В. Гук, В.А. Страхов, Н.Г. Еременко. ФТП, **32** (9), 1060 (1998).
- [17] X. Cao, Y. Zeng, M. Kong, L. Pan, B. Wang, Z. Zhu, X. Wang, Y. Chang, J. Chu. J. Cryst. Growth., 231, 520 (2001).
- [18] G. Ambrazevichus, S. Marcinkevichus, T. Lideikis, K. Naudzius. Semicond. Sci. Technol., 7, 818 (1992).
- [19] Г.Б. Галиев, И.С. Васильевский, Е.А. Климов, В.Г. Мокеров, А.А. Черечукин. ФТП, 40 (12), 1479 (2006).
- [20] L.P. Avakyants, P.Yu. Bokov, A.V. Chervyakov, G.B. Galiev, E.A. Klimov, I.S. Vasilevskii, V.A. Kulbachinskii. Semicond. Sci. Technol., 21, 462 (2006).

Редактор Л.В. Беляков

671

Influence of built-in electric field on the optical and electrophysical properties of AlGaAs/InGaAs/GaAs P-HEMT nanoheterostructures

R.A. Khabibullin, I.S. Vasil'evskii, G.B. Galiev⁺, E.A. Klimov, D.S. Ponomarev, V.P. Gladkov, V.A. Kulbachinskii^{*}, A.N. Klochkov^{*+}, N.A. Uzeeva⁺

National Research Nuclear University «MEPHI», 115409 Moscow, Russia * Lomonosov Moscow State University, 119991 Moscow, Russia + Institute of Ultra High Frequency Semiconductor Electronics of Russian Academy of Sciences 117105 Moscow, Russia

Abstract The photoluminescence spectra and electrophysical properties were studied in the samples with a different barrier thickness L_b between the quantum well and the surface. All the samples had the same concentration of the two-dimensional electrons in the quantum well AlGaAs/InGaAs/GaAs. In the sample the deliberate increasing of the Si doping with the decreasing of L_b followed the calculation. Two peaks with energies $\hbar\omega = 1.28 - 1.30 \text{ eV}$ and $\hbar\omega = 1.35 - 1.38 \text{ eV}$ were observed in the photoluminescence spectra. In the case of L_b decreasing, the intensity ratio of those peaks increased. The energy band calculation showed that in this case the effect originates from the change of the built-in electric field while the quantum well approaches the surface.