Использование кластерных вторичных ионов Ge_2^- , $Ge_3^$ для повышения разрешения по глубине при послойном элементном анализе полупроводниковых гетероструктур GeSi/Si методом ВИМС

© М.Н. Дроздов[¶], Ю.Н. Дроздов, Д.Н. Лобанов, А.В. Новиков, Д.В. Юрасов

Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия

(Получена 15 июля 2009 г. Принята к печати 24 августа 2009 г.)

Обсуждаются новые возможности повышения разрешения по глубине при послойном элементном анализе полупроводниковых гетероструктур GeSi/Si методом вторично-ионной масс-спектрометрии на установке TOF.SIMS-5. С использованием оптического профилометра Talysurf CCI-2000 для контроля формы и шероховатости дна кратера распыления проведен детальный анализ вкладов артефактов ионного распыления и аппаратурных эффектов в разрешение по глубине. Установлено, что использование ионов Cs⁺ для распыления позволяет минимизировать развитие шероховатости при послойном анализе структур GeSi/Si вплоть до глубины 1-1.5 мкм. Показано, что использование вторичных кластерных ионов Ge⁻₂ и Ge⁻₃ вместо Ge⁻₁ и Ge⁺ позволяет снизить величину переходных областей в регистрируемых профилях.

1. Введение

Необходимым условием послойного элементного анализа полупроводниковых наноструктур методом вторично-ионной масс-спектрометрии (ВИМС) является достижение высокого разрешения по глубине на уровне 1-1.5 нм. Основные источники погрешности, определяющие разрешение по глубине, можно разделить на две различные группы [1–4]. Первая, это информационная глубина метода, определяемая глубиной выхода регистрируемых вторичных ионов. Вторая группа включает достаточно многочисленные артефакты ионного распыления, среди которых основную роль играют атомное перемешивание в каскаде столкновений и развитие шероховатости в кратере распыления. Способы минимизации этих погрешностей для каждого типа структур требуют отдельного исследования. Кроме того, важную роль могут играть инструментальные погрешности, прежде всего наклон дна кратера ионного распыления, вклад которого в разрешение по глубине зачастую трудно выделить на фоне "наведенной" шероховатости. Наиболее детально процесс послойного анализа изучен для установок ВИМС с магнитосекторным и квадрупольным масс-анализаторами (обеспечивающими динамический режим работы ВИМС). Установки ВИМС с времяпролетным масс-анализатором первоначально создавались для анализа поверхности в статическом режиме [5]. Лишь недавно они были модернизированы и для проведения послойного анализа [6-8], однако их возможности в этом режиме работы до сих пор мало изучены. В данной работе проведено систематическое исследование вклада отдельных погрешностей в разрешение по глубине при послойном анализе полупроводниковых гетероструктур SiGe/Si методом ВИМС на установке TOF.SIMS-5 с времяпролетным масс-анализатором и рассмотрены новые способы минимизации.

2. Методика эксперимента

Послойный элементный анализ проводился на установке ВИМС ТОГ.SIMS-5 фирмы IONTOF (Германия) с времяпролетным масс-анализатором. В этой установке используется импульсный режим работы ионных пушек и масс-анализатора, в котором разделены функции двух ионных пучков для анализа и распыления. Распыление проводится ионами O₂⁺ или Cs⁺ с энергиями от 0.5 до 2кэВ, величина тока составляет сотни нА. Типичный размер растра распыляющего пучка составляет 500 × 500 мкм². Для анализа используются ионы тяжелого элемента Bi+ с массой 209 а.е.м. с энергией 25 кэВ, что позволяет реализовать высокую чувствительность для анализа практически любых тяжелых ионов. Величина тока пучка ионов Ві в импульсе не превышает 1 пА, длительность импульса 1 нс. При этих условиях в одном зондирующем импульсе содержится около 500 ионов Ві, и за типичное время анализа в десятки минут ион Ві дважды не попадает в одну и ту же точку. Это условие составляет основу статического режима ВИМС [5]. Не менее важным оно оказывается в динамическом режиме послойного анализа. Здесь это означает, что анализирующий пучок с высокой энергией практически не нарушает поверхность, а формирование измененного приповерхностного слоя и результирующее разрешение по глубине определяются низкоэнергетическими ионными пучками. Заметим, что в динамическом режиме послойного анализа достаточно выполнения менее жесткого требования к току пучка ионов Ві скорость распыления ионами Ві должна быть много меньше скорости распыления ионами Cs^+ или O_2^+ [6]. Как правило, это условие позволяет использовать более высокие значения тока пучка ионов Ві, чем в статическом режиме ВИМС.

Размер растра ионов Ві составляет около 20% от растра распыляющего пучка. Система юстировки ионных пучков в TOF.SIMS-5 позволяет с высокой точностью

[¶] E-mail: drm@ipm.sci-nnov.ru

позиционировать анализирующий пучок в центре кратера распыления, что минимизирует инструментальные погрешности при послойном анализе.

Детальный анализ формы и профиля кратера распыления, а также характеристик шероховатости в зоне кратера и на исходной поверхности проводился на оптическом интерференционном профилометре Talysurf CCI-2000.

3. Результаты эксперимента

На рис. 1 показаны форма и профиль дна кратера распыления полупроводниковой структуры ионами O_2^+ , падающими на поверхность под углом 45°. Установлено, что в установке достигается высокая степень коррекции инструментальной погрешности: наклон дна кратера не превышает 1–1.5% от глубины травления *Z*. Размер области, анализируемой пучком ионов Bi⁺, составляет, как правило, пятую часть от кратера травления. В данном случае кратер составлял 500 × 500 мкм, а анализируемая область 100 × 100 мкм. Поэтому наклон дна кратера будет вносить дополнительную погрешность в разрешение по глубине D_Z , не превышающую $D_Z = 0.2\%Z$.

Рис. 1. Форма (a) и профиль дна (b) кратера травления в структуре, полученные на оптическом профилометре Talysurf CCI-2000.

Рис. 2. Профили элементов в структуре *B* 863, {Ge_xSi_{1-x}/Si}/Si(100).

Рис. 3. Профили вторичных ионов Ge^+ , Ge_1^- , Ge_2^- .

На рис. 2, 3 приведено распределение интенсивности линий ³⁰Si, Ge и Sb (кластер SbSi) в многослойной структуре *B*863 с двадцатью чередующимися слоями Ge_xSi_{1-x} и Si. Прежде всего обращает на себя внимание разное поведение модуляции Ge⁺ (распыление ионами O₂⁺) и Ge⁻ (распыление Cs⁺) (рис. 3). При распылении ионами О₂⁺ модуляция элементов снижается с глубиной анализа, что может свидетельствовать о развитии шероховатости в зоне анализа при распылении. В то же время при распылении ионами Cs⁺ модуляция Ge₁⁻ сохраняет свою величину на всю глубину анализа. Предположение о различной степени развития шероховатости при распылении ионами Cs⁺ и O₂⁺ подтверждено прямыми измерениями величины среднеквадратичной шероховатости S_q на профилометре Talysurf. На исходной поверхности структуры *B* 863 $S_q = 0.75$ нм. На дне кратера травления ионами Cs^+ (Z = 1.3 мкм) шероховатость возрастает

незначительно S_q = 1.15 нм. При распылении ионами O_2^+ (Z = 1.1 мкм) изменения значительно сильнее — $S_q = 3.9$ нм. Угол падения ионов O_2^+ и Cs⁺ на поверхность был одинаковым и составлял 45°. Отметим, что развитие шероховатости полупроводниковых структур на основе Si с использованием наклонных пучков ионов О₂⁺ отмечалось и ранее в работах [9–11]. Использование вертикального падения ионов O_2^+ позволяло минимизировать этот эффект [9-11]. Однако нам не известны работы, в которых подобные результаты достигались с использованием наклонных пучков ионов Cs⁺. Различия в развитии шероховатости с использованием ионов О₂⁺ и Cs⁺ мы наблюдали и при анализе полупроводниковых гетероструктур других типов. Таким образом, использование ионов Cs⁺ для распыления позволяет значительно снизить влияние развития шероховатости на разрешение по глубине при послойном анализе полупроводниковых гетероструктур вплоть до Z = 1 - 1.5 мкм.

При условии минимизации инструментальных погрешностей и процесса развития шероховатости разрешение по глубине определяется главным образом процессами атомного перемешивания в каскаде столкновений и информационной глубиной метода. Известно [1-4], что влияние процессов атомного перемешивания на величину D_Z может быть снижено путем уменьшения энергии распыляющих ионов до 1 кэВ, а также вариации их массы и угла падения. В данной работе мы хотим обратить внимание на новую возможность повышения разрешения по глубине для полупроводниковых гетероструктур, основанную на использовании кластерных вторичных ионов. Рис. 3 демонстрирует интересную особенность профиля элементов в структуре В863 модуляция кластерных ионов Ge₂ возрастает с глубиной в отличие от постоянного уровня для ионов Ge₁⁻. Более детальная информация о профилях Ge₁₋₃ может быть получена из рис. 4,5 для структуры SiGe/Si R8. На рис. 4 видно существенное различие профилей Ge₁, Ge₂ и Ge₃ в структуре R8, свидетельствующее о заметном повышении разрешения по глубине для ионов Ge₂ и Ge3. Некоторые количественные оценки, характеризующие величину D_Z, можно получить из рис. 5, где приведено нормированное на максимум распределение интенсивностей Ge1-3 для последнего (считая от поверхности), пятого слоя SiGe в структуре. Ширина профиля Ge на полувысоте (FWHM) снижается от 7 нм для Ge_1 до 4 нм (Ge_2) и 3 нм (Ge_3) . Заметим, что оценка D_Z по ширине профиля б-слоя или по области перехода на уровне 0.2-0.8 от максимального значения является наиболее распространенным способом для электронной оже-спектроскопии. Для метода ВИМС характерны очень большие динамические диапазоны изменения концентрации на несколько порядков величины. Поэтому часто используется дополнительная характеристика — размер области спада профиля на один порядок величины — L_{decay} [12]. Для структуры R8 мы получили $L_{\text{decay}} = 5.8$ нм для (Ge₁), 2.5 нм (Ge₂) и 1.8 нм (Ge₃). Совершенно другой результат был по-

Рис. 4. Профили вторичных ионов Ge_{1-3}^- в структуре *R*8, 5{Ge/Si}/Si(100).

Рис. 5. Профили нормированной интенсивности ионов Ge_{1-3}^- в структуре *R*8.

лучен для структуры R8 при распылении ионами O_2^+ в положительной моде регистрации. Для первого слоя Ge L_{decay} оказывается практически одинаковой для ионов Ge₁⁺ и Ge₂⁺ и равна 5.8 нм, для пятого слоя она возрастает и составляет 9 нм для Ge₁⁺ и Ge₂⁺. Возвращаясь к рис. 3, можно утверждать, что послойный анализ с использованием вторичных ионов Ge₂⁻ с повышенным разрешением по глубине позволяет более дательно характеризовать структуру *B*863. Спад профиля Ge₂ от подложки к поверхности пленки может быть обусловлен накапливающимися нарушениями планарного процесса роста многослойной структуры.

4. Заключение

В работе проведено систематическое исследование вклада отдельных погрешностей в разрешение по глу-

бине при послойном анализе полупроводниковых гетероструктур методом ВИМС на установке TOF.SIMS-5. Показано, что наклон дна кратера травления вносит дополнительную погрешность в разрешение по глубине, не превышающую 0.2% от глубины анализа. Использование ионов Cs⁺ для распыления структур GeSi/Si позволяет снизить развитие шероховатости по сравнению с ионами О₂⁺. При распылении ионами Сs⁺ на глубине 1.3 мкм среднеквадратичная шероховатость S_q возрастает незначительно от 0.75 до 1.15 нм. Для ионов O_2^+ развитие шероховатости оказывается более существенным — 3.9 нм. Впервые обнаружено, что использование кластерных вторичных ионов Ge₂⁻ и Ge₃⁻ может повысить разрешение по глубине при послойном анализе структур GeSi/Si по сравнению с элементарными ионами Ge_1^- и положительными ионами Ge+.

Наблюдаемое повышение разрешения по глубине с использованием вторичных кластерных ионов не может быть объяснено в рамках существующей MRI модели Хоффмана (Mixing–Roughness–Information depth). Полученные результаты свидетельствуют о более сложной картине процессов распыления тяжелых комплексных ионов и показывают новые перспективы послойного анализа полупроводниковых структур методом ВИМС.

Работа поддерживалась РФФИ, проекты № 07-02-00163 и 09-02-00389 и программами президиума РАН.

Список литературы

- [1] S. Hofmann. J. Vac. Sci. Technol., A, 9, 1466 (1991).
- [2] S. Hofmann. Rep. Progr. Phys., 61, 827 (1998).
- [3] М.Н. Дроздов, В.М. Данильцев, Ю.Н. Дроздов, О.И. Хрыкин, В.И. Шашкин. Письма ЖТФ, 27(3), 59 (2001).
- [4] S. Hofmann. Appl. Surf. Sci., 241, 113 (2005).
- [5] L.V. Vaeck, A. Adriaens, R. Gijbels. Mass Spectrometry Rev., 18, 1 (1999).
- [6] T. Grehl, R. Mollers, E. Niehuis. Appl. Surf. Sci., 203-204, 277 (2003).
- [7] D. Simons, K. Kim, R. Benbalagh, J. Bennett, A. Chew, D. Gehre, T. Hasegawa, C. Hitzman, J. Ko, R. Lindstrom, B. MacDonald, C. Magee, N. Montgomery, P. Peres, P. Ronsheim, S. Yoshikawa, M. Schuhmacher, W. Stockwell, D. Sykes, M. Tomita, F. Toujou, J. Won. Appl. Surf. Sci., 252, 7232 (2006).
- [8] T. Grehl, R. Mollers, E. Niehuis, D. Rading. Appl. Surf, 255, 1404 (2008).
- [9] P. Chakraborty. Nucl. Instrum. Meth. Phys. Res. B, 266, 1858 (2008).
- [10] K. Wittmaack. J. Vac. Sci. Technol. B, 16, 2776 (1998).
- [11] V.K.F. Chia, G.R. Mount, M.J. Edgell, C.W. Magee. J. Vac. Sci. Technol. B, 17, 2345 (1999).
- [12] W. Vandervorst. Appl. Surt. Sci., 255, 805 (2008).

Редактор Л.В. Беляков

Cluster secondary ions Ge_2^- and Ge_3^- for enhancement of depth resolution at SIMS depth profiling of GeSi/Si heterostructures

M.N. Drozdov, Yu.N. Drozdov, D.N. Lobanov, A.V. Novikov, D.V. Yurasov

Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia

Abstract We discuss new possibilities for depth resolution enhancement at SIMS depth profiling of GeSi/Si heterostructures using a TOF.SIMS-5 spectrometer. A detail analysis of sputtering artifacts and instrumental factor contribution into the depth resolution is performed by means of Talysurf CCI-2000 optical profilometer measurements of sputtering crater surface. It is determined that Cs⁺ ion sputtering allows to minimize the growth of surface roughness during the depth profiling of GeSi/Si structures up to depth of 1-1.5 microns. We show that registration of cluster secondary ions Ge₂⁻ and Ge₃⁻ instead of Ge₁⁻ and Ge⁺ allows to reduce the width of junction regions in measured profiles.