11;12 Электростатические и ван-дер-ваальсовы силы в воздушном контакте зонда атомно-силового микроскопа с проводящей поверхностью

© Г.В. Дедков,¹ А.А. Канаметов,¹ Е.Г. Дедкова²

 Кабардино-Балкарский государственный университет, 360004 Нальчик, Россия
 e-mail: gv_dedkov@mail.ru
 ² Московский физико-технический институт, Долгопрудный, Московская область, Россия

(Поступило в Редакцию 2 февраля 2009 г.)

Методом контактной силовой спектроскопии проведены измерения электростатических и ван-дерваальсовых сил взаимодействия серийных зондов атомно-силовых микроскопов (ACM) с проводящими поверхностями в атмосферных условиях. Разработан алгоритм статистической обработки исходных зависимостей "фототок-перемещение", позволяющий трансформировать их в зависимости "сила-расстояние". Определена константа Гамакера в контакте платина (зонд)-графит (образец). Показано, что измерение электростатических сил позволяет определить геометрические параметры зонда ACM, а также выполнить независимую калибровку жесткости кантилевера.

PACS: 68.37.Ps, 87.64.Dz

Введение

Силовая спектроскопия поверхностей проводящих и не проводящих наноструктур с помощью атомносиловых микроскопов (ACM) имеет большое фундаментальное и прикладное значение [1,2]. Однако, несмотря на широкое распространение ACM в физических исследованиях, количественное определение характеристик материалов с их помощью представляет сложную задачу. Это связано с многими причинами, касающимися условий приготовления, типа материалов и состояния поверхности образцов, характеристик внешней среды, применяемых микроскопов, интерпретации и методов обработки получаемых результатов и т.д. [3].

Измерение электростатических сил, а также сил вандер-Ваальса и Казимира в вакуумных и воздушных контактах зондов ACM с поверхностями, являясь мощным метрологическим средством контроля малых сил, дает возможность количественного изучения физических свойств и геометрических характеристик малых тел. Кроме того, измерение бесконтактных и контактных сил является принципиально необходимым при проектировании микроэлектромеханических систем и определения условий их эксплуатации [4,6]. Методы оценки характеристик зондов ACM при измерении электростатических сил обсуждались в работах [7,9]. С помощью ACM, в частности, были выполнены наиболее точные измерения сил Казимира, известные к настоящему времени [4,10].

Настоящая работа продолжает экспериментальное исследование ван-дер-ваальсовых и электростатических сил в атмосферных условиях с помощью серийного зондового микроскопа Solver Pro (компания "НТ–МДТ", г. Зеленоград), начатое нами в [3,11–13]. Основное внимание уделяется методике набора статистики данных и методам их обработки, нахождению калибровочных постоянных для перевода измеряемых значений фототока в силы, и на этой основе — определению констант взаимодействия, геометрических и механических характеристик зондов АСМ в режиме контактной силовой микроскопии. Измерения проводились в воздухе на свежих сколах образцов высокоориентированного пиролитического графита (ВОПГ).

1. Методика измерений и первичной обработки результатов

Силовое воздействие зонда с образцом вызывает деформацию балки кантилевера, регистрируемую по отклонению опорного лазерного луча, отраженного от ее тыльной по отношению к образцу стороны, с помощью фотодиода. На микроскопе Solver Pro измеряется зависимость I(Z) тока фотодиода от перемещения Zсканера в прямом (кривая подвода) и обратном (кривая отвода) направлении, фиксирующего положение образца по отношению к неподвижному зонду (рис. 1).

В режиме спектроскопии типичный рабочий диапазон пьезотрубки микроскопа по вертикальной координате Z в области линейности составляет $1-2\mu$ m, а число точек на каждой кривой подвода (отвода) равно 1000, поэтому шаг спектроскопии по координате Z обычно составляет 1-2 nm.

В наших экспериментах кривые подвода-отвода измерялись в 25-36 точках участков (кадров) поверхности. Количество кадров спектроскопии для одного выбранного зонда варьировалось от 3 до 5. Поскольку имеется опасность модификации формы зонда в результате

Рис. 1. Геометрия контактов зонда с образцом.

выполнения большого числа сканов, ранее ограничивались меньшей статистикой [3,11]. С другой стороны, при небольшой статистике данных возрастают ошибки измерений, поэтому оптимальный вариант приходится искать методом проб и ошибок. В отличие от наших экспериментов, проводившихся с зондами относительно малого радиуса (серийные зонды CSG10/Pt с радиусом закругления около 35 nm), в экспериментах по измерению сил Казимира [4,10], в которых сферическое пробное тело имеет радиус около $200 \,\mu$ m, удается набрать более значительный объем статистики без ущерба для формы зонда и качества измерений.

Образцы ВОПГ закреплялись на стандартных проводящих поликоровых подложках с возможностью подключения электрического контакта. Средняя шероховатость поверхности графита по данным контактной и полуконтактной АСМ была в пределах 3–10 nm [11,12]. Диапазоны значений температуры и влажности воздуха при проведении измерений составляли 20–23°С и 55–65%. Выбор ВОПГ обусловлен стабильно хорошим качеством рельефа поверхности и доступностью данного материала, что делает его удобным тестовым объектом.

Применявшиеся зонды типа CSG10/Pt имеют следующие паспортные характеристики: R = 35 nm, $H = 10-20 \,\mu$ m, $\theta \le 11^{\circ}$, жесткость балки кантилевера $k_c = 0.03-0.2$ N/m, фундаментальная резонансная частота $f_0 = 14-27$ kHz, размеры прямоугольной балки: $L = 250 \,\mu$ m, $w = 35 \,\mu$ m, $t = 0.7-1.3 \,\mu$ m. В результате наших измерений характеристик собственных колебаний кантилеверов и расчета их жесткости по алгоритму [14] было получено значение $k_c = 0.254$ N/m, а выборочный контроль высоты и конического угла зондов по измерениям в просвечивающем электронном микроскопе дал значения, близкие к $11-15 \,\mu$ m и 11° . Для каждого участка поверхности силовая спектроскопия выполнялась при подаче напряжений 0, ± 3 , ± 5 , ± 10 V на образец при заземленном зонде.

Первичная обработка экспериментальных зависимостей I(Z) выполнялась отдельно для каждого кадра и заданной величины напряжения V. Так как шаг сканера ΔZ в разных точках одного кадра фиксирован, то при совмещении отдельных линий подвода по точке вхождения в контакт можно провести усреднение значений фототока для идентичных позиций сканера Z_n [11]. При несовпадении нулевых линий фототока производилась дополнительная корректировка их значений I_n .

При измерении слабых ван-дер-ваальсовых сил большое значение имеет увеличение числа измерений перед вхождением зонда в контакт, так как протяженность области взаимодействия невелика. Если шаг спектроскопии ΔZ для разных кадров постоянный, то независимо от их числа или от числа повторений сеансов спектроскопии в пределах одного кадра ширина интервала перемещения сканера после усреднения зависимостей I(Z)остается прежней, а число точек в бесконтактной части линии подвода не изменяется. В связи с этим при переходе к новым кадрам нужно стремиться изменять соотношение сигналов Set Point и DEL микроскопа таким образом, чтобы изменялось положение точки вхождения в контакт, соответствующей перемещению сканера [12,13], относительно нуля на оси абсцисс. Это позволяет изменять величину шага спектроскопии ΔZ в пределах разрешения, характерного для АЦП прибора. Так, в измерениях ван-дер-ваальсовых сил удалось варьировать ΔZ в пределах 0.78–1.3 nm, а в измерениях электростатических сил — в пределах 1.3-2 nm. Наличие кадров с разным шагом спектроскопии ΔZ после усреднения силовых кривых и приведения к фиксированной точке контакта существенно увеличивает статистику данных.

Поскольку силы электростатического взаимодействия между зондом и образцом пропорциональны $(V - V_C^2)$ (см. далее формулу (4)), то для количественного анализа данные измерений нормировались на эталонную величину напряжения 1 V делением на $(V - V_C)^2$. При этом величина контактной разности V_C находилась путем минимизации по параметру V_C суммы квадратов разностей значений фототока, измеренных при подаче напряжений различной полярности, согласно критерию χ^2 :

$$\chi^2 = \sum_{n=1}^{N} \left(\frac{I_n^+}{(V - V_C)^2} - \frac{I_n^-}{(V - V_C)^2} \right)^2 = \min, \quad (1)$$

где I_n^+ и I_n^- — значения фототока, измеренные при полярности внешнего напряжения +V и -V соответственно. Пример такой минимизации при напряжениях ± 10 V для двух участков поверхности графита показан на рис. 2, *a*, из которого следует, что величина контактной разности потенциалов в этих случаях была близка к 0.11 и 0.14 V соответственно. При измерениях с меньшим внешним напряжением значение V_C оказывалось больше. При напряжениях ± 5 V, в частности $V_C \approx 0.3$ V.

Рис. 2. Определение контактной разности потенциалов из измерений электростатических сил. a — минимизация (1) по параметру V_C на разных участках поверхности, b — нормированные на величину $(V - V_C)^2$ зависимости тока фотодиода от расстояния. Сплошная кривая — V = 10 V, пунктир — -10 V.

После проведения нормировки находились средние значения фототока, соответствующие разной полярности внешнего напряжения в идентичных позициях зонда (при совмещенных точках контакта). В итоге каждая точка результирующих зависимостей I(Z), в зависимости от общего числа кадров, определялась средним из 200–400 значений фототока.

Теоретические модели и интерпретация результатов измерений

2.1. Основные расчетные соотношения

В случае проводящего зонда заданной формы и плоского проводящего образца при подаче между ними напряжения V заряд растекается по поверхности зонда и образца. Величина пондемоторной силы, действующей на единицу площади поверхности зонда, равна [15]

$$f = \frac{\sigma^2}{2\varepsilon_0},\tag{2}$$

где σ — локальная поверхностная плотность заряда, ε_0 — вакуумная постоянная. Полная электростатическая сила находится интегрированием (2) по поверхности зонда и проекцией на заданное направление (в нашем случае — на вертикальную ось z)

$$F_z = \int\limits_{S} \frac{\sigma^2}{2\varepsilon_0} \left(\mathbf{n} \cdot \mathbf{e}_z \right) dS, \tag{3}$$

где **n** — единичный вектор нормали к поверхности зонда в локальной точке интегрирования, \mathbf{e}_z — единичный орт оси z. На поверхности зонда плотность поверхностного заряда связана с нормальной компонентой напряженности поля соотношением $E = \sigma / \varepsilon_0$.

Для вычисления силы F_z необходимо решить уравнение Лапласа $\Delta \phi = 0$ для распределения потенциала электрического поля в промежутке между зондом и образцом при заданных значениях ϕ на их поверхности. Даже в случае зондов с осевой симметрией эта задача может быть решена только численно. Приближенное аналитическое выражение для силы F_z было получено авторами [16,17], использовавшими приближение локально однородного поля. В этом случае электрическое поле у поверхности зонда определяется выражением E = -V/l(M), где l(M) — длина дуги окружности, аппроксимирующей силовую линию, соединяющую точку M зонда, находящегося под нулевым потенциалом.

Для зонда конической формы с высотой H и углом раствора θ , оканчивающегося сферической выпуклостью радиуса R (рис. 1), сила притяжения к поверхности равна (z — расстояние апекса зонда от поверхности)

$$F_z = -\pi \varepsilon_0 g(z) (V - V_C)^2, \qquad (4)$$

$$g(z) = \frac{1}{\ln^2(\operatorname{tg}\theta/2)} \left[\ln\left(\frac{H}{z + R(1 - \sin\theta)}\right) - 1 + \frac{R(\cos^2\theta/\sin\theta)}{z + R(1 - \sin\theta)} \right] + \frac{R^2(1 - \sin\theta)}{z(z + R(1 - \sin\theta))}.$$
 (5)

Первое слагаемое в (5) отвечает вкладу в электростатическую силу от сферической оконечности зонда, второе — вкладу конической части, V_C — величина контактной разности потенциалов. В отличие от [17] вклад плоской части балки кантилевера в (5) не учитывается. Формально его роль сводится к сдвигу нулевой линии и появлению линейно возрастающего с увеличением расстояния *z* вклада, который можно исключить из экспериментальной зависимости I(z).

Выражение для силы Ван-дер-Ваальса в геометрии рис. 1 находится путем интегрирования сил межатомного взаимодействия по объему зонда и образца (приближение аддитивности). Соответствующая формула имеет вид [17]

$$F_{VdW}(z) = -\frac{A}{6} \left[\frac{R}{z^2} + \frac{\mathrm{tg}^2(\theta)}{z + R(1 - \sin\theta)} - \frac{R(1 - \sin\theta)}{z\left(z + R(1 - \sin\theta)\right)} \right], \quad (6)$$

где A — постоянная Гамакера. Полная сила притяжения зонда к поверхности определяется суммой (4) и (6). На расстояниях порядка нескольких нанометров от поверхности второе и третье слагаемые (6) в несколько десятков раз меньше первого, поэтому (6) сводится к более простому выражению

$$F_{VdW}(z) \approx -\frac{AR}{6z^2}.$$
(7)

2.2. Калибровка электростатических сил и определение геометрических характеристик и жесткости зонда

Типичные исходные экспериментальные зависимости I(Z), усредненные по точкам спектроскопии в пределах одного кадра, и приведенные к одной точке контакта, показаны на рис. 3. Различие кривых, соответствующих полярности напряжения ± 5 и ± 10 V, обусловлено вкладом контактной разности потенциалов V_C . После определения V_C и деления на $(V - V_C)^2$ зависимости "сила– расстояние", соответствующие напряжениям ± 10 V для одного из кадров поверхности, показаны на рис. 2, *b*.

Для перерасчета шкалы перемещений сканера Z в шкалу абсолютных расстояний z апекса зонда от поверхности образца использовалось стандартное соотношение [1,2]

$$z_i = Z_i + I(Z_i)/m + Z_0,$$
 (8)

где $m = \Delta I/\Delta Z$ — калибровочная постоянная для перевода величины фототока в деформацию балки кантилевера, а Z_0 — произвольная постоянная. Величина m находилась усреднением наклонов линейно возрастающих от точки контакта участков линий подвода (на рис. 3 они не показаны и находятся слева от начала координат). Средняя по всем измеренным зависимостям величина m оказалась равной 0.01117 nA/nm при $V \neq 0$ и 0.01076 nA/nm — при V = 0. Близость полученных значений m означает, что протекание тока через контакт не вызывает существенных изменений жесткости кантилевера k_c .

При известной величине *m* и k_c калибровочная постоянная для перевода фототока в силу взаимодействия зонда с образцом равна $B_F = k_c/m$, а перерасчет значений фототока в силу выполняется умножением $I(z_i)$ на B_F . Сопоставление вычисленных по формуле (4) сил $F^{\text{theor}}(z)$ и экспериментальных сил $F^{\exp}(z) = B_F I(z)$ проводилось следующим образом.

Так как электростатическая сила при $V \neq 0$ значительно больше, чем ван-дер-ваальсова, то для последней

Рис. 3. Измеренные зависимости тока фотодиода от перемещения сканера при различных напряжениях на образце (при заземленном зонде).

в этом случае применялась упрощенная формула (7), причем константа C = AR/6 предварительно определелялась путем аппроксимации измеренных ван-дерваальсовых сил формулой (7) при V = 0 (см. далее). Затем путем подбора параметра Z₀ в (8) экспериментальная зависимость $F^{\exp}(z)$ перемещалась по шкале расстояний таким образом, чтобы предполагаемой точке контакта соответствовало расстояние z = 0. При сравнении с функцией $F^{\exp}(z)$ аргументом теоретической зависимости F^{theor} в этом случае должно быть расстояние $(z + z_0)$, где z_0 — истинное расстояние апекса зонда от поверхности в ближайшей к ней точке спектроскопии перед точкой потери механической устойчивости кантилевера, определяемой из условия $dF^{\text{theor}}/dz \ge k_c$ [1,2]. Таким образом, величине $F^{\text{theor}}(z_0)$ должно отвечать $F^{\exp}(0)$ при необходимом условии $dF^{\text{theor}}/dz|_{z=z_0} \leq k_c$.

Очевидно, что потеря устойчивости кантилевера на экспериментальных зависимостях фототока (рис. 3) приходится либо на вторую точку спектроскопии, считая от минимума при z = 0, либо происходит в промежутке между первой и второй точками. В любом из этих случаев вторая точка еще может считаться стабильной, поэтому сравнение теоретической и экспериментальной силовых зависимостей целесообразно начинать от нее. В связи с этим в наших расчетах величина z₀ определялась как сумма расстояния d между первой и второй экспериментальными точками спектроскопии на оси абсцисс (по шкале расстояний) и перемещения ΔΖ сканера. В самом деле пусть во второй точке спектроскопии перед контактом истинное расстояние апекса зонда от поверхности оказалось равным z₀. Тогда к моменту фиксации фототока в первой точке зонд, теряя устойчивость, "падает" на поверхность образца, придвигаемую сканером навстречу на расстояние ΔZ . Таким образом, $d = z_0 - \Delta Z$, где d и ΔZ известны.

Voltage, V	F ₀ , nN	z ₀ ,nm	B_F , nN/nA	k_c , N/m	R, nm	H,nm	θ , tad	χ^2
± 10	0.0109	16.78	21.9	0.253	18.9	11120	0.190	$1.2\cdot 10^{-5}$
± 10	0.0090	17.67	21.82	0.252	19.7	10980	0.190	$2.5\cdot 10^{-5}$
± 5	0.0103	8.54	25.07	0.289	16.8	10980	0.199	$3 \cdot 10^{-4}$

Таблица 1. Результаты измерений жесткости и геометрических размеров кантилевера из измерений электростатических сил

Поскольку усреднение экспериментальных линий подвода вызывает сдвиг положения нулевой линии фототока, это приводит к относительному смещению зависимостей $F^{\text{theor}}(z)$ и $F^{\exp}(z)$ по оси ординат. Для устранения этого смещения вводился дополнительный параметр F_0 , корректирующий зависимость $F^{\text{theor}}(z)$. Затем, аналогично (1), минимизировалась величина

$$\chi^{2} = \sum_{n=1}^{N} \left(F^{\text{theor}}(z_{0} + z_{n}) - F^{\exp}(z_{n}) - F_{0} \right)^{2}$$

по параметрам входящих функций. В наиболее общем случае набор неизвестных параметров включал H, R, θ , B_F и F_0 . Минимизация выполнялась методом градиентного спуска. Результаты расчета для наиболее оптимальных по критерию χ^2 случаев суммированы в табл. 1. Как следует из табл. 1, наименьшую погрешность имеют результаты в серии измерений, соответствующей данным второй строки. Эти данные получены с шагом спектроскопии $\Delta Z = 1.283$ nm при напряжении ± 10 V. Поскольку B_F и k_c связаны соотношением $B_F = k_c/m$, то определение постоянной B_F из измерений электростатических сил позволяет найти жесткость кантилевера автономным образом.

Так же был реализован другой вариант расчета, в котором были использованы стандартные геометрические характеристики кантилеверов серии CSG10/Pt и считались неизвестными только параметры B_F и F_0 . Соответствующие данные, а также рассчитанные значения жесткости k_c приведены в табл. 2.

Рис. 4. Измеренные (квадраты) и вычисленные (сплошная линия) электростатические силы в зависимости от расстояния апекса зонда CSG10/Pt от поверхности ВОПГ. Параметры зонда соответствуют данным второй строки табл. 1.

Таблица 2. Калибровка жесткости кантилевера из измерений электростатических сил при паспортных размерах зондов

Voltage, V	$\Delta Z \mathrm{nm}$	B_F , nN/nA	k_c , N/m	χ^2
±10	1.2983	30.99	0.358	$2.2\cdot 10^{-4}$
± 10	1.6836	29.08	0.336	$2\cdot 10^{-4}$
± 5	1.2983	33.93	0.392	$8.5 \cdot 10^{-4}$

На рис. 4 результаты теоретического расчета электростатических сил сравниваются с экспериментальными данными для серии измерений, соответствующей второй строке табл. 1. Значительное расхождение данных табл. 1 и 2 по величине k_c показывает, насколько критично наличие точной информации о геометрических характеристках кантилеверов при калибровке жесткости. Обращают на себя внимание также более низкие значения радиуса зондов (по сравнению с паспортными). Является ли этот факт следствием модификации формы зонда электрическим током, пока не ясно.

2.3. Измерение ван-дер-ваальсовых сил и определение постоянной Гамакера

В отличие от измерений электростатических сил, когда увеличение напряжения V приводит к удалению точки потери устойчивости от поверхности (ср. значения z₀ в табл. 1 в строках 1, 2 и 3), а измерения сил в кадрах с разным шагом сканера ΔZ необходимо интерпретировать независимо друг от друга, при измерении сил Вандер-Ваальса (V = 0), напротив, получается возможность анализировать все данные в совокупности после усреднения по отдельным кадрам и приведения к начальной точке контакта. Потеря устойчивости зонда происходит также между первой и второй точками спектроскопии, первой считается точка контакта, поэтому измерение величины фототока в последней не может считаться надежным. Однако учет точки контакта с необходимой коррекцией фототока очень важен при последующей интерпретации данных на основе формул (6) и (7).

Соответствующая расчетная процедура состояла из нескольких этапов. На первом из них все точки экспериментальной зависимости I(z) принимались за достоверные, а сила Ван-дер-Ваальса аппроксимировалась формулой (7) в виде $F_{VdW}(z) = -C/(z + z_0)^2$, причем на экспериментальной зависимости фототока точке контакта соответствало z = 0. Поэтому $F_{VdW}(0) = -C/z_0^2$

Рис. 5. Измеренные (символы) и вычисленные (сплошная линия) силы Ван-дер-Ваальса между зондом CSG10/Pt и поверхностью ВОПГ. Параметры зонда соответствуют второй строке табл. 1., константа Гамакера $A = 6 \cdot 10^{-19}$ J.

и $B_F \cdot I(0) = -C/z_0^2$. Это соотношение связывает параметр z_0 с C. Затем, на основе критерия χ^2 , находилась величина C, значение B_F считалось известным (с учетом калибровочной постоянной *m* и паспортной величины k_c). Полученная величина C использовалась далее в расчетах электростатических сил.

На втором этапе из уравнения $2C/(z_c + z_0)^3 = k_c$ находились точка потери устойчивости z_c и соответствующая ей скорректированная величина фототока. Полученные значения $I(z_c)$ и расстояния подставлялись вместо значений, соответствующих первой точке на исходной экспериментальной зависимости, а начало отсчета координаты z перемещалось в точку z_c . Далее процедура, соответствующая первому этапу, повторялась до тех пор, пока параметр C не перестал изменяться. В итоге вычислений величина C слабо возрастала от 1.55 nN · nm² после первого этапа согласования до 1.895 nN · nm² в конце. Контрольным тестом являлась проверка точки z_c по критерию механической устойчивости.

На заключительном этапе использовалась полная формула (6) с параметрами B_F , R и θ , полученными из измерений электростатических сил. В этом случае единственным неизвестным параметром являлась постоянная Гамакера А. Для нее с использованием данных, приведенных в строке 2 табл. 1 (радиус зонда 18.9 nm), получено значение $A = 6 \cdot 10^{-19}$ J. Сравнение соответствующих теоретической и экспериментальной зависимостей сил Ван-дер-Ваальса от расстояния показано на рис. 5.

Заметим, что в предыдущей работе [11] было получено $A = 3.2 \cdot 10^{-19}$ J, но это значение отвечало радиусу зонда R = 37 nm. Так как величина силы Ван-дер-

Ваальса практически целиком определяется константой $C = A \cdot R/6$, то можно сделать вывод о том, что в обоих экспериментах результаты измерений были близки между собой: в настоящей работе $C = 1.9 \text{ nN} \cdot \text{nm}^2$, а в [11] — $C = 2 \text{ nN} \cdot \text{nm}^2$.

3. Обсуждение результатов и выводы

Полученные результаты показывают, что разработанная экспериментальная методика позволяет измерить электростатические и ван-дер-ваальсовы силы взаимодействия зондов АСМ с высокой точностью и использовать характеристики этих сил для независимой калибровки механической жесткости кантилеверов и определения их геометрических параметров в атмосферных условиях. Калибровка жесткости кантилеверов по измерению электростатических сил показала полное согласие величины k_c с результатами измерений по частотным характеристикам. Значения высоты и угла заострения зондов оказались близки к паспортным значениям. В то же время из экспериментов получились более низкие значения величины радиусов зондов (примерно в 2 раза). Эти расхождения могут быть вызваны погрешностью использованной теоретической модели электрических сил, поэтому соответствующий вопрос нуждается в дополнительном рассмотрении. Изменение радиуса зонда может быть также обусловлено его модификацией при контактных нагружениях, сопряженных с протеканием электрического тока.

Теоретически ожидаемые характеристики ван-дерваальсовых сил хорошо согласуются с экспериментальными значениями, но корректное определение констант Гамакера в значительной мере зависит от точности определения радиусов зондов из электростатических измерений. Отметим также, что использованный в работе алгоритм определения контактной разности потенциалов может быть положен в основу новой методики для ACM, отличной от методики Кельвина.

Кратко обсудим роль возможного вклада в электростатическую силу от плоской части балки кантилевера. В приемлемом для данного случая приближении плоского конденсатора эта часть силы взаимодействия будет определяться выражением $F_c \approx -\varepsilon_0 S(V/H)^2 (1 - 2z/H)$, которое обусловливает постоянный сдвиг фототока (первое слагаемое) и линейно возрастающий с расстоянием вклад (второе слагаемое). При геометрических размерах кантилеверов CSG10 (см. выше) постоянный вклад в силу, по оценкам, оказывается в 50-70 раз больше величины F₀, приведенной в табл. 1, независимо от величины приложенного напряжения. Таких больших сдвигов нулевых линий фототока (при подаче напряжений на контакт) в настоящих экспериментах не наблюдалось, так же как и наличия линейно возрастающего вклада. Возможно, это связано с тем, что площадь балки, эффективно накапливающей заряд, в нашем случае оказывается значительно меньше. В исследованиях авторов [7], выполненных на других микроскопах, эффекты влияния плоской части балки, напротив, были весьма заметны. Этот вопрос в дальнейшем также требует дополнительного изучения.

Список литературы

- [1] Cappella B., Dietler G. // Surf. Sci. Rep. 1999. Vol. 34. P. 1–108.
- [2] Butt H.J., Cappella B., Kappl M. // Surf. Sci. Rep. 2005. Vol. 59. P. 1–102.
- [3] Дедков Г.В., Дедкова Е.Г., Карамурзов Б.С., Хоконов Х.Б., Тегаев Р.И., Коков З.А. // Поверхность. Рентгеновские и синхротронные исследования. 2007. Вып. 6. С. 1–6.
- [4] Bordag M., Mohideen U., and Mostepanenko V.M. // Phys. Rep. 2001. Vol. 353. P. 1.
- [5] Decca E.S., Lopez D., Fischbach E. et al. // Phys. Rev. 2007.
 Vol. D75. P. 077 101.
- [6] Batra R.C., Porfiri M., and Spinello D. // Europhys. Lett. 2007. Vol. 77. P. 1.
- [7] Law B.M., Rieutord F. // Phys. Rev. 2002. Vol. 14. B. 66. P. 035 402.
- [8] Sacha G.M., Verdaguer A., Martinez J. et al. // Appl. Phys. Lett. 2005. Vol. 86. P. 123 101.
- [9] Chiu H.C., Chang C.C., Castillo-Garza R., Chen F., Mohideen U. // J. Phys. A.: Math. Theor. 2008. Vol. 41. P. 164 022.
- [10] Chen F., Klimchitskaya G.L., Mostepanenko V.M., Mohideen U. // Phys. Rev. 2007. Vol. B76. P. 035 338.
- [11] Дедков Г.В., Дедкова Е.Г., Тегаев Р.И., Хоконов Х.Б. // Письма в ЖТФ. 2008. Т. 34. Вып. 1. С. 38–47.
- [12] Дедкова Е.Г. Дис. канд. физ.-мат. наук. Нальчик. 2008.
- [13] Дедков Г.В., Канаметов А.А., Дедкова Е.Г. // Тр. 15-го Росс. симп. по растровой электронной микроскопии и аналитическим методам исследования твердых тел. Черноголовка: ИПТМ РАН, 2008. С. 16.
- [14] Sader J.E. // J. Appl. Phys. 1998. Vol. 84. P. 64-76.
- [15] Тамм И.Е. Основы теории электричества. М.: Наука, 1976.
- [16] Hudlet S., Saint Jean M., Guthmann C., Berger J. // Eur. Phys. J. 1998. Vol. 2. P. 5–11.
- [17] Saint Jean M., Hudlet S., Berger J. // J. Appl. Phys. 1999. Vol. 86. N 9. P. 5245.