Вольт-амперные характеристики поликристаллов соединения ZnGa₂Se₄

© Б.Г. Тагиев⁺, О.В. Тагиев^{¶+*}, С.Г. Асадуллаева⁺

⁺ Институт физики Национальной академии наук Азербайджана,
 AZ-1143 Баку, Азербайджан
 * Филиал Московского государственного университета им. М.В. Ломоносова,
 AZ-1143 Баку, Азербайджан

(Получена 25 февраля 2010 г. Принята к печати 29 апреля 2010 г.)

Вольт-амперные характеристики структуры In–ZnGa₂Se₄–In исследовались в интервале температур 90–335 К. На основании расчетных данных для концентрации трех типов ловушек носителей заряда в ZnGa₂Se₄ получены величины $N_t = 1.4 \cdot 10^{13}$, $8.2 \cdot 10^{12}$, $2.6 \cdot 10^{12}$ см⁻³, определены прозрачность контактной области $D_k^* = 10^{-5}$, скорость поверхностной рекомбинации $S_k = 0.65$ м/с, время жизни носителей заряда $\tau = 1.5 \cdot 10^{-4}$ с. Установлено, что в электрических полях меньше 10^3 В/см механизм токопрохождения обусловлен монополярной инжекцией носителей заряда.

1. Введение

Основной упор при изучении тройных алмазоподобных полупроводниковых соединений типа $A^{II}B_2^{III}C_4^{VI}$ в последние несколько лет делался главным образом на их электрические [1–4], оптические [5–13], структурные [14–18] и магнитные свойства [19]. На многообещающие особенности некоторых из этих соединений с точки зрения их использования как базы для создания элементов оптоэлектроники указывали многие авторы [1–3,5,6], но данных об их электрических свойствах очень мало.

Высокоомные полупроводники, каким является соединение типа $ZnGa_2Se_4$ (удельное сопротивление $\sim 10^9$ Ом · см при 300 K), представляют большой интерес для исследования инжекционных токов и процессов электрополевой ионизации. Инжекционные токи, на которые сильное воздействие оказывают локальные уровни, являются важными для изучения этих уровней в полупроводниках, диэлектриках и структурах на их основе [11–13].

Вольт-амперная характеристика (ВАХ) зависит от характера распределения локальных уровней и может иметь сложную структуру. Исследование инжекционных токов в полупроводниках и диэлектриках позволяет получить информацию о параметрах локальных уровней их концентрации, энергетическом положении в запрещенной зоне, сечении захвата свободных носителей тока.

Соединение ZnGa₂Se₄ принадлежит к группе алмазоподобных соединений с общей формулой $A^{II}B_2^{III}C_4^{VI}$ (A — двухвалентные катионы Zn, Cd; B — трехвалентные катионы Ga, In, Al; C — халькогены A, Se, Te). Соединение ZnGa₂Se₄ кристаллизуется в пространственной группе S₄², параметры решетки: a = 5.496 Å, c = 10.99 Å, c/a = 2 [14]. По сравнению с другими соединениями из группы $A^{II}B_2^{III}C_4^{VI}$ (например, CdGa₂Se₄, CdGa₂Se₄) физические свойства ZnGa₂Se₄ почти не изучены.

В настоящей работе исследовались инжекционные токи в поликристаллах ZnGa₂Se₄.

2. Методика эксперимента

Для синтеза соединения ZnGa₂Se₄ использовались исходные компоненты Zn, Ga и Se, которые в стехиометрическом соотношении загружались в ампулу, затем откачиваемую до 10^{-4} мм рт. ст. После этого ампула помещалась в предварительно нагретую до $900-1000^{\circ}$ С печь. При температуре $800-900^{\circ}$ С начиналась бурная реакция. По мере прохождения реакции температура в печи медленно поднималась до 1150° С и выдерживалась в течение 3 ч. При этой температуре происходит переплавка продукта синтеза. Затем температура опускалась до 500° С и выдерживалась в течение суток, после чего печь выключалась и ампула остывала вместе с печью.

Образцы ZnGa₂Se₄ толщиной 250–350 мкм для исследования BAX были изготовлены в сэндвич-исполнении. Омические контакты к образцах создавались вплавлением индия.

3. Результаты измерений и их обсуждение

Вольт-амперные характеристики структуры In-ZnGa₂Se₄-In исследовались в интервале температур T = 90-335 К. К структурам In-ZnGa₂Se₄-In прикладывалось постоянное напряжение 1–100 В, которое соответствует напряженности электрического поля $60-3 \cdot 10^3$ В/см. Типичные ВАХ исследуемых структур представлены на рис. 1. Как видно из рис. 1, в интервале электрических полей $60-3 \cdot 10^3$ В/см ток изменяется в широком интервале, $I = 10^{-9}-10^{-5}$ А. При понижении температуры ВАХ смещается в сторону бо́льших электрических полей. В зависимости от температуры при полях до 20-40 В/см соблюдается закон Ома.

Температурная зависимость электропроводности (σ) поликристаллов ZnGa₂Se₄ в полулогарифмическом масштабе представлена на рис. 2. Видно, что в координатах $\lg \sigma = f(10^3/T)$ прямая характеризуется двумя наклонами, которые соответствуют энергиям активации лову-

[¶] E-mail: oktay58@mail.ru

Рис. 1. Вольт-амперная характеристика структуры $In-ZnGa_2Se_4-In$ при различных температурах *T*, K: *1* — 334, *2* — 300, *3* — 90.

Рис. 2. Температурная зависимость электропроводности поликристаллов ZnGa₂Se₄.

шек 0.16 и 0.28 эВ. Вслед за законом Ома на ВАХ структур In–ZnGa₂Se₄–In проявляется ловушечный квадратичный участок ($I \propto U^2$). Ловушечный квадратичный участок зависит от температуры и охватывает токи, изменяющиеся в интервале $10^{-8}-3 \cdot 10^{-5}$ А. Наблюдение зависимостей тока от толщины (L) и напряжения (U) в виде $I \propto L^{-3}$ и $I \propto U^2$ свидетельствует о токах, ограниченных пространственными зарядами (ТОПЗ) в соединении ZnGa₂Se₄.

Полученные экспериментальные данные анализировались в соответствии с теорией ТОПЗ [20], развитой в [21,22]. Показано [20], что при наличии не слишком сильных внешних полей (~ 10³ В/см) баланс между свободными и захваченными на ловушках носителями тока изменяется вследствие изменения концентрации свободных носителей с повышением уровня инжекции. При этом вместо концентрации свободных равновесных носителей тока n₀ во внимание принимается концентрация $n = n_i + n_0$, где n_i — средняя концентрация инжектированных неравновесных свободных носителей тока. В [23] учитывается, что концентрация носителей тока в высокоомных полупроводниках, каким является соединение ZnGa₂Se₄, у анода равна n_a пропорциональна концентрации n_t носителей тока, захваченных ловушками. Для анализа ВАХ используется дифференциальный метод. Согласно этому методу,

$$\frac{1}{e}\frac{d\rho}{dE_f} = \frac{dn_i}{dE_f} \approx \frac{dn_t}{dE_f}.$$
(1)

Считая $n_t \sim n_a$, для n_a получаем выражение

$$n_a = \frac{1}{2} \frac{J_a L}{2e\mu U}.$$
 (2)

В (1) и (2) ρ — плотность заряда, E_f — энергия квазиуровня Ферми, J_a — плотность тока у анода, L — толщина образца, e — заряд электрона, μ подвижность носителей тока, U — приложенное к структуре напряжение. Известно, что в тройных соединениях $A^{II}B_2^{III}C_4^{VI}$, кристаллизующихся в пространственной группе S_4^2 (CdGa₂Se₄, CdGa₂S₄), подвижность имеет значения 10–30 см²/В · с. Поэтому при вычислении концентрации по формуле (2) значение подвижности было взято ~ 10 см²/В · с [24]. Энергия квазиуровня Ферми E_f рассчитана по формуле

$$E_f = kT \ln \frac{N_b}{n_a}.$$
 (3)

В (3) k — постоянная Больцмана, N_b — эффективная плотность состояний в зоне проводимости (или в валентной зоне). Известно, что эффективная плотность состояний N_b определяется следующей формулой:

$$N_b = 4.83 \left(\frac{m^*}{m_0}\right)^{3/2} T^{3/2},\tag{4}$$

где m^* — эффективная масса носителей тока, m_0 — масса свободного электрона. Соединение ZnGa₂Se₄ является полупроводником *n*-типа проводимости. При расчете N_b для ZnGa₂Se₄ эффективная масса взята $m^* = 0.2m_0$ [23].

Результаты расчета E_f , n_t и dn_t/dE_f графически представлены на рис. 3, *a* и *b*.

Как видно из рис. 3, b, на зависимости dn_t/dE_f от E_f проявляются три максимума. По величине максимума dn_t/dE_f при $E_f \equiv E_{fm}$ на этом уровне можно опреде-

лить полную концентрацию ловушек N_t [21] по следующей формуле:

$$\left[\frac{dn_t}{dE_f}\right]_{E_{fm}} = \frac{N_t}{4kT}.$$
(5)

На основании расчетных данных (рис. 3, *b*) в образцах ZnGa₂Se₄ для трех ловушечных уровней получены величины $N_t = 1.4 \cdot 10^{13}$, $8.2 \cdot 10^{12}$, $2.6 \cdot 10^{12}$ см⁻³. Полученные для структур In–ZnGa₂Se₄–In результаты анализировались на основе зависимости показателя степени при

Рис. 3. Зависимости концентрации заполненных ловушек n_t (*a*) и производной dn_t/E_f (*b*) от энергии квазиуровня Ферми E_f .

 $\begin{array}{c} 2.2 \\ 2.0 \\ 1.8 \\ 1.6 \\ 3 \\ 1.4 \\ 1.2 \\ 1.0 \\ 0.8 \\ \hline 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ U, V \end{array}$

Рис. 4. Зависимость α от U при T = 334 К для образца поликристалла ZnGa₂Se₄.

описании ВАХ как $I \propto U^{\alpha}$ от напряжения и тока [23]:

$$\alpha(U, I) = \frac{d \lg I}{d \lg U} = \frac{U}{I} \frac{dI}{dU}.$$
 (6)

В [25] показано, что характер изменения α с напряжением (током) является определяющим при идентификации различных физических механизмов электропроводности в зависимости от величины электрического поля. Особые точки на зависимости $\alpha(U, I)$ позволяют определить основные параметры полупроводников. Авторами [23] получены выражения, которые аналитически связывают для особых точек величины α с напряжением, током и параметрами полупроводника. На основе экспериментальных данных, приведенных на рис. 1, при различных температурах определены величины α . Зависимость $\alpha(U, I)$ при 334 К показана на рис. 4. Видно, что кривая при напряжении $U_{\min} = 0.65 \,\mathrm{B} ~(\mathrm{ток}~I_{\min} = 1.7 \cdot 10^{-8} \,\mathrm{A})$ проходит через минимум $\alpha_{\min} = 0.76$, а при напряжении $U_{\max} = 25 \text{ B}$ (ток $I_{\text{max}} = 4.5 \cdot 10^{-6} \text{ A}$) через максимум $\alpha_{\text{max}} = 2.2$.

Наличие минимума на зависимости $\alpha(U, I)$ позволило определить прозрачность контактной области (D_k^*) , скорость поверхностной рекомбинации (S_k) , время жизни носителей заряда (τ) :

$$D_k^* = \frac{1 - \sqrt{1 - \alpha_{\min}}}{\sqrt{1 - \alpha_{\min}}} \frac{\mu U_{\min}}{L u_n},\tag{7}$$

где $u_n = \sqrt{8kT/\pi m^*}$ — средняя тепловая скорость электронов;

$$S_k = \frac{1 - \sqrt{\alpha_{\min}}}{4\sqrt{1 - \alpha_{\min}}} \frac{\mu U_{\min}}{L};$$
(8)

$$\tau = \frac{3L^2\sigma_0}{32(1 - \alpha_{\min})^2 \mu I_{\min}},$$
(9)

где σ_0 — проводимость омической области ВАХ.

Физика и техника полупроводников, 2011, том 45, вып. 1

Путем подстановки экспериментальных значений величин, входящих в формулы (7)–(9), сделаны следующие оценки: $D_k^* = 10^{-5}$, $S_k = 0.65$ м/с, $\tau = 1.5 \cdot 10^{-4}$ с.

Появление максимума на зависимости $\alpha(U, I)$ в поликристаллах ZnGa₂Se₄ требует выяснения механизма токопрохождения в области скачков тока, имеющих место в электрических полях выше 10³ В/см. Для разграничения механизмов электропроводности полупроводников в электрических полях вводится дискриминационный коэффициент Q_{max} , который определяется как отношение концентрации пространственного заряда к концентрации свободных носителей тока. Для полевой ионизации, монополярной и двойной инжекции должны выполняться условия $Q_{\text{max}} < 4\alpha_{\text{max}}, Q_{\text{max}} \ge 1, Q_{\text{max}} \le 1$ соответственно. В случае полевой ионизации получено следующее выражение [23,25]:

$$Q_{\max} = \frac{(2\alpha_{\max} - 1)^2 (\alpha_{\max} - 1)}{(\alpha_{\max} + 1)^2}.$$
 (10)

Если подставить величину $\alpha_{\max} = 2.2$ для поликристаллов ZnGa₂Se₄ в (10), получим $Q_{\max} = 1.4$. Это означает, что условия полевой ионизации $Q_{\max} < 4\alpha_{\max}$ и монополярной инжекции $Q_{\max} \ge 1$ для поликристалла ZnGa₂Se₄ выполняются.

4. Заключение

Дифференциальный метод анализа ВАХ в инжекционной области позволяет получить ценную информацию о ловушках в ZnGa₂Se₄. На основании расчетных данных для концентрации ловушек в ZnGa₂Se₄ получены величины $N_t = 1.4 \cdot 10^{13}$, $8.2 \cdot 10^{12}$, $2.6 \cdot 10^{12}$ см⁻³, прозрачность контактной области $D_k^* = 10^{-5}$, скорость поверхностной рекомбинации $S_k = 0.65$ м/с, время жизни носителей заряда $\tau = 1.5 \cdot 10^{-4}$ с. Установлено, что в электрических полях меньше 10^3 В/см механизм токопрохождения обусловлен монополярной инжекцией носителей заряда.

Список литературы

- [1] J.A. Beun, R. Nitsche, M. Lichtensteiger. Physica, 27, 448 (1961).
- [2] N.A. Goryunova. The Chemistry of Diamond-Like Semiconductors (Chapman and Hall, London, 1965).
- [3] L.I. Berger, V.D. Prochukhan. *Ternary Diamond-Like Semiconductors* (Consultants Bureau, N.Y., 1969).
- [4] W. Ludwig, G. Voigt. Phys. Status Solidi, 24, K 161 (1967).
- [5] J.A. Beun, R. Nitsche, M. Lichtensteiger. Physica, 26, 647 (1960).
- [6] R. Nitsche, W.J. Merz. Helv. Phys. Acta, 35, 275 (1962).
- [7] S. Shionoya, Y. Tamoto. J. Phys. Soc. Jpn., 19, 1142 (1962).
- [8] L. Krausbauer, R. Nitsche, P. Wild. Proc. Intern. Conf. on Luminescence (Budapest, 1966) p. 1107.
- [9] G.B. Abdullaev, V.B. Antonov, D.T. Guseinov, R.Kh. Nanu, E.Yu. Salaev. Sov. Phys. Semicond., 2, 878 (1969).

- [10] W. Kim, M. Jin, S. Hyeon, Y. Kim, B. Park. Sol. St. Commun., 74 (2), 123 (1990).
- [11] Y.-G. Kim, L. Chomsik. J. Appl. Phys., 83 (12), 8068 (1998).
- [12] J.W. Kim, Y.J. Kim. J. Eur. Ceramic Soc., 27 (13–15), 3667 (2007).
- [13] S.I. Radautsan, I.M. Tiginyanu, V.N. Fulga, Yu.O. Derid. Phys. Status Solidi A, **114** (1), 259 (1989).
- [14] X.-S. Jiang, S. Mi, P.-J. Sun, Y. Lu, J.-Q. Liang. Chinese Phys. Lett., 26, 077 102 (2009).
- [15] G. Antonioli, P.P. Lottici, C. Razzetti. Phys. Status Solidi B, 152 (1), 39 (2006).
- [16] A. Eifler, G. Krauss, V. Riede, V. Krämer, W. Grill. J. Phys. Chem. Sol., 66 (11), 2052 (2005).
- [17] D. Errandonea, R.S. Kumar, F.J. Manjon, V.V. Ursaki, I.M. Tiginyanu. J. Appl. Phys., **104** (6), 063 524 (2008).
- [18] H. Hahn, G. Frank, W. Klinger, A.D. Storger, G. Storger, Z. Anorg. Allg. Chem., 279, 241 (1955).
- [19] P. Manca, C. Muntoni, F. Raga, A. Spiga. Phys. Status Solidi B, 44, 51 (1971).
- [20] М. Ламперт, П. Марк. Инжекционные токи в твердых телах (М., Мир, 1973) ч. 1, гл. 5, с. 103.
- [21] C. Manfredotti, C.De Blasi, S. Galassini, G. Micocci, L. Ruggiero, A. Tepore. Phys. Status Solidi A, 36, 569 (1976).
- [22] S. Nespurek, J. Sworakowski. Phys. Status Solidi A, 41 (2), 619 (1977).
- [23] А.Н. Зюганов, С.В. Свечников, А.Ю. Тхорик, Е.П. Шульга. УФЖ, 21, 370 (1977).
- [24] N.A. Goryunova. Сложные алмазоподобные полупроводники (М., Сов. радио, 1968).
- [25] А.Н. Зюганов, А.М. Иванов, С.В. Свечников. Электрон. моделирование, 12, 6 (1990).

Редактор Л.В. Шаронова

Voltage–current characteristics of polycrystal ZnGa₂Se₄ compound

B.G. Tagiev⁺, O.B. Tagiev^{+*}, S.G. Asadullayeva⁺

⁺ Institute of Physics,
Azerbaijan National Academy of Sciences,
AZ-1143 Baku, Azerbaijan
* Branch of Moscow State University
named after M.V. Lomonosov,
AZ-1143 Baku, Azerbaijan

Abstract The voltage–current characteristics of ZnGa₂Se₄ were investigated in the temperature range 90–335 K. On the basis of calculated data the carrier trap concentrations in ZnGa₂Se₄ $N_t = 1.4 \cdot 10^{13}$, $8.2 \cdot 10^{12}$, $2.6 \cdot 10^{12}$ cm⁻³ were obtained, as well as the transparency of the contact region $D_k^* = 10^{-5}$, the surface recombination speed $S_k = 0.65$ m/s, the charge carrier lifetime $\tau = 1.5 \cdot 10^{-4}$ s. It is established that in the electric fields less than 10^3 V/cm, the mechanism of current flow is due to monopolar injection of charge carriers.