Эмиссия квазитепловых ионов при бомбардировке твердого тела кластерными ионами

© С.Н. Морозов, У.Х. Расулев

02:11:12

Институт электроники им. У.А. Арифова АН Республики Узбекистан, 100125 Ташкент, Узбекистан e-mail: rasulev@aie.uz

(Поступило в Редакцию 1июля 2008 г.)

Проведены сравнительные исследования особенностей эмиссии квазитепловых атомарных и кластерных ионов при бомбардировке мишеней из V, Nb, Ta, Au, In кластерными ионами Au_m^- (m = 1-9), a также мишеней из Si, Bi кластерными ионами Au_m^- (m = 1-9), Bi $_m^-$ (m = 1-5) в диапазоне значений энергий $E_0 = 6-21$ keV. При бомбардировке тяжелыми кластерными ионами доля квазитепловой компоненты в энергетических спектрах распыленных атомарных ионов достигала 50% (V, In, Au), 70% (Nb) и более 90% (Ta). Наблюдался также заметный вклад квазитепловых ионов в эмиссию малых кластерных ионов Au_2^+ , In_2^+ , In_3^+ , Bi_n^+ (n = 2-7). Результаты обобщающих исследований выявляют аргументы в пользу наличия режима тепловых пиков при кластерной бомбардировке и его существенного вклада в эмиссию атомарных и малых кластерных ионов.

PACS: 79.20.Rf, 79.40.+z, 36.40.Wa, 68.49.Sf

Введение

Отклонение экспериментальных данных по распылению твердого тела от линейной теории Thompson— Sigmund при бомбардировке тяжелыми и особенно кластерными ионами объясняется появлением нелинейных каскадов столкновений или так называемых столкновительных пиков [1–3]. В результате выделения большой энергии большинство атомов в каскадах столкновений приходит в движение, а средняя энергия на атом приближается к энергии дефектообразования. Развитие нелинейных каскадов при кластерной бомбардировке приводит к неаддитивному (по количеству атомов в бомбардирующем ионе) увеличению коэффициентов эмиссии вторичных ионов, особенно кластерных [4–6].

Применение линейного уравнения Больцмана, на котором основана линейная теория распыления, в условиях существования плотных столкновительных пиков становится некорректным. Одним из способов интерпретации нелинейных каскадов столкновений является понятие тепловых пиков. Однако единой терминологии не выработано и не все исследователи склонны напрямую связывать эти понятия. Исторически понятие о тепловых пиках возникло гораздо раньше современных концепций распыления в попытке простого термического толкования эмиссионных явлений при взаимодействии ускоренных атомарных ионов с поверхностью. Претерпев серьезную критику в процессе становления современных теорий распыления и на некоторое время забытая, концепция тепловых зон привлекает внимание в новом качестве для описания нелинейных каскадов высокой плотности [7-12].

Предполагается, что тепловые пики — это относительно долгоживущие (до 10^{-11} s) высокотемпературные области, индуцированные столкновением иона с поверхностью, в которых может устанавливаться локальное термодинамическое равновесие, и распределение кинетических энергий атомов мишени близко по форме к максвелл-больцмановскому. Когда тепловые пики примыкают к поверхности, из них может происходить испарение атомов и ионов, дающее дополнительный вклад в распыление и ионную эмиссию.

Имеется ряд экспериментальных исследований, в которых наблюдались эффекты, связанные с проявлением режима плотных нелинейных каскадов столкновений. При бомбардировке тяжелых металлов тяжелыми ионами в энергетических спектрах распыленных атомов обнаруживался заметный сдвиг максимума в сторону низких энергий, а при бомбардировке кластерными ионами обнаруживался неаддитивный рост коэффициентов распыления [10-13]. Эти особенности анализировались как на основе представлений об испарении из тепловых пиков [7-12], так и в предположении изменения энергии связи атомов в случае плотных нелинейных каскадов [13]. Выполнен ряд теоретических расчетов в рамках модели тепловых пиков, которые качественно описывают наблюдаемое увеличение коэффициентов распыления и изменения в энергетических спектрах распыленных частиц [7,8].

Важно отметить, что большинство экспериментальных работ и соответствующих модельных расчетов выполнено для относительно высоких энергий бомбардирующих ионов от десятков до сотен килоэлектронвольт в условиях протяженных в глубь мишени каскадов столкновений. При этом форма теплового пика представлялась либо сферической, либо цилиндрической, вытянутой в глубь мишени. В таких условиях пересечение теплового пика с поверхностью мишени относительно невелико и влияние его на эмиссию вторичных частиц соответственно не столь значительно.

Известно, что выход распыленных частиц происходит из тонкого поверхностного слоя, составляющего по

оценкам 0.2–0.4 nm [14,15]. Очевидно, что испарение вторичных частиц происходит только из поверхностного слоя атомов. Наиболее четко переход к режиму нелинейных каскадов и тепловых пиков наблюдается при бомбардировке тяжелыми кластерными ионами.

Кластерная бомбардировка дает уникальную возможность резкого увеличения плотности выделяемой энергии при торможении кластерного иона, поскольку удельная потеря энергии dE/dx пропорциональна количеству атомов в кластере в условиях одинаковой начальной энергии, приходящейся на атом. При этом очень существенным, а возможно и определяющим, фактором является то обстоятельство, что достаточная для образования тепловых пиков плотность выделения энергии при торможении ($\sim 5-10 \,\text{keV/nm}$) достигается уже при относительно низких кинетических значениях энергии до 2-5 keV на атом для кластерных бомбардирующих ионов и мишеней из тяжелых элементов. Образуются приповерхностные тепловые пики, которые могут приводить к различного рода тепловым эмиссионным процессам.

Одним из проявлений тепловых пиков должна быть эмиссия вторичных ионов с тепловыми энергиями. Несмотря на важность этого явления с точки зрения технических приложений, например для диагностики поверхности, до сих пор ему не уделялось должного внимания. Впервые выраженная эмиссия квазитепловых атомарных ионов наблюдалась в работе [16] при бомбардировке тантала кластерными ионами Au_m^- (m = 1-9) в диапазоне энергий до нескольких килоэлектронвольт на атом в бомбардирующем кластере. В последующей серии экспериментальных исследований для ряда металлов [6,17–19] были получены аналогичные результаты по эмиссии квазитепловых ионов V⁺, Nb⁺, Ta⁺, Au⁺, Au⁺, Au⁺, In^+ , In_2^+ , In_3^+ при кластерной бомбардировке. Наблюдалось значительное неаддитивное увеличение выхода квазитепловых ионов с ростом количества атомов в бомбардирующих кластерах.

Наиболее естественно связать эмиссию квазитепловых ионов с возникновением режима примыкающих к поверхности тепловых пиков. Эти исследования могут продвинуть фундаментальные представления по распылению и вторичной ионной эмиссии в условиях образования плотных каскадов столкновений.

В настоящей работе обобщаются и дополняются результаты исследований проявления режима тепловых пиков во вторичной ионной эмиссии при бомбардировке широкого круга металлов (V, Nb, Ta, Au, In, Si и Bi) различными кластерными ионами (Au_m⁻, B_m⁻, C_m⁻, Si_m⁻) с энергией $E_0 = 6-21$ keV, выполненных в одинаковых экспериментальных условиях.

Методика

Использовалась модернизированная экспериментальная установка, имеющая в своем составе источник кластерных ионов, магнитный сепаратор первичных ионов и магнитный анализатор вторичных ионов на базе массспектрометра МИ 1201 [20]. Первичные отрицательные кластерные ионы Au_m^- , Bi_m^- , Si_m^- и C_m^- получались путем распыления соответственно золота, висмута, кремния и графита ионами Cs⁺ с энергией 4.5 keV. Бомбардировка мишеней кластерными ионами производилась под углом 45°, а сбор вторичных ионов осуществлялся по нормали к поверхности, при этом на мишень подавался положительный потенциал 2000 V.

Токи первичных кластерных ионов, измеренные с помощью цилиндра Фарадея в области исследуемой мишени, составляли для Au₁⁻, Au₂⁻, Au₃⁻, Au₅⁻, Au₇⁻, Au_o — 1, 0.22, 0.35, 0.035, 0.012, 0.005 nA, для Bi₁, Ві₂, Ві₃, Ві₄, Ві₅ — 0.1, 0.4, 0.28, 0.1, 0.11 пА, для Si_1^2 , Si_2^3 , Si_3^3 , Si_4^2 , Si_5^- , Si_6^- — 1.1, 1.5, 0.4, 0.1, 0.04, 0.02 nA, а для C_1^- , C_2^- , C_4^- , C_6^- , C_8^- , C_{10}^- — 1, 3.5, 0.65, 0.15, 0.045, 0.018 nA соответственно. Плотность тока первичных ионов Au_m^- , Bi_m^- , Si_m^- и C_m^- на ми-шени составляла от 0.3 до 50 nA/cm⁻² для разных *m*. Диапазон энергий бомбардирующих ионов составлял $E_0 = 6 - 21 \, \text{keV}$. Распределения по энергиям вторичных ионов определялись из анализа формы соответствующих масс-спектрометрических линий с учетом энергетического разрешения установки. На стадии измерений откачка производилась только ионно-сублимационными насосами, при этом вакуум был не менее $3 \cdot 10^{-6}$ Ра. Очистка поверхности тугоплавких металлов V группы (V, Nb, Ta) достигалась прогревом до температур, близких к температуре плавления. Поверхность Si-мишени очищалась прогревом до 800°С. Поверхность мишеней In, Au и Bi очищалась путем стравливания нескольких атомных слоев длительной ионной бомбардировкой. Чистота поверхности контролировалась по отсутствию ионов окислов во вторичных масс-спектрах.

Результаты и их обсуждение

Исследована эмиссия вторичных ионов V_n^+ (n = 1-14), Nb_n^+ (n = 1-19), Ta_n^+ (n = 1-11), Au_n^+ (n = 1-9), In_n^+ (n = 1-15), Si_n^+ (n = 1-11) и Bi_n^+ (n = 1-9) при бомбардировке соответствующих мишеней кластерными ионами Au_m^- (m = 1-9).

Для сравнения, при бомбардировке мишени Ві использовались также ионы Bi_m^- (m = 1-5), а при исследованиях с кремниевой мишенью ионы Bi_m^- (m = 1-5), C_m^- (m = 1-6) и Si_m^- (m = 1-6).

В качестве примера на рис. 1 приведено семейство нормированных на первичный ионный ток масс-спектров вторичной ионной эмиссии при бомбардировке мишени из ниобия кластерными ионами Au_m^- (m = 1-9) с энергией 21 keV. Сравнительный анализ измеренных в одинаковых экспериментальных условиях масс-спектров и энергетических распределений вторичных ионов при распылении мишеней из V, Nb, Ta, Au, In, Si и Ві различными кластерными ионами выявил следующие основные закономерности.

Во всех случаях наблюдается существенное нелинейное увеличение эмиссии вторичных кластерных ионов

Рис. 1. Нормированные на первичный ионный ток массспектры вторичной ионной эмиссии при бомбардировке мишени из ниобия кластерными ионами $\operatorname{Au}_m^-(m=1-9)$ с энергией 21 keV. Номера кривых соответствуют значениям *m. n* количество атомов в ионах Nb_n^+ .

с ростом числа атомов в бомбардирующем кластерном ионе. Как правило, приращение выхода эмиссии с ростом количества атомов, составляющих бомбардирующий кластер, наиболее существенно проявляется для вторичных кластерных ионов с большим количеством атомов.

Наглядную количественную оценку нелинейности и неаддитивности увеличения эмиссии вторичных ионов при переходе от атомарной к кластерной бомбардировке дают коэффициенты неаддитивности $K_{mm'}(n)$. Эти коэффициенты характеризуют дополнительный неаддитивный рост выхода вторичных *n*-атомных кластерных ионов при переходе от бомбардирующих кластерных ионов, состоящих из m' атомов к ионам, состоящим из m атомов. Для определения коэффициентов неаддитивности необходимо проведение измерений эмиссии при равных кинетических энергиях, приходящихся на атом в бомбардирующем кластере ($E_0m = \text{const}$).

Парциальные коэффициенты неаддитивности выхода вторичных ионов определяются по формуле:

$$K_{mm'}(n) = m'Y_{nm}/mY_{nm'},$$

где Y_{nm} и Y_{nm'} — выходы *n*-атомного вторичного кластерного иона под действием *m*- и *m*'-атомного бомбардирующего иона при одинаковых энергиях на атом в первичном кластере. Коэффициенты неаддитивности для всех исследованных мишеней достигали значительных величин. Например, при переходе от бомбардировки атомарными ионами Au⁻ к кластерным ионам Au₃⁻ с энергией $E_0/m = 6 \,\mathrm{keV}$ соответствующие коэффициенты неаддитивности К₃₁ эмиссии вторичных кластерных ионов с количеством составляющих их атомов n = 9 - 10для ряда металлических мишеней и кремния достигали следующих величин: 60 (Ta), 75 (Nb), 80 (V), 20 (In), 80 (Au), 50 (Si), 15-20 (Ві). Сравнение коэффициентов неаддитивности выхода вторичных кластерных ионов для кремниевой и висмутовой мишени при бомбардировке кластерными ионами Au_m⁻ и Bi_m⁻ показало, что коэффициенты неаддитивности повышаются при переходе к более тяжелым бомбардирующим ионам Bi_m^- при равном количестве составляющих их атомов. Например, коэффициенты K_{31} для Si-мишени в среднем возрастают на 30–40% при переходе от Au_m^- к Bi_m^- бомбардирующим ионам.

Измерение относительных распределений по кинетическим энергиям вторичных ионов показало, что практически для всех исследованных мишеней при увеличении количества атомов в бомбардирующих кластерных ионах начиная с определенного порогового значения наблюдается резкий рост эмиссии вторичных атомарных ионов с квазитепловыми энергии. Пороговое значение количества атомов в бомбардирующем кластерном ионе, после которого происходит резкий рост тепловой компоненты вторичной ионной эмиссии, зависит от комбинации ионмишень.

На рис. 2 представлены относительные распределения по кинетическим энергиям распыленных атомарных ионов V⁺ при бомбардировке мишени из ванадия различными кластерными ионами золота. Там же для сравнения приведен контур испаренного пика V⁺, измеренного при нагреве мишени до 1800 К в отсутствие ионной бомбардировки, который, являясь тепловым, характеризует энергетическое разрешение массспектрометра. Аналогичные спектры получены для атомарных ионов Ta⁺, Nb⁺, Au⁺ и In⁺ [6,16–19]. Для всех спектров при бомбардировке атомарными ионами наблюдаются закономерности свойственные каскадностолкновительному механизму эмиссии, а именно: максимумы энергетических распределений атомарных вторичных ионов сдвинуты относительно испаренных пиков на 2–3 eV для Au⁺, In⁺ и 4–5 eV для Ta⁺, Nb⁺, V⁺, что составляет примерно половину от энергии сублимации, а падение интенсивности с ростом энергии относительно медленное.

С увеличением количества атомов в бомбардирующих ионах (начиная с m = 2 для Au⁺, In⁺, с m = 3 для Ta⁺ и с m = 5 для V⁺, Nb⁺) в распределениях по энергиям

Рис. 2. Нормированные энергетические распределения вторичных атомарных ионов V⁺ при бомбардировке кластерными ионами Au_m^- ($E_0 = 18 \text{ keV}$). Номера кривых соответствуют значениям *m*.

вторичных ионов появляется квазитепловая компонента, которая резко возрастает с увеличением *m*. В результате максимумы энергетических распределений смещаются, а сами энергетические распределения трансформируются и в целом приближаются к квазитепловым (максвеллбольцмановским). Если для металлов V группы (V, Nb, Ta) квазитепловая компонента появлялась только в эмиссии атомарных ионов, то в случае золота аналогичное явление наблюдалось и для вторичных ионов димеров Au_2^+ , а в случае индия — для ионов димеров и триммеров In_2^+ и In_3^+ .

На рис. З представлены нормированные на единицу относительные энергетические распределения выхода ионов Au_2^+ , In_2^+ и In_3^+ при бомбардировке кластерными ионами Au_m^- с энергией $E_0 = 18$ keV. Как видно из графиков, наблюдается обогащение энергетических спектров квазитепловыми ионами при увеличении количества атомов в бомбардирующих кластерах. Вероятно, из области

Рис. 3. Нормированные энергетические распределения вторичных ионов Au_2^+ (*a*), In_2^+ (*b*), In_3^+ (*c*) при бомбардировке кластерными ионами Au_m^- ($E_0 = 18 \text{ keV}$). Номера кривых соответствуют значениям *m*.

Рис. 4. Графики зависимости ПШПМ (Δ_{Si}) вторичных ионов Si⁺ для различных типов бомбардирующих кластерных ионов ($-\blacksquare - Bi_m^-, -\bullet - Si_m^-, -\blacktriangle - C_m^-, -\blacktriangle - Au_m^-$). *m* — количество атомов в бомбардирующих ионах.

теплового пика происходит эффективное испарение, в том числе в виде ионов димеров золота и тримеров индия. Известно, что некоторые металлы, в частности с достраивающейся *p*-оболочкой, склонны к испарению в виде небольших кластеров.

При кластерной бомбардировке Si-мишени наблюдалось характерное изменение формы энергетических распределений вторичных атомарных ионов Si⁺ и появление низкоэнергетической квазитепловой компоненты, которая резко возрастала с увеличением количества атомов в бомбардирующих кластерных ионах. Для сравнения энергетических распределений распыленных атомарных ионов измерена полная ширина энергетических спектров на полувысоте максимума распределения (ПШПМ) при распылении кремния кластерными ионами Au⁻_m, Bi⁻_m, а также Si⁻_m и C⁻_m.

На рис. 4 приведены графики зависимости ПШПМ вторичных ионов Si⁺ от количества атомов в различных бомбардирующих ионах. При бомбардировке тяжелыми ионами Bi_m⁻ и Au_m⁻ происходит резкое уменьшение ПШПМ атомарных ионов Si⁺ с увеличением количества атомов (m) в бомбардирующих кластерных ионах, связанное с ростом вклада квазитепловых вторичных ионов. При бомбардировке относительно легкими кластерными ионами Si_m⁻ и C_m⁻ ширина энергетических спектров практически не меняется, демонстрируя, что режим каскадов высокой плотности или тепловых пиков не достигается при бомбардировке кремниевой мишени легкими кластерными ионами.

Измерения масс-спектров эмиссии вторичных ионов при бомбардировке висмутовой мишени кластерными ионами Au_m⁻ и Bi_m⁻ выявили некоторые особенности по сравнению с другими металлами.

На рис. 5 приведены графики ПШПМ вторичных ионов Bi_n^+ для бомбардирующих ионов Au_m^- и Bi_m^- , скорректированные с учетом энергетического разрешения экспериментальной установки. Как видно, с увеличением количества атомов в бомбардирующих ионах энергетические распределения вторичных ионов сужаются и

Рис. 5. Графики зависимости ПШПМ (Δ_{Bi}) вторичных кластерных ионов Bi_n^+ от количества атомов (*m*) в бомбардирующих кластерных ионах Au_m^- и Bi_m^- .

для вторичных кластеров с числом составляющих их атомов n > 2 приближаются к квазитепловым. Однако в отличие от других исследованных металлов, когда наиболее характерным индикатором перехода к режиму теплового пика был резкий рост выхода квазитепловых атомарных ионов, в случае висмута энергетические распределения атомарных ионов и ионов димеров остаются уширенными, хотя и имеют тенденцию к сужению с ростом *m*. Вероятно, это связано с большим вкладом рассеянных (в случае $\operatorname{Bi}_m^- \to \operatorname{Bi}$) и прямо выбитых ионов в пик атомарных ионов, с учетом близости масс бомбардирующих атомов и атомов мишени.

Действительно, расчет с помощью программного пакета ТРИМ показывает, что выход отраженных частиц составляет порядка 10% от первичного ионного пучка. Кроме того, атомарные ионы висмута имеют относительно большие потенциалы ионизации, а димеры имеют квазизаполненную внешнюю электронную оболочку — 6р-электронов и эти обстоятельства приводят к относительно низкой эффективности их ионизации в области теплового пика. Исходя из экспериментально наблюдаемых низких энергий вторичных кластерных ионов ${\rm Bi}_n^+$ со значениями *n* до 5-7 можно предположить, что в случае бомбардировки Ві-мишени тяжелыми кластерными ионами выход вторичных ионов с *n* до 5-7 в большой мере определяется испарением из области тепловых пиков. Усиление влияния режима теплового пика с увеличением количества атомов в бомбардирующем кластере проявляется в неаддитивном росте выхода малых вторичных кластеров и уменьшении значений кинетической энергии.

Есть основания полагать, что эмиссия квазитепловых ионов в результате испарения из области тепловых пиков дает вклад во вторичную эмиссию наряду с обычным каскадно-столкновительным механизмом и является дополнительным каналом ионообразования. Эти процессы можно считать независимыми, поскольку установление локального термодинамического равновесия в каскаде, а следовательно, и процесс испарения ионов, существенно запаздывают во времени относительно выхода ионов, связанного со столкновительным механизмом.

Характерное время существования столкновительного каскада 10^{-13} s, а оценка времени развития теплового пика — 10⁻¹¹ s [21]. Исходя из этого предположения по форме энергетических спектров можно выделить квазитепловую компоненту эмиссии атомарных ионов путем вычитания обычной каскадно-столкновительной компоненты, характерной для бомбардировки атомарными ионами. Выделенная таким образом квазитепловая компонента эмиссии атомарных ионов достигает 50-60% (V, In, Au), 70% (Nb) и более 90% (Ta) от суммарного выхода соответствующих ионов при бомбардировке ионами Au_q. Выход квазитепловых атомарных ионов неаддитивно возрастает с ростом количества атомов в бомбардирующих кластерных ионах, а также с увеличением энергии бомбардирующих ионов. Типичные графики соответствующих зависимостей даны на рис. 6.

Коэффициенты неаддитивности увеличения выхода квазитепловых ионов при увеличении *m* в бомбардирующих ионах Au_m^- достигают высоких значений. Например, для квазитепловых вторичных ионов Ta⁺ фактор неаддитивности $K_{39} \sim 30$ при энергии 2 keV/atom в бомбардирующем ионе Au_m^- ; для вторичных ионов In⁺ $K_{25} \sim 60$ при энергии 3 keV/atom в бомбардирующих кластерных ионах Au_m^- .

Рис. 6. Нормированный на ток первичных ионов выход квазитепловых ионов V⁺ (a) и Ta⁺ (b) при бомбардировке кластерными ионами Au_m⁻. Номера кривых соответствуют значениям *m*.

Рис. 7. Графики значений ПШПМ Δ_{In} энергетического распределения ионов In_n^+ в зависимости от количества атомов в распыленном (n) и бомбардирующем (m) ионе. Номера кривых соответствуют значениям *m*.

Появление квазитепловой компонены при кластерной бомбардировке характерно для атомарных распыленных ионов металлов V группы (V⁺, Nb⁺, Ta⁺) для Si⁺, Au⁺, Au⁺, Au⁺₂, In⁺, In⁺₂, In⁺₃ и Bi⁺_n (n = 2-7). Как правило, для большинства исследованных металлов энергетические распределения вторичных кластерных ионов с n > 3 значительно шире тепловых и уширяются с ростом числа атомов в бомбардирующем кластере. Из исследованных металлических мишеней только у индия и висмута зона влияния теплового испарения на выход вторичных кластеров охватывает и малые вторичные кластерные ионы с количеством составляющих их атомов до 4-5 (In) и до 7 (Bi).

Характерный переход в поведении выхода квазитепловых вторичных кластерных ионов с ростом количества атомов в бомбардирующих кластерах иллюстрируется на рис. 7 для индиевой мишени. Как видно из графиков, в области *n* < 5 разброс энергий вторичных ионов уменьшается с ростом количества атомов в бомбардирующем ионе и приближается к тепловым для больших т. При увеличении *n* больше 5 происходит рост энергий вторичных ионов и инверсия зависимости от количества атомов в бомбардирующем кластере. Энергии вторичных кластеров становятся существенно больше тепловых и монотонно возрастают с ростом *m*. Разница в поведении энергетических спектров малых (*n* ≤ 5) и больших распыленных кластеров, возможно, указывают на вклад различных механизмов их образования. Так, вероятно, в области $n \le 5$ (In) и $n \le 7$ (Bi) существенный вклад в эмиссию вторичных кластерных ионов вносит испарение из тепловых пиков, образующихся при бомбардировке кластерными ионами. Таким образом, кластерная бомбардировка создает новый канал эмиссии атомарных ионов и малых вторичных кластерных ионов, связанный с испарением из области приповерхностных тепловых пиков.

Заключение

В процессе распыления образцов чистых металлов кластерными ионами $\operatorname{Au}_m^-(m=1-9)$, $\operatorname{Bi}_m^-(m=1-5)$ обнаружен резкий рост эмиссии вторичных ионов V⁺, Nb⁺, Ta⁺, Au⁺, Au⁺, In⁺, In⁺, In⁺, Si⁺ и Bi⁺_n (n=2-7) с квазитепловыми энергиями при увеличении количества атомов в бомбардирующем кластерном ионе. Квазитепловая компонента в эмиссии вторичных ионов наблюдается начиная с характерных для каждого металла пороговых значений количества атомов в бомбардирующих кластерных ионах.

Выход квазитепловых вторичных ионов возрастает с ростом энергии бомбардирующих ионов и для ряда металлов может давать основной вклад во вторичную эмиссию атомарных ионов при бомбардировке тяжелыми кластерными ионами с количеством составляющих их атомов $m \ge 5-7$.

Результаты проведенных исследований являются экспериментальным свидетельством образования тепловых пиков и их существенной роли в распылении и вторичной ионной эмиссии при бомбардировке кластерными ионами с относительно небольшими энергиями до нескольких килоэлектронвольт на атом. Изучение влияния режима теплового пика при кластерной бомбардировке на вторично-эмиссионные процессы важно для более глубокого понимания физики ионного распыления и может найти важные технические приложения, например для усовершенствования метода анализа поверхности с помощью вторично-ионной масс-спектроскопии.

Список литературы

- Распыление под действием бомбардировки частицами / Пер. с англ.; под ред. Р. Бериша и К. Виттмака. Вып. III. М.: Мир, 1998. 551 с.
- [2] Andersen H.H. // Mat. Fys. Medd. Dan. Vid. Selsk. 1993. Vol. 43. P. 127.
- [3] Sigmund P. // Nucl. Instr. Meth. B. 1987. Vol. 27. P. 1.
- [4] Bounaau S., Brunelle A., Della-Negra S., Depauw J., Jacquet D., Le Beyec Y., Pautrat M., Fallavier M., Poizat J.C., Andersen H.H. // Phys. Rev. B. 2002. Vol. 65. P. 144 106.
- [5] Belykh S.F., Habets B., Rasulev U.Kh., Samartcev A.V., Stroev L.V., Veryovkin I.V. // Nucl. Instr. Meth. B. 2000. Vol. 164–165. P. 809.
- [6] Morozov S.N., Rasulev U.Kh. // Nucl. Instr. Meth. B. 2003. Vol. 203. P. 192.
- [7] Sigmund P., Claussen C. // J. Appl. Phys. 1981. Vol. 52. P. 990.
- [8] Claussen C. // Nucl. Instr. Meth. 1982. Vol. 194. P. 567.
- [9] Merkle K.L., Jager W. // Philos. Mag. A. 1981. Vol. 44. N 4. P. 741.
- [10] Andersen H.H., Bay H.L. // J. Appl. Phys. 1974. Vol. 45. P. 953.
- [11] Ahmad S., Farmey B.W., Thompson M.W. // Nucl. Instr. Meth. 1980. Vol. 170. P. 327.
- [12] Ahmad S., Farmery B.W., Thompson M.W. // Philos. Mag. 1981. Vol. 44. P. 1383.
- [13] Johar S.S., Thompson D.A. // Surface Science. 1979. Vol. 90.
 P. 319.

- [14] Kelly R., Oliva A. // Nucl. Instr. Meth. B. 1986. Vol. 13. P. 283.
- [15] Falcone G. // EAY. 1992. T. 162. C. 71.
- [16] Морозов С.Н., Расулев У.Х. // Письма в ЖТФ. 2003. Т. 29. Вып. 2. С. 77.
- [17] Morozov S.N., Rasulev U.Kh. // Appl. Surf. Sci. 2004. Vol. 231–232. P. 78.
- [18] *Морозов С.Н., Расулев У.Х. //* Изв. РАН. Сер. физ. 2004. Т. 68. № 3. С. 393.
- [19] *Морозов С.Н., Расулев У.Х. //* Изв. РАН. Сер. физ. 2006. Т. 70. № 8. С. 1192.
- [20] Akhunov Sh., Morozov S.N., Rasulov U.Kh. // Nucl. Instr. Meth. B. 2003. Vol. 203. P. 146.
- [21] Sigmund P. and Szymonski M. // Appl. Phys. A. 1984. Vol. 33. P. 141.