Краевые инверсионные каналы и поверхностные токи утечки в высоковольтных полупроводниковых приборах

© А.С. Кюрегян¶

Всероссийский электротехнический институт им. В.И. Ленина, 111250 Москва, Россия

(Получена 16 июня 2010 г. Принята к печати 30 августа 2010 г.)

Показано, что электрическое поле над поверхностью полупроводниковых приборов может оказаться достаточным для того, чтобы индуцировать краевые инверсионные каналы, если напряжение смещения велико, а плотность поверхностного заряда Q_s мала. В этом случае краевая область приборов, содержащих p-n-p-структуру (например, тиристоров), функционирует как планарный p-канальный МДП транзистор, у которого затвор совмещен со стоком, а функцию подзатворного диэлектрика выполняет вся среда над поверхностью. Ток между истоком и стоком этого "краевого МДП транзистора" является током поверхностью. Ток между истоком и стоком этого "краевого МДП транзистора" является током поверхностью утечки всего прибора. Построена аналитическая теория, описывающая вольт-амперную характеристику в подпороговом режиме. Показано, что этот новый механизм определяет полный ток утечки высоковольтных приборов, если $|Q_s|$ и температура T достаточно малы ($|Q_s| < 4$ нКл/см², T < 270 К для кремниевых приборов).

1. Введение

Известно [1], что инверсионные каналы в местах выхода p-n-переходов на поверхность сильно увеличивают токи утечки и таким образом ухудшают блокирующую способность многослойных полупроводниковых приборов. Механизм образования каналов, связанный с наличием поверхностного заряда Q_s надлежащего знака, был предложен еще на заре развития полупроводниковой электроники [2]. Рассмотрим в качестве примера тиристорную $p^+ - n - p^+ - n^+$ -структуру, анодный $p^+ - n$ -переход которой выходит на поверхность положительной фаски (см. рис. 1) и смещен в обратном направлении до напряжения - U. Согласно [2], отрицательный поверхностный заряд индуцирует в полупроводнике электрическое поле с нормальной к границе раздела компонентой $E_n = -Q_s/\varepsilon_s$, где ε_s — абсолютная диэлектрическая проницаемость полупроводника. Если

$$E_n = E_i \equiv 2\sqrt{\frac{kTN_d}{\varepsilon_s}\ln\frac{N_d}{n_i}},\tag{1}$$

(здесь n_i — собственная концентрация при температуре T), то на поверхности *n*-слоя концентрация дырок p_s сравнивается с концентрацией доноров N_d , а при

$$-Q_s > \varepsilon_s E_i \tag{2}$$

наступает "сильная" инверсия, поверхностный дырочный канал соединяет встречно включенные переходы и вызывает резкое увеличение поверхностного тока утечки *I_s*. Для исключения этого вредного эффекта значительные усилия были направлены на создание методов очистки, пассивации и защиты поверхности полупроводников, обеспечивающих возможно меньший по величине и стабильный во времени поверхностный заряд. Соответствующие технологические проблемы были успешно решены применительно к кремнию, а в последние годы решаются и для новых широкозонных материалов.

Между тем существует и не связанная с поверхностным зарядом фундаментальная физическая причина образования инверсионных каналов, которая при определенных условиях может оказаться преобладающей в высоковольтных структурах, но, насколько мне известно, до сих пор не описана в литературе. Она заключается в том, что в диэлектрике над поверхностью фаски тоже существует электрическое поле $\mathbf{E}(x, y)$ (см. рис. 1), причем его нормальная к поверхности компонента $E_n^d(x)$ отлична от нуля за пределами области пространственного заряда (ОПЗ) p-n-перехода при любой величине Q_s .

Рис. 1. Поперечное сечение краевой области высоковольтного обратносмещенного тиристора с двойной фаской. Границы области пространственного заряда обозначены штриховыми линиями, а при образовании инверсионного слоя в интервале $w_s < x < d_s$ — штрихпунктирной. Дуги со стрелками схематически изображают силовые линии электрического поля в диэлектрике над поверхностью фаски.

[¶] E-mail: ask@vei.ru

Вследствие этого в полупроводнике

$$E_n(x) = \frac{\varepsilon_d E_n^d(x) - Q_s}{\varepsilon_s},$$
(3)

где ε_d — абсолютная диэлектрическая проницаемость диэлектрика. Принципиальным является тот факт, что функция $E_n^d(x)$ монотонно уменьшается с ростом x, но при всех $x > w_s$ остается положительной. Поэтому на самом деле "сильная" инверсия возникает во всей области $w_s < x < d_s$ при условии¹

$$\varepsilon_d E_n^d(d_s) - Q_s \ge \varepsilon_s E_i$$
 (4)

в результате совместного действия поверхностного заряда Q_s и "внешнего" поля E_n^d . Это условие приближенно совпадает с (2), только если $\varepsilon_d E_n^d(d_s) \ll |Q_s|$, но может быть выполнено и при $Q_s \ge 0$.

По сути дела краевая область $p^+ - n - p^+$ -структуры функционирует как планарный МДП транзистор, в котором стоком является обратносмещенный анодный p^+ -*п*-переход, истоком — катодный $n-p^+$ -переход, затвором — поверхность фаски в области x < 0, а функцию подзатворного диэлектрика выполняет вся среда над поверхностью фаски. Этот "краевой МДП транзистор" обладает тремя особенностями. Во-первых, эффективная "толщина" подзатворного диэлектрика очень велика (больше или порядка w_s — см. рис. 1) и существенно уменьшается в направлении от истока к стоку. Вместе с ней изменяются также поле $E_n^d(x)$ и все параметры канала, так что "краевому МДП транзистору" присущи некоторые короткоканальные особенности, хотя фактическая длина канала (d_s - w_s) обычно очень велика (десятки или даже сотни микрон). Во-вторых, потенциалы затвора и стока равны между собой, поэтому с ростом напряжения U между истоком и стоком его ток I_s (который является током поверхностной утечки тиристора) экспоненциально нарастает при малых U и не насыщается ни при каких U. В-третьих, высокоомная *п*-база оборвана (а не соединена с истоком, как в обычных МДП транзисторах), так что истоковый $n-p^+$ -переход оказывается прямосмещенным вследствие протекания объемного тока утечки I_v. Поэтому для расчета I_s в зависимости от U и параметров прибора необходимо существенно модифицировать стандартную теорию МДП транзисторов [3,4]. Решению этой задачи посвящена данная работа.

2. Напряженность поля на поверхности фаски

Для того чтобы найти функцию $E_n^d(x)$, мы используем три упрощения. Во-первых, будем считать, что угол

Рис. 2. Распределения нормальной E_n (штриховая линия) и тангенциальной E_t (сплошная линия) компонент электрического поля вдоль поверхности фаски обратносмещенного кремниевого p^+-n -перехода при $\theta = 28.6^\circ$, $Q_s = 0$, $\varepsilon_d = 3\varepsilon_0$ и $E_M = 150$ кВ/см, полученные путем численного решения уравнения Пуассона. Темные и светлые символы — кусочнолинейная и параболическая аппроксимации тангенциальной компоненты поля E_t .

 $\vartheta = 0$ и положительная фаска тиристора неограничена вдоль оси x (рис. 1), а вся область y > 0 заполнена однородным диэлектриком. Рассматривая ее как часть комплексной плоскости z = x + iy, введем функцию $\phi(x, y)$, гармонически сопряженную с распределением потенциала $\phi(x, y)$. Тогда $\Phi(z) = \phi(x, y) + i\phi(x, y)$ и $d\Phi(z)/dz = \partial \phi/\partial x - i\partial \phi/\partial y$ — аналитические в верхней полуплоскости функции. Поэтому $d\Phi(z)/dz$ связана со своей действительной частью $\partial \phi(x, 0)/\partial x = -E_t(x)$ на оси x интегралом Шварца [5]:

$$\frac{d\Phi}{dz} = \frac{i}{\pi} \int_{-\infty}^{\infty} \frac{E_t(t)dt}{t-z}.$$
(5)

Для вычисления нормального к поверхности y = 0 поля $E_n^d(x) = -\partial \varphi(x, 0)/\partial y$ нужно в формуле (5) перейти к пределу $y \to 0$ с помощью формулы Сохоцкого [5], в результате чего получается

$$E_n^d(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{E_t(t) - E_t(x)}{t - x} dt.$$
 (6)

Можно показать, что при $\vartheta > 0$ эта формула дает заниженные значения $E_n^d(x)$ в области $w_s < x < d_s$, поэтому в реальном тиристоре с двойной фаской рассматриваемый эффект будет несколько больше. Во-вторых, учтем (см. рис. 2), что тангенциальная компонента поля $E_t(x)$ велика только в области $0 < x < w_s$, которая и дает основной вклад в интеграл (6). При $w_s < x < d_s$ тангенциальная компонента поля много меньше нормальной и поэтому вторым слагаемым под интегралом (6) можно пренебречь. Фактически это упрощение эквивалентно

¹ Условия (2), (4) являются "равновесными" и справедливы при равенстве нулю тока в инверсионном канале (т.е. при U = 0). В неравновесном случае они достаточны, но не необходимы для выполнения неравенства $p_s(d_s) \ge N_d$ — см. разд. 3.

(11)

Рис. 3. Графики функций $f_s(X, b)$ (линии) и $f_l(X)$ (символы).

предположению о том, что за пределами ОПЗ анодного p^+ -*n*-перехода потенциал $\varphi_s(x) = \varphi(x, 0)$ поверхности фаски приближенно совпадает с потенциалом нейтральной части *n*-слоя и равен нулю. В данном случае такое предположение оправдано в силу неравенства $|\varphi_s| \ll U$. В результате формула (6) принимает вид

$$E_n^d(x) = \frac{U}{w_s} f\left(\frac{x}{w_s}\right),\tag{7}$$

где

$$f(X) = \frac{w_s}{\pi U} \int_0^1 \frac{E_t(w_s\xi)d\xi}{\xi - X}$$

В-третьих, будем считать, что априори неизвестную функцию $E_t(x)$ можно заменить подходящей аппроксимацией, удовлетворяющей условию нормировки

$$\int_{0}^{w_s} E_t(x) dx = -U$$

и обеспечивающей правильное положение максимума $E_t(x)$. Это допущение оправдано тем, что вид функции $E_t(x)$ вообще слабо влияет на конечный результат. Чтобы убедиться в этом, сравним параболическую и кусочно-линейную аппроксимации. В первом случае

$$E_t(x) = 6 \frac{U}{w_s} \frac{x}{w_s} \left(\frac{x}{w_s} - 1\right),\tag{8}$$

$$f(X) = f_l(X) \equiv \frac{6}{\pi} \left[X - \frac{1}{2} - X(X - 1) \ln \frac{X}{X - 1} \right]$$
(9)

и максимум $E_t(x)$ расположен в точке $x = w_s/2$. Во втором случае

$$E_{t}(x) = 2 \frac{U}{w_{s}} \begin{cases} \frac{x}{w_{s}b} & \text{при } 0 < x < w_{s}b, \\ \frac{w_{s} - x}{w_{s}(1 - b)} & \text{при } w_{s}b < x < w_{s}, \end{cases}$$
(10)

$$f(X) = f_s(X, b)$$
$$\equiv \frac{2}{\pi} \left(\frac{X}{b} \ln \frac{X}{X - b} - \frac{X - 1}{1 - b} \ln \frac{X - b}{X - 1} \right)$$

и максимум $E_t(x)$ расположен в точке $x = bw_s$. Так как функция (8) хорошо описывает реальное распределение поля при $\theta = 28.6^{\circ}$ и $Q_s = 0$ (см. рис. 2);

разница между $f_s(X, 1/2)$ и $f_l(X)$ пренебрежимо мала (см. рис. 3);

параметр b = 0.3 - 0.7 при $Q_s = 0$ и типичных значениях $\theta = 50^{\circ} - 12^{\circ}$ [6];

изменение Q_s в актуальных для рассматриваемого эффекта пределах $\pm 0.03\varepsilon_s E_M$ (где E_M — максимальная напряженность поля в ОПЗ плоской части прибора) практически не влияет на вид функции $E_t(x)$ [7],

то при таких значениях θ отклонение $f_s(X, b)$ от точной функции (7) должно быть порядка расхождения между функциями $f_s(X, 1/2)$ и $f_l(X)$ (< 1%), использование каждой из которых обеспечит точность не хуже $\pm 10\%$ (см. рис. 3).

3. Подпороговый ток поверхностной утечки и пороговое напряжение

Использованное в предыдущем разделе предположение о том, что $\varphi_s(x) = 0$ в области $w_s < x < d_s$, конечно непригодно при вычислении тока поверхностной утечки. На самом деле совместное действие "внешнего" поля $E_n^d(x)$, заряда Q_s и поля катодного $n-p^+$ -перехода формируют вблизи поверхности фаски потенциальный рельеф $\varphi(x, y)$, в качественном отношении подобный рельефу в МДП транзисторах [3,4]. Этот рельеф можно найти, используя обычное в теории длинноканальных МДП транзисторов квазиодномерное приближение, в рамках которого нормированный потенциал $\Phi(x, y) = q\varphi(x, y)/kT$ определяется формулой

$$\Phi(x, y) = -\left[\frac{E_n(x)}{E_D} + \frac{y}{2L_D}\right]^2,$$
 (12)

где $E_{\rm D} = \sqrt{2N_d kT/\varepsilon_s}$, $L_{\rm D} = kT/qE_{\rm D}$. Одним из необходимых условий применимости (12) является малость тангенциальной компоненты поля

$$-\frac{\partial\Phi(x,y)}{\partial x} = 2\frac{kT}{qE_{\rm D}} \left[\frac{E_n(x)}{E_{\rm D}} + \frac{y}{2L_{\rm D}}\right] \frac{dE_n(x)}{dx}$$
(13)

по сравнению с $E_n(x)$. Нетрудно показать, что оно эквивалентно неравенству

$$-\frac{\varepsilon_d w^2}{2\varepsilon_s w_s} \frac{d}{dx} f\left(\frac{x}{w_s}\right) \ll 1, \tag{14}$$

которое обычно выполняется, так как при $x/w_s > 1.01$ и типичных значениях параметров левая часть (14) меньше 0.1. Кроме того, необходимо выполнение неравенств

$$E_n^2 \gg E_D^2$$
 и $p_s \ll N_d E_n^2 / E_D^2$, (15)

обеспечивающих возможность пренебрежения зарядом электронов и дырок в приповерхностной ОПЗ.

Физика и техника полупроводников, 2011, том 45, вып. 3

Потенциал увеличивается по мере удаления от поверхности в глубь полупроводника и с ростом x, а на самой поверхности он достигает максимального значения $\Phi_{sM} \approx \Phi_s(d_s)$ в области пересечения прямосмещенного $n-p^+$ -перехода с фаской, после чего резко уменьшается. Расчет дырочного тока через такой потенциальный рельеф мы проведем, следуя работе [8]. Так как дырки сосредоточены в приповерхностном слое толщиной порядка $L_{\rm D}E_{\rm D}/E_n\ll L_{\rm D}$, то, интегрируя по у плотность х-компоненты дырочного тока $j_x = -qD_p(pd\Phi/dx + dp/dx)$, можно пренебречь зависимостью $\partial \Phi / \partial x$ от у (см. формулу (13)) вследствие первого из условий (15). В результате такого интегрирования для поверхностной плотности дырок $P = \int p dy$ получается уравнение

$$\frac{dP}{dx} + P \frac{d\Phi_s}{dx} = \frac{I_s}{2\pi RqD_p},\tag{16}$$

где D_p — коэффициент диффузии дырок,²

$$\Phi_s(x) = \Phi(x, 0) = -\left[\frac{E_n(x)}{E_D}\right]^2$$

нормированный потенциал поверхности,

$$-I_s = 2\pi R \int j_x dy$$

 полный ток поверхностной утечки прибора с радиусом *R*. Элементарное решение уравнения (16) приводит к формуле

$$I_{s} = 2\pi RqD_{p}[P(d_{s}) - P(w_{s})]$$

$$\times \left\{ \int_{w_{s}}^{d_{s}} \exp[\Phi_{s}(x) - \Phi_{s}(d_{s})]dx \right\}^{-1}.$$
(17)

Так как при $x \to d_s$ распределение дырок по энергии стремится к равновесному, то

$$P(d_s) \approx p_s(d_s) \frac{kT}{qE_n(d_s)}$$
$$= \frac{n_i^2}{N_d} \frac{kT}{qE_n(d_s)} \exp\left[-\Phi_s(d_s) + \frac{qU_{\rm F}}{kT}\right], \qquad (18)$$

где U_F — напряжение прямого смещения катодного $n-p^+$ -перехода, обусловленное протеканием через прибор объемного тока утечки I_v . Формулы для I_v и U_F легко получить с помощью стандартной теории тиристоров [3]. Если для простоты пренебречь инжекцией электронов через резко асимметричный $n-p^+$ -переход и предположить, что генерация и рекомбинация в *n*-слое определяются одним глубоким уровнем с параметрами $n_1 = p_1 = n_i$ и $\tau_{n0} = \tau_{p0} = \tau_p$, то³

$$I_v = \pi R^2 \left(j_g - j_r \operatorname{sch} \frac{d - w}{L_p} \right) \left(1 - \operatorname{sch} \frac{d - w}{L_p} \right)^{-1}, \quad (19)$$

а $U_{\rm F}$ является корнем трансцендентного уравнения

$$2 \frac{L_p n_i}{w N_d} \operatorname{th} \frac{d - w}{2L_p} \left(\exp \frac{q U_{\rm F}}{k T} - 1 \right) + \frac{2\pi}{\sqrt{U(U_c - U_{\rm F})}} \frac{k T}{q} \operatorname{sh} \left(\frac{q U_{\rm F}}{2k T} \right) = 1, \quad (20)$$

где $j_g = q n_i w / 2 \tau_p$ — плотность термогенерационного тока обратносмещенного p^+ -*n*-перехода,

$$j_r = \pi \, rac{n_i w}{ au_p} \, rac{kT}{\sqrt{U(U_c - U_{
m F})}} \, {
m sh} \Big(rac{q U_{
m F}}{2kT} \Big)$$

 плотность рекомбинационного тока прямосмещенного $n-p^+$ -перехода, U_c — контактная разность потенциалов, $L_p = \sqrt{D_p \tau_p}$, τ_p — время жизни дырок в *n*-слое. С другой стороны, при $x \to w_s$ концентрация дырок в канале сильно уменьшается вследствие быстрого роста тангенциальной напряженности поля $\partial \Phi_s / \partial x$ (см. (7) и (13)), поэтому $P(w_s) \ll P(d_s)$ и в (17) можно положить $P(w_s) = 0$. В результате получается окончательная формула

$$I_s \approx 2\pi R q D_p \frac{n_i^2}{N_d} \frac{kT}{qE_n(d_s)} \exp\left(\frac{qU_F}{kT}\right) \left\{ \int_{w_s}^{d_s} \exp[\Phi_s(x)] dx \right\}^{-1},$$
(21)

верная вплоть до напряжения $U = U_T$, при котором $p_s(d_s) = N_d$. Определенное таким образом пороговое напряжение U_T является решением трансцендентного уравнения, которое удобно записать в виде

$$\frac{\sin\theta}{2\gamma} \frac{\varepsilon_d}{\varepsilon_s} \sqrt{\frac{U_T}{U_b}} f\left(\frac{d}{\gamma w_b} \sqrt{\frac{U_b}{U_T}}\right) = \frac{Q_s}{\varepsilon_s E_b} + \sqrt{\frac{U_i - U_F(U_T)}{U_b}},$$
(22)

где

$$U_i = 2\frac{kT}{q}\ln\frac{N_d}{n_i},$$

E_b и *w_b* — максимальная напряженность поля в ОПЗ и ее толщина при напряжении Ub лавинного пробоя плоского резко асимметричного p^+ -*n*-перехода. При выводе (22) мы использовали формулы (3), (7), (12), (18) и соотношение $w_s = \gamma w / \sin \theta$, в котором параметр $\gamma > 1$ введен для учета дополнительного расширения ОПЗ на фаске [1,6,7].

² Так как напряженность поля в краевом инверсионном канале невелика (в кремниевых приборах обычно менее 10⁴ В/см), можно пренебречь зависимостью подвижности от En, Et и использовать соотношение Эйнштейна.

³ При выводе формул (19), (20) мы пренебрегали лавинным умножением неосновных носителей заряда. Это оправдано применительно к рассмотренным в следующем разделе кремниевым $p^+ - n - p^+$ -структурам и карбид-кремниевым $n^+ - p - n^+$ -структурам, поскольку в Si отношение коэффициентов ударной ионизации дырок и электронов $\alpha_p/\alpha_n \ll 1$, а в SiC $\alpha_p/\alpha_n \gg 1$ [9].

При $U > U_T$ погрешность формулы (21) начинает быстро увеличиваться из-за возрастающего влияния заряда дырок в канале на потенциал Φ_s , так что она становится непригодной для расчета I_s при $U = U_M$, где напряжение U_M определяется из условия $p_s(d_s) = N_d E_n^2(d_s) / E_D^2$. При $U \ge U_M$ заряд дырок в канале существенно экранирует внешнее поле, поэтому экспоненциальный рост тока I_s прекращается, но, как уже было отмечено во Введении, зависимость $I_s(U)$ не насыщается. К сожалению, аналитический расчет в этой области напряжений невозможен. Проблема состоит в том, что в нашем случае потенциал Φ_s явно зависит от координаты x через посредство определяющей его функции $E_n(x)$. Поэтому задача сводится к решению дифференциального уравнения, которое является не только нелинейным, но и неавтономным; подобное осложнение возникает и в теории обычных короткоканальных МДП транзисторов.

В заключение этого раздела отметим, что формулы (20)–(22) упрощаются в пределе низких и высоких температур. При достаточно малом отношении n_i/N_d объемный ток утечки не успевает перезарядить барьерную емкость истокового $n-p^+$ -перехода за время измерения вольт-амперной характеристики (BAX), поэтому можно считать, что $U_{\rm F} = 0$. Если же $kT\sqrt{N_d/n_i} \ll q\sqrt{U_cU}$, то $j_r \ll j_g$ и, пренебрегая вторым слагаемым в левой части (20), можно получить явное выражение для $U_{\rm F}$.

4. Обсуждение результатов

Описанный выше механизм формирования краевых инверсионных каналов существенно влияет на полный ток утечки высоковольтных структур, если пороговое напряжение U_T меньше напряжения пробоя U_b , а поверхностный ток утечки Is больше (или хотя бы не намного меньше) объемного I_v при $U = U_T$. Для того чтобы понять, при каких условиях это происходит, на рис. 4-6 приведены некоторые результаты расчетов по формулам (19)-(22) для кремниевых p^+ -n- p^+ -структур и карбид-кремниевых $n^+ - p - n^+$ -структур.⁴ При проведении расчетов использовались типичные значения параметра $\gamma = 1.25$ [7], толщины базы $d = 1.4w_b$, амбиполярной длины диффузии в базе $L_{pn} = d/3$, угла фаски $\theta = 30^{\circ}, \varepsilon_d = 3\varepsilon_0$ и предполагалось, что диаметр структур 2R = 1 см, а пробивные характеристики переходов связаны между собой соотношениями

$$E_{b} = \widetilde{E} \left(\ln \frac{U_{b}}{\widetilde{U}} \right)^{-1}, \quad w_{b} = 2 \frac{U_{b}}{\widetilde{E}} \ln \frac{U_{b}}{\widetilde{U}},$$
$$N_{d} = \frac{\varepsilon \widetilde{E}^{2}}{2qU_{b}} \left(\ln \frac{U_{b}}{\widetilde{U}} \right)^{-2}, \tag{23}$$

где \widetilde{U} и \widetilde{E} — константы материала [9].

Рис. 4. Зависимости нормированного порогового напряжения кремниевого *p*-канального (*a*) и карбид-кремниевого *n*-канального (*b*) "краевого МДП транзистора" от напряжения лавинного пробоя плоского асимметричного p-n-перехода при T = 300 K, $U_{\rm F} = 0$ и различных величинах плотности поверхностного заряда Q_s .

Пороговое напряжение U_T сложным образом зависит от геометрических и электрофизических параметров прибора. Как видно (см. рис. 4), отношение U_T/U_b уменьшается с ростом U_b и может стать значительно меньше единицы. Причина такой зависимости состоит в том, что пробивная напряженность поля E_b уменьшается с ростом U_b гораздо медленнее, чем N_d (см. (23)). Однако неравенство $U_T < U_b$ может быть выполнено, только если Q_s меньше (в $p^+ - n - p^+$ -структурах) или больше (в $n^+ - p - n^+$ -структурах) некоторой критической величины Q_{cr} , так как в противном случае "внешнее" электрическое поле полностью экранируется поверхностным зарядом при всех $U < U_b$.

В кремниевых p^+-n-p^+ -структурах $Q_{\rm cr} \approx 4.2$ нКл/см², поэтому индуцированные "внешним" полем краевые инверсионные каналы могут образовываться только при идеальной очистке и пассивации поверхности фаски. Отношение U_T/U_b уменьшается с ростом температуры, как видно из рис. 5. Однако при этом экспоненциально нарастает объемный ток, так что в Si неравенство

⁴ Такой выбор типа структур обусловлен тем, что в кремниевых тиристорах толстая высокоомная база обычно легирована донорами, а в карбид-кремниевых — акцепторами.

Рис. 5. Зависимости объемного I_v (сплошные линии) и поверхностного I_s (штриховые линии) токов утечки кремниевой $p^+ - n - p^+$ -структуры с напряжением пробоя $U_b = 3 \text{ кB}$ от нормированного напряжения смещения при $Q_s = 0$ и различных температурах T. Темными символами отмечены значения $I_s(U_T)$, светлыми — $I_s(U_M)$.

Рис. 6. Зависимости объемного I_v (сплошная линия) и поверхностного I_s (штриховые линии) токов утечки карбид-кремниевой $n^+ - p - n^+$ -структуры с напряжением пробоя $U_b = 10 \text{ kB}$ от нормированного напряжения смещения при T = 600 K и различных плотностях поверхностного заряда Q_s .

 $I_s(U_T) > I_v(U_T)$ выполняется только при сравнительно низких температурах. С ростом диаметра прибора (который может превышать 10 см) отношение $I_s(U_T)/I_v(U_T)$ уменьшается пропорционально R^{-1} , поэтому температура $T_{\rm cr}$, при которой $I_s(U_T) \approx I_v(U_T)$ ($T_{\rm cr} \approx 270$ К для набора параметров, использованных при построении рис. 5), становится еще ниже. С другой стороны, $T_{\rm cr}$ может и увеличиться, если объемный ток утечки определяется термогенерацией через уровень, расположенный достаточно далеко от середины запрещенной зоны.⁵ критическая плотность поверхностного заряда достигает величины – 58 нКл/см², соответствующей вполне реалистической плотности поверхностных состояний;

— концентрация легирующей примеси в базе (а вместе с ней и "пороговый" ток $I_s(U_T)$) почти в 400 раз больше;

— объемный ток утечки на много порядков меньше.

Поэтому для приборов на основе карбида кремния сравнительно легко обеспечить условия, при которых выполняется сильное неравенство $I_s(U_T) \gg I_v(U_T)$ (см. рис. 6) и рассматриваемый механизм формирования тока утечки является преобладающим.

5. Заключение

В заключение отметим, что описанный механизм увеличения тока утечки может проявиться не только в рассмотренном выше обратносмещенном тиристоре с отрицательной фаской, но и в любых высоковольтных приборах (в том числе и планарных), содержащих выходящую на поверхность *n*-*p*-*n*- или *p*-*n*-*p*-структуру. Конструкция прибора оказывает лишь количественное влияние на величину эффекта через посредство функции f(x), зависящей от конфигурации поверхности. Исключением являются приборы (например, некоторые типы тиристоров и IGBT, в англоязычной литературе часто называемые "punch-through devices"), высокоомная база которых содержит тонкий и относительно сильно легированный буферный слой, ограничивающий расширение ОПЗ. В таких приборах напряженность "внешнего" поля недостаточно велика для того, чтобы индуцировать сквозной инверсионный канал, соединяющий встречно включенные переходы.

Работа выполнена при поддержке РФФИ (грант № 08-08-00206).

Список литературы

- П.С. Агаларзаде, А.И. Петрин, С.О. Изидинов. Основы конструирования и технологии обработки поверхности p-n-nepexoda (М., Сов. радио, 1978).
- [2] H. Statz, A. deMars, L. Davis et al. Phys. Rev., 100 (4), 1272 (1956).
- [3] С. Зн. Физика полупроводниковых приборов (М., Мир, 1984) т. 2.
- [4] H.C. Pao, C.T. Sah. Sol. St. Electron., 9, 927 (1966).
- [5] М.А. Лаврентьев, Б.В. Шабат. Методы теории функций комплексного переменного (М., Наука, 1987).

 $^{^{5}}$ Если этим уровнем в Si является *E*-центр, расположенный на 0.2 эВ выше середины запрещенной зоны, то $T_{\rm cr}$ увеличится примерно на 30%.

- [6] X.B. Chen, J.K.O. Sin, M. Zhang, B. Wang. IEEE Trans. Electron. Dev., ED-44, 869 (1997).
- [7] А.С. Кюрегян. ФТП, 45, 67 (2011).
- [8] А.В. Горбатюк, А.С. Кюрегян. Микроэлектроника, 20, 254 (1991).
- [9] А.С. Кюрегян, С.Н. Юрков. ФТП, 23, 1819 (1989).

Редактор Т.А. Полянская

Edge inversion channels and surface leakage currents in high-voltage semiconductor devices

A.S. Kyuregyan

All-Russian Electrical Engineering Institute, 111250 Moscow, Russia

Abstract It is shown that the electric field above the surface of semiconductor devices may be sufficient to induce edge inversion channel, if the bias voltage is large and the surface charge density Q_s is low. In this case, the edge region of the device containing the *p*-*n*-structure (for example, thyristors) operates as a planar *p*-channel MIS-transistor whose gate is merged with a drain, and the entire medium over the surface performs a function of gate insulator. Current between the source and the drain of this "edge MIS transistor" is a surface leakage current of the device. An analytical theory describing the current-voltage characteristics in the subthreshold regime is developed. It is shown that this new mechanism determines the total leakage current of high voltage devices, if Q_s and temperature *T* is sufficiently small ($Q_s < 4 \text{ nC/cm}^2$, T < 270 K for silicon and $Q_s < 58 \text{ nC/cm}^2$, T < 600 K for silicon carbide devices).