01;10 Минимизация радиального эмиттанса пучка источника синхротронного излучения

© В.П. Белов, В.Л. Васильев, Е.К. Кошурников, Ю.П. Севергин

Научно-производственное предприятие "Нева–Магнит", 190005 Санкт-Петербург, Россия e-mail: root@magnet.spb.su

(Поступило в Редакцию 24 января 2008 г.)

Изучается возможность минимизации радиального эмиттанса пучка накопителя — источника синхротронного излучения. Показано, что он меньше, если в магнитной кольцевой структуре накопителя используются неоднородные поля.

PACS: 41.60.Ap

Введение

Синхротронное излучение (СИ) находит все более широкое применение во многих областях науки, техники, медицины и биологии [1]. Потребность в источниках СИ весьма велика — в настоящее время функционируют или находятся в стадии изготовления порядка 70 подобных установок и проектируются новые. Основными характеристиками СИ являются спектральный поток и спектральная яркость излучения, и новые установки создаются с целью их повышения. Спектральный поток

$$F(\lambda) = \frac{dN_{\rm ph}}{dt \cdot d\phi} \left[\text{photons/s} \cdot \mathbf{m} \cdot \text{rad} \right]$$
(1)

определяется количеством фотонов $dN_{\rm ph}$, испускаемых в 1 m · rad горизонтального угла, в единицу времени в полосе длин волн $\Delta\lambda$ около заданной длины волны λ . Общеринятой полосой длин волн $\Delta\lambda$ для сравнения яркостей источников является $\frac{\Delta\lambda}{\lambda} = 10^{-3}$.

Спектральная яркость источника

$$L(\lambda) = \frac{F(\lambda)}{(\Delta x \cdot \Delta z)\sqrt{\Delta \psi_{\lambda}^{2} + \Delta \theta_{z}^{2}}} \left[\text{photons/mm}^{2} \cdot \mathbf{s} \cdot \mathbf{m} \cdot \mathbf{rad}^{2}\right]$$
(2)

определяет плотность потока фотонов в фазовом пространстве, зависящую от числа фотонов, излучаемых в единицу времени на длине волны λ в полосе длин волн $\Delta\lambda$ с единицы площади источника $\Delta x \cdot \Delta z$ в единицу телесного угла. Здесь $\Delta\theta_z$ — вертикальный угловой разброс электронного пучка, $\Delta\psi_{\lambda}$ — характерный вертикальный угол излучения. Чтобы приблизиться к высокой яркости, присущей излучению отдельной частицы, необходимо, чтобы электронный пучок имел большой ток и малый натуральный радиальный эмиттанс ε_x , определяемый особенностями магнитной структуры накопителя электронов — источника СИ, поскольку $\Delta x \approx 2\sqrt{\beta_x \varepsilon_x}$, где β_x — значение радиальной бета-функции. Характерные для современных источников СИ величины натурального эмиттанса находятся в диапазоне от единиц до десятков nm · rad. Однако уже сейчас требуется снижение ее минимальной величины на один-два порядка.

Часто в накопителях рассматриваются магниты с однородным полем. Известно, что чем меньше угол отклонения пучка в магните φ_m , тем меньше натуральный эмиттанс ε_x . При малых углах φ_m тригонометрические функции, описывающие движение частиц в магните с однородным полем, можно разлагать в ряды и ограничиваться их первыми двумя членами. Полученные в этом приближении формулы налагают условия на выбор значений параметров Твисса и дисперсионных функций на входе в дипольные магниты. Однако при использовании в накопителе магнитов с сильно неоднородным полем нельзя пользоваться такими разложениями.

В настоящей работе рассматривается общий случай использования в накопителях магнитов с сильно неоднородными полями и произвольными углами поворота пучка в них, когда разлагать тригонометрические функции в ряды нельзя.

Радиальный эмиттанс пучка источника СИ

Радиальный эмиттанс электронного пучка в синхротроне (бустере, или накопителе), определяемый квантовыми флуктуациями излучения, без учета действия вставных устройств (вигглеров и ондуляторов), в случае, когда все магниты в кольце синхротрона одинаковы, имеет вид [2]

$$\varepsilon_{x} = \frac{C_{q}\gamma^{2}}{J_{x}} \frac{\oint H(s) \left| \frac{B(s)}{(B\rho)} \right| ds}{\oint \left(\frac{B(s)}{(B\rho)} \right) ds}$$
$$= \frac{C_{q}\gamma^{2}}{J_{x}} \frac{1}{2\pi\rho} \left(\sum_{i} \int_{0}^{\varphi_{m}} \{H(\varphi)\}_{i} d\varphi \right).$$
(3)

Здесь интегрирование ведется по всем поворотным магнитам кольцевого электромагнита,

$$C_q = \frac{55}{32\sqrt{3}} \Lambda \approx 3.84 \cdot 10^{-13} \,(\mathrm{m \cdot rad}),$$

 $\Lambda = \frac{\hbar}{m_0 c}$ — комптоновская длина волны электрона, \hbar — постоянная Планка, m_0 — масса покоя электрона, γ — релятивистский фактор, ρ — радиус средней орбиты, B — индукция магнитного поля на ней, φ_m — полный угол поворота электрона в магните, $(B\rho)$ — его магнитная жесткость,

$$J_x = 1 - \frac{1}{2\pi\rho} \oint \eta (1 - 2n) d\varphi, \tag{4}$$

— относительный декремент затухания радиальных бетатронных колебаний, если все магниты одинаковы, $n = -\frac{\rho}{B} \frac{\partial B}{\partial x}$ — индекс неоднородности магнитного поля в них,

$$H = \gamma \eta^2 + 2\alpha \eta \eta' + \beta \eta'^2, \qquad (5)$$

— аналог инварианта Куранта–Снайдера для дисперсионных функций $\eta, \eta', \alpha = -\frac{1}{2}\beta', \beta, \gamma = \frac{1+\alpha^2}{\beta}$ — параметры Твисса радиального бетатронного движения.

Будем считать, что индекс неоднородности магнитного поля *n* может быть разным в различных магнитах. Разделим все магниты в пределах данной магнитной структуры по величине индекса *n* на две группы и отнесем к группе 1 магниты с n < 1, а к группе 2 магнитны с n > 1. Магниты, принадлежащие разным группам, могут отличаться значением параметров ρ , φ_m , α , β , η , η' .

Кольцевой электромагнит накопителя состоит из N переходов, обладающих зеркальной симметрией относительно их центров. Каждая половина периода содержит одинаковые ахроматы или магнитные элементы, сглаживающие и уменьшающие дисперсионные функции. Число магнитов в периодах может быть четным в каждой из двух групп или нечетным в одной из них. Один магнит, относящийся к периоду с нечетным числом магнитов, находится в центре этого периода. Условно разделим этот магнит на две одинаковые части с уменьшенными в два раза углами поворота. Тогда число магнитов на периоде накопителя в группах 1 и 2 всегда будет четным и равным $2m_1$ или $2m_2$, где m_1 и m_2 есть число магнитов группы 1 или 2 на половине периода структуры накопителя. Полное число магнитов обеих групп в кольце равно $2N(m_1 + m_2)$. С учетом этого формулы (3) и (4) могут быть записаны так:

$$\varepsilon_{x} = \frac{C_{q}\gamma^{2}}{J_{x}} \frac{\sum_{i=1}^{m_{1}} \int_{0}^{\phi_{mi}} \frac{1}{\rho_{1i}^{2}} H_{i}d\varphi + \sum_{i=i}^{m_{2}} \int_{0}^{\phi_{mi}} \frac{1}{\rho_{2i}^{2}} H_{i}d\varphi}{\sum_{i=1}^{m_{1}} \frac{1}{\rho_{1i}} \varphi_{mi} + \sum_{i=1}^{m_{2}} \frac{1}{\rho_{2i}} \varphi_{mi}}, \qquad (6)$$

$$J_x = 1 - \frac{\sum_{i=1}^{m} \int \frac{1 - 2n_{1i}}{\rho_{1i}^2} \eta_i d\varphi + \sum_{i=i}^{m} \int \frac{1 - 2n_{2i}}{\rho_{2i}^2} \eta_i d\varphi}{\sum_{i=1}^{m} \frac{1}{\rho_{1i}} \varphi_{mi} + \sum_{i=1}^{m} \frac{1}{\rho_{2i}} \varphi_{mi}}.$$
 (7)

Поскольку период накопителя зеркально симметричен относительно его центра, суммирование ведется по магнитам каждой группы на половине периода накопителя. Число магнитов на ней соответственно равно m_1 или m_2 , а полное число в кольце накопителя — $2Nm_i$ или $2Nm_2$. Одинаковый множитель 2N в числителе и знаменателе сокращен. В каждой группе магнитов (1, 2) значения бетатронных и дисперсионных функций на входе *i*-го магнита будем считать разными.

В свободных промежутках накопителя (источника СИ) размещаются так называемые вставные устройства (вигглер-магниты и ондуляторы). Для них требуются большие (до нескольких метров) промежутки с нулевой или малой дисперсией. Эти вставные устройства дополнительно изменяют величину эмиттанса ε_x , но в данной работе не будем учитывать их влияние, рассматривая натуральный эмиттанс, определяемый только особенностями магнитной структуры накопителя.

Интегрирование в (6), (7) ведется по углу отклонения орбиты в *i*-м магните от точки входа в него за углом его входного скоса (если он имеется) до его выходного угла скоса.

Начальные значения параметров Твисса α_0 , β_0 , γ_0 и дисперсионных функций η_0 , η'_0 будут относиться к этим же точкам. Поэтому торцевая фокусировка не включена в матрицы, описывающие радиальное движение частиц в магнитах.

Одинаковый член в знаменателе выражений (6), (7) обозначим как

$$I_0 = \sum_{i=1}^{m_1} \frac{1}{\rho_{1i}} \varphi_{mi} + \sum_{i=1}^{m_2} \frac{1}{\rho_{2i}} \varphi_{mi}.$$
 (8)

Матрица, описывающая радиальное движение частоты в магните с неоднородным полем при значениях индекса неоднородности магнитного поля n < 1, имеет вид

$$M_x = \begin{pmatrix} \cos\theta & \rho \frac{\sin\theta}{\sqrt{1-n}} & \rho \frac{1-\cos\theta}{1-n} \\ -\frac{\sqrt{1-n}}{\rho} \sin\theta & \cos\theta & \frac{\sin\theta}{\sqrt{1-n}} \\ 0 & 0 & 1 \end{pmatrix}$$
(9)

где $\theta = \sqrt{1 - n\varphi}$. Поэтому текущие значения параметров Твисса α, β, γ на азимуте φ дипольного магнита, согласно [3], будут равны

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix} = \begin{pmatrix} \cos^2 \theta & -\rho \frac{\sin 2\theta}{\sqrt{1-n}} & \rho^2 \frac{\sin^2 \theta}{1-n} \\ \frac{\sqrt{1-n}}{2\rho} \sin 2\theta & \cos 2\theta & -\rho \frac{\sin 2\theta}{2\sqrt{1-n}} \\ \frac{1-n}{\rho^2} \sin^2 \theta & \frac{\sqrt{1-n}}{\rho} \sin 2\theta & \cos^2 \theta \end{pmatrix} \begin{pmatrix} \beta_0 \\ \alpha_0 \\ \gamma_0 \end{pmatrix},$$
(10)

а дисперсионные функции

$$\eta = \eta_0 \cos\theta + \rho \eta'_0 \frac{\sin\theta}{\sqrt{1-n}} + \rho \frac{1-\cos\theta}{1-n},$$

$$\eta' = -\eta_0 \frac{\sqrt{1-n}}{\rho} \sin\theta + \eta'_0 \cos\theta + \frac{\sin\theta}{\sqrt{1-n}}.$$
 (11)

Журнал технической физики, 2008, том 78, вып. 12

При значениях индекса неоднородности магнитного поля *n* > 1 имеем соответственно

$$M_x = egin{pmatrix} {\mathrm{ch}}\, heta &
ho rac{{\mathrm{sh}}\, heta}{\sqrt{n-1}} &
ho rac{{\mathrm{ch}}\, heta - 1}{n-1} \ rac{\sqrt{n-1}}{
ho}\,{\mathrm{sh}}\, heta & {\mathrm{ch}}\, heta & rac{{\mathrm{sh}}\, heta}{\sqrt{n-1}} \ 0 & 0 & 1 \ \end{pmatrix},$$

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix} = = \begin{pmatrix} ch^{2}\theta & -\rho \frac{sh 2\theta}{\sqrt{n-1}} & \rho^{2} \frac{sh^{2}\theta}{n-1} \\ -\frac{\sqrt{n-1}}{2\rho} sh 2\theta & ch 2\theta & -\rho \frac{sh 2\theta}{2\sqrt{n-1}} \\ \frac{n-1}{\rho^{2}} sh^{2}\theta & -\frac{\sqrt{n-1}}{\rho} sh 2\theta & ch^{2}\theta \end{pmatrix} \begin{pmatrix} \beta_{0} \\ \alpha_{0} \\ \gamma_{0} \end{pmatrix},$$
(12)

$$\eta = \eta_0 \operatorname{ch} \theta + \rho \eta'_0 \frac{\operatorname{sh} \theta}{\sqrt{n-1}} + \rho \frac{\operatorname{ch} \theta - 1}{n-1},$$
$$\eta' = \eta_0 \frac{\sqrt{n-1}}{\rho} \operatorname{sh} \theta + \eta'_0 \operatorname{ch} \theta + \frac{\operatorname{sh} \theta}{\sqrt{n-1}}, \qquad (13)$$

где $\theta = \sqrt{n-1}\varphi$.

Подставив выражения (10)–(13) в (6), (7), приведя подобные члены и выполнив интегрирование, получим выражение для эмиттанса:

$$\varepsilon_x = \frac{C_q \gamma^2}{J_x I_0} f_x, \qquad (14)$$

где

$$f_x = E_{1x} + E_{2x},$$

$$E_{1x} = \sum_{i=1}^{m_1} \frac{1}{\rho_{1i}^2} \left[\beta_0 \alpha_1 - \alpha_0 \beta_1 + \gamma_0 c_1 + (\gamma_0 \eta_0^2 + 2\alpha_0 \eta_0 \eta_0' + \beta_0 \eta_0'^2) \varphi_1 + (\alpha_0 \eta_0 + \beta_0 \eta_0') d_1 - (\gamma_0 \eta_0 + \alpha_0 \eta_0') e_1 \right]_i,$$

$$E_{2x} = \sum_{i=1}^{m_2} \frac{1}{\rho_{2i}^2} \left[\beta_0 \alpha_2 - \alpha_0 \beta_2 + \gamma_0 c_2 + (\gamma_0 \eta_0^2 + 2\alpha_0 \eta_0 \eta_0' + \beta_0 \eta_0'^2) \varphi_2 + (\alpha_0 \eta_0 + \beta_0 \eta_0') d_2 - (\gamma_0 \eta_0 + \alpha_0 \eta_0') e_2 \right]_i,$$

$$J_x = 1 - \frac{1}{I_0} \left(J_{1x} + J_{2x} \right), \tag{15}$$

$$\begin{split} J_{1x} &= \sum_{i=1}^{m_1} \frac{1-2n_{1i}}{\rho_{1i}^2} \left(\frac{\sin(\varphi_1 \sqrt{1-n_1}\,)}{\sqrt{1-n_1}}\,\eta_{0i} \right. \\ &+ \rho_1 \frac{1-\cos(\varphi_1 \sqrt{1-n_1}\,)}{1-n_1}\,\eta_{0i}' \\ &+ \rho_1 \frac{\varphi_1 \sqrt{1-n_1}-\sin(\varphi_1 \sqrt{1-n_1}\,)}{(1-n_1)^{\frac{3}{2}}} \right)_i, \end{split}$$

$$J_{2x} = \sum_{i=1}^{m_2} \frac{1 - 2n_{2i}}{\rho_{2i}^2} \left(\frac{\operatorname{sh}(\varphi_2 \sqrt{|n_2| - 1})}{\sqrt{|n_2| - 1}} \eta_{0i} \right.$$
$$\left. + \rho_2 \frac{\operatorname{ch}(\varphi_2 \sqrt{|n_2| - 1}) - 1}{|n_2| - 1} \eta_{0i}' \right.$$
$$\left. + \rho_2 \frac{\operatorname{sh}(\varphi_2 \sqrt{|n_2| - 1}) - \varphi_2 \sqrt{|n_2| - 1}}{(|n_2| - 1)^{\frac{3}{2}}} \right]$$

Индексы *i* у скобок в (15) обозначают, что их содержимое соответствует *i*-му магниту своей группы. Эти формулы удобны для расчетов тем, что в них используются только начальные значения бетатронных и дисперсионных функций на входе в магнит за углом скоса его торца и не требуется интегрирования по длине магнита. Отрицательные значения J_x отвечают раскачке радиальных бетатронных колебаний.

Отметим, что в выражении для I_0 (8) также учитываются магниты групп 1 и 2.

Для магнитов группы 1:

$$a_{1} = \frac{2\varphi_{1}\sqrt{1-n_{1}} - \sin(2\varphi_{1}\sqrt{1-n_{1}})}{4(1-n_{1})^{\frac{3}{2}}},$$

$$b_{1} = \rho_{1} \frac{(1-\cos\sqrt{1-n_{1}}\varphi_{1})^{2}}{(1-n_{1})^{2}},$$

$$c_{1} = \frac{\rho_{1}^{2}}{(1-n_{1})^{\frac{5}{2}}} \left(\frac{3}{2}\varphi_{1}\sqrt{1-n_{1}} - 2\sin(\varphi_{1}\sqrt{1-n_{1}})\right)$$

$$+ \frac{1}{4}\sin(2\varphi_{1}\sqrt{1-n_{1}})\right),$$

$$d_{1} = 2\frac{1-\cos(\varphi_{1}\sqrt{1-n_{1}})}{1-n_{1}},$$

$$e_{1} = 2\rho_{1} \frac{\varphi_{1}\sqrt{1-n_{1}} - \sin(\varphi_{1}\sqrt{1-n_{1}})}{(1-n_{1})^{\frac{3}{2}}}.$$
(16)

Для магнитов группы 2:

$$a_{2} = \frac{-2\varphi_{2}\sqrt{n_{2}-1} + \operatorname{sh}(2\varphi_{2}\sqrt{n_{2}-1})}{4(n_{2}-1)^{\frac{3}{2}}},$$

$$b_{2} = \rho_{2} \frac{(\operatorname{ch}\varphi_{2}\sqrt{n_{2}-1}-1)^{2}}{(n_{2}-1)^{2}},$$

$$c_{2} = \frac{\rho_{2}^{2}}{(n_{2}-1)^{\frac{5}{2}}} \left(\frac{3}{2}\varphi_{2}\sqrt{n_{2}-1} - 2\operatorname{sh}(\varphi_{2}\sqrt{n_{2}-1})\right)$$

$$+ \frac{1}{4}\operatorname{sh}(2\varphi_{2}\sqrt{n_{2}-1})\right), \qquad (17)$$

$$d_{2} = 2 \frac{\operatorname{ch}(\varphi_{2}\sqrt{n_{2}-1}) - 1}{n_{2}-1},$$

$$e_{2} = -2\rho_{2} \frac{\varphi_{2}\sqrt{n_{2}-1} - \operatorname{sh}(\varphi_{2}\sqrt{n_{2}-1})}{(n_{2}-1)^{\frac{3}{2}}}.$$

Согласно (14), эмиттанс ε_x будет минимален, если f_x мало, а $J_x \neq 0$ велико. Эмиттанс можно минимизировать, подбирая значения α_{0i} , β_{0i} , η_{0i} , η_{0i} , n_{1i} , n_{2i} .

Журнал технической физики, 2008, том 78, вып. 12

Минимизация радиального эмиттанса

Число переменных, по которым можно минимизировать эмиттанс ε_x , равно $6(m_1 + m_2)$. В общем случае оно велико, и при больших значениях m_1 и m_2 это можно проделать только численно.

2.1. Численная минимизация эмиттанса

Рассмотрим минимизацию эмиттанса для одного магнита группы 1 или 2. Достаточно показать ее на примере магнитов группы 1, так как для магнитов группы 2 выражение для эмиттанса будет таким же, но с заменой индекса 1 на индекс 2. Заметим, что переменные α_0 и β_0 входят только в числитель формулы (17) для эмиттанса, что несколько упрощает поиск его минимума путем исключения сначала этих переменных из полученного выражения для ε_x . Для этого запишем условия минимума эмиттанса по этим переменным, приравняв нулю производные

$$rac{\partialarepsilon_x}{\partiallpha_0}=0, \quad rac{\partialarepsilon_x}{\partialeta_0}=0.$$

Полученную систему двух уравнений

$$egin{aligned} &-b_1+rac{2lpha_0}{eta_0}\,c_1+\left(rac{2lpha_0}{eta_0}\,\eta_0^2+2\eta_0\eta_0'
ight)arphi_1+\eta_0d_1\ &-\left(rac{2lpha_0}{eta_0}\,\eta_0+\eta_0'
ight)e_1=0,\ &a_1-rac{1+lpha_0^2}{eta_0^2}\,c_1+\left(-rac{1+lpha_0^2}{eta_0^2}\,\eta_0^2+{\eta_0'}^2
ight)arphi_1+\eta_0'd_1\ &+rac{1+lpha_0^2}{eta_0^2}\,\eta_0e_1=0 \end{aligned}$$

приведем к виду

$$egin{aligned} eta_0 &= 2lpha_0 \, rac{c_1 + \eta_0^2 arphi_1 - \eta_0 e_1}{b_1 - 2\eta_0 \eta_0' arphi_1 - \eta_0 d_1 + \eta_0' e_1}, \ eta_0^2 &= (1 + lpha_0^2) \, rac{c_1 + \eta_0^2 arphi_1 - \eta_0 e_1}{lpha_1 + \eta_0'^2 arphi_1 + \eta_0' d_1}, \end{aligned}$$

и затем выразим α_0 , β_0 и γ_0 через η_0 и η'_0 :

$$\alpha_{0} = \pm \frac{b_{1} - 2\eta_{0}\eta'_{0}\varphi_{1} - \eta_{0}d_{1} + \eta'_{0}e_{1}}{\sqrt{4(a_{1} + \eta'_{0}{}^{2}\varphi_{1} + \eta'_{0}d_{1})(c_{1} + \eta^{2}_{0}\varphi_{1} - \eta_{0}e_{1}) - , -(b_{1} - 2\eta_{0}\eta'_{0}\varphi_{1} - \eta_{0}d_{1} + \eta'_{0}e_{1})^{2}},$$

$$\beta_{0} = \frac{2(c_{1} + \eta^{2}_{0}\varphi_{1} - \eta_{0}e_{1})}{\sqrt{4(a_{1} + \eta'_{0}{}^{2}\varphi_{1} + \eta'_{0}d_{1})(c_{1} + \eta^{2}_{0}\varphi_{1} - \eta_{0}e_{1}) - , -(b_{1} - 2\eta_{0}\eta'_{0}\varphi_{1} - \eta_{0}d_{1} + \eta'_{0}e_{1})^{2}},$$

$$\gamma_{0} = \frac{2(a_{1} + \eta'_{0}{}^{2}\varphi_{1} - \eta'_{0}d_{1})}{\sqrt{4(a_{1} + \eta'_{0}{}^{2}\varphi_{1} + \eta'_{0}d_{1})(c_{1} + \eta^{2}_{0}\varphi_{1} - \eta_{0}e_{1}) - , -(b_{1} - 2\eta_{0}\eta'_{0}\varphi_{1} - \eta_{0}d_{1} + \eta'_{0}e_{1})^{2}}.$$
(18)

Подставив полученные выражения в формулу для эмиттанса (14), получим

$$\varepsilon_{x} = \frac{C_{q}\gamma^{2}}{\rho\varphi_{1}J_{x}}\sqrt{\frac{4(a_{1}+\eta_{0}^{\prime 2}\varphi_{1}+\eta_{0}^{\prime}d_{1})(c_{1}+\eta_{0}^{2}\varphi_{1}-\eta_{0}e_{1})-(b_{1}-2\eta_{0}\eta_{0}^{\prime}\varphi_{1}-\eta_{0}d_{1}+\eta_{0}^{\prime}e_{1})^{2}}}.$$
(19)

В формулах (18) β_0 всегда положительно, а значение α_0 может быть как положительным (сходящийся пучок), так и отрицательным (расходящийся). Поэтому надо выбирать те знаки в определении α_0 , при которых $\beta_0 > 0$, а эмиттанс минимален. Как правило, он минимален при $\alpha_0 > 0$. Далее можно минимизировать ε_x только по двум переменным η_0 и η'_0 . Вблизи минимума функция ε_x достаточно гладкая и он может быть легко найден численными методами с помощью стандартных оптимизационных процедур. Такой подход удобен тем, что позволяет проводить оптимизацию эмиттанса одновременно относительно только двух, а не четырех переменных.

Пример

Построим графическую зависимость ε_x (19) от двух переменных η_0 и η'_0 для типичной структуры накопителя с распределенной дисперсией и N = 12, $\varphi_2 = 15^\circ$, $\rho_2 = 5.8$ m, $n_2 = 36.5$, рассчитанного на энергию электронов 2.5 GeV. Она представляет собой двумерную поверхность, пологую вдоль некоторой кривой $\eta_0 = F(\eta'_0)$, проходящей через минимум $\varepsilon_{x \min} = 2.77$ nm · rad.

На рис. 1 показаны линии одинакового эмиттанса ε_x на плоскости η_0 , η'_0 , похожие на сильно вытянутые эллипсы, ориентированные бо́льшим диаметром вдоль этой кривой. Значение $\varepsilon_x \min$ зависит от индекса неоднородности магнитного поля n_2 . Это проиллюстрировано на рис. 2, где представлены зависимости минимальных значений эмиттанса $\varepsilon_x \min$ от n_2 для различных величин угла поворота магнита: $\varphi_m = 6^\circ$, 7, 5°, 10°, 15°. Согласно расчетам, эмиттанс $\varepsilon_x \min$ не зависит от радиуса ρ траектории равновесной частицы в магните. Следует подчеркнуть, что минимальное значение эмиттанса слабо меняется в окрестности кривой $\eta_0 = F(\eta'_0)$, что допускает некоторую свободу в выборе оптических систем, формирующих пучок на входе магнита.

Оптимальные значения параметров пучка на входе магнита представлены в таблице. Минимальные значения эмиттанса достигаются при малых углах поворота частиц в магнитах и больших значениях индекса неоднородности магнитного поля n_2 . При больших углах поворота частиц в магните и больших значениях индекса неоднородности n_2 эмиттанс тоже мал, однако при этом требуется очень сильная (и, по-видимому, недостижимая) фокусировка пучка на входе магнита.

							Наахроматици и рауким				
		$a = 6^{\circ} a = 7.5^{\circ} a = 10^{\circ} a = 15^{\circ} a = 22.5^{\circ}$					10° 10° 10° 15° 22.5°				
<i>n</i>	1.02	$\varphi = 0$	$\varphi = 7.5$	$\varphi = 10$	$\varphi = 15$	$\varphi = 22.5$	$\varphi = 0$	$\varphi = 7.5$	$\varphi = 10$	$\varphi = 15$	$\varphi = 22.5$
0	$\eta \cdot 10^2, m$	0	0	0	0	0	1.1	1.64	3	6.44 0.1275	66 0.108
	$\beta \cdot 10^2 \text{ m}$	94	117.5	156.5	234	349.2	-0.0555	-0.0023 1514	-0.0873 208.2	-0.1273	-0.198 1998
	α	3.87	3.87	3.86	3.84	3.8	3.87	3.74	3.85	3.82	3.76
	ε_x , nm·rad	0.68	1.33	3.17	10.7	36.6	0.227	0.459	1.05	3.56	17.4
10	$n \cdot 10^2$. m	0	0	0	0	0	1.05	1.75	3.15	6.8	16.5
	η'	0	0	0	0	0	-0.0535	-0.069	-0.0924	-0.137	-0.222
	$eta \cdot 10^2, m$	94.7	118.8	159.7	245	387	126.2	159.4	215.3	333.5	537.7
	α	3.91	3.94	4	4	4.53	3.93	3.99	4.086	4.35	4.97
	ε_x , nm·rad	0.662	1.27	2.91	8.98	25.4	0.225	0.4347	1.014	3.28	10.08
30	$\eta \cdot 10^2$, m	0	0	0	0	0	1.08	1.175	3.1	7.4	18
	η' $\rho = 10^2 m$	0	0	0	0	0	-0.0537	-0.0691	-0.0936	-0.153	-0.2523
	$p \cdot 10$,m	90.1	121.0	100.5	208	4/5 63	129.5 4.11	104.7	227.9 4 55	578 548	6 38
	ε_x , nm·rad	0.624	1.16	2.52	6.77	15.6	0.218	0.417	0.944	2.82	8.61
50	$n \cdot 10^2$.m	0	0	0	0	0	1.14	1.75	3.25	8.6	24.5
	η'	0	0	0	0	0	-0.0559	-0.0705	-0.0993	-0.181	-0.387
	$eta \cdot 10^2, m$	97.5	124.4	173.2	294	582	132.3	170.4	241.6	431.1	937
	α	4.11	4.23	4.58	5.61	8.6	4.28	4.52	5.06	6.85	12.45
	ε_x , nm·rad	0.591	1.07	2.21	5.42	11.3	0.213	0.4008	0.882	2.46	5.93
100	$\eta \cdot 10^2$, m	0	0	0	0	0	1.2	1.75	3.65	11	39
	η' $\beta \cdot 10^2$ m	0	0 1317	0 101 7	0 360	0	-0.0595	-0.0725 183.8	-0.115	-0.252	-0.739
	$\rho \cdot 10, m$	4.38	4.69	5.4	8	17.7	4.73	5.22	6.48	11.2	30.96
	ε_x , nm·rad	0.521	0.898	1.7	3.61	6.54	0.22	0.365	0.756	1.86	3.85
200	$\eta \cdot 10^2$, m	0	0	0	0	0	1.25	2.05	4.4	15.4	95
	η'	0	0	0	0	0	-0.0647	-0.08765	-0.1499	-0.423	-2.36
	$\beta \cdot 10^2$, m	108.8	147.6	234.7	576.7	2444	155.6	216.2	361.1	1018	5419
	α a nm rad	4.94	5.64	7.43	15.31	60.3	5.72	6.9 0.2076	10.04	25.53	132
	c_x , min-rau	0.421	0.0750	1.15	2.15	5.47	0.178	0.5070	0.564	1.250	2.2
	$\eta \cdot 10^2, m$	0	0	0	0	0	1.4	2.25	5.4	23.6	220
300	$\beta \cdot 10^2$ m	117.1	165.4	286.8	886.85	5730	171.3	251.9	461.9	1735	-0.002 15059
200	α	5.56	6.75	10.05	27.52	171.5	6.76	8.903	14.75	52.26	449.1
	ε_x , nm·rad	0.352	0.54	0.8696	1.501	2.31	0.159	0.265	0.473	0.916	1.51
400	$\eta \cdot 10^2$, m	0	0	0	0	0	1.5	2.65	6.6	35.6	475
	η'	0	0	0	0	0	-0.0808	-0.122	-0.261	-1.263	-16.4
	$\beta \cdot 10^2$, m	125.9	185.3	349.5	1340	12 500	189.9	290.6	599	2899.6	37 340
	α ε× nm∙rad	0.25	8.04 0.4497	13.4 0.696	47.1 1149	431.2	8.024 0.145	0.2326	21.4 0.3961	0.7227	1286
500	$c_{\chi}, \min 10^2$	0.505	0.1157	0.070	0	0	1.5	2.0	7.5	52	050
	$\eta \cdot 10^{-}, m$	0	0	0	0	0	1.5 -0.0846	2.9 _0 1409	/.5 _0.319	-2.07	950
	$\beta \cdot 10^2$, m	135.4	207.4	424.7	1992	257 490	209	341.5	757.5	4591	84 140
	α	7	9.52	17.6	77.6	992	9.4	14.2	29.9	177.1	3241
	ε_x , nm·rad	0.26	0.385	0.578	0.925	1.34	0.132	0.207	0.34	0.594	0.902
1000	$\eta \cdot 10^2$, m	0	0	0	0	0	2.1	5	19.2	312	19 000
	η'	0	0	0	0	0	-0.136	-0.293	-1.069	-17.03	-0.00104
	$\beta \cdot 10^2, m$	194	359	1070	11612	53 403	332	677.4	2369	36 112	$2.4 \times 10^{\circ}$
	α ε _r ,nm∙rad	0.163	0.22	0.307	033	0.614	0.0915	0.1316	0.195	0.302	0.423
		1	I				1		I	I	

Оптимальные значения параметров пучка на входе в магнит, необходимые для получения минимального эмиттанса

Рис. 1. Линии одинакового эмиттанса на плоскости η_0 , η'_0 для структуры накопителя с $\varphi_2 = 15^\circ$, N = 12, $\rho_2 = 5.8$ m и $n_2 = 36.5$ при энергии электронов 2.5 GeV.

2.2. Аналитическая минимизация эмиттанса

Минимизировать ε_x аналитически, в общем случае, сложно из-за большого числа переменных. Но есть варианты магнитных структур источников СИ, для которых аналитические выражения при минимальном эмиттансе могут быть получены. Эти варианты следующие:

1. Период накопителя включает два магнита группы 1 и, следовательно, $m_1 = 1$. Если они секторные с показателем индекса неоднородности n = 0.5, то, согласно (15), $J_x = 1$ и условие минимума эмиттанса ε_x совпадает с условием минимума функции

$$f_{x} = \frac{1}{\rho_{1}^{2}} [\beta_{0}a_{1} - \alpha_{0}b_{1} + \gamma_{0}c_{1} + (\gamma_{0}\eta_{0}^{2} + 2\alpha_{0}\eta_{0}\eta_{0}' + \beta_{0}\eta_{0}'^{2})\varphi_{1} + (\alpha_{0}\eta_{0} + \beta_{0}\eta_{0}')d_{1} - (\gamma_{0}\eta_{0} + \alpha_{0}\eta_{0}')e_{1}].$$
(20)

Функция минимальна, если параметры Твисса и дисперсионные функции на входе магнита за углом его скоса удовлетворяют системе четырех алгебраических уравнений

$$\frac{\partial f_x}{\partial \eta_0} = 0, \quad \frac{\partial f_x}{\partial \eta'_0} = 0, \quad \frac{\partial f_x}{\partial \alpha_0} = 0, \quad \frac{\partial f_x}{\partial \beta_0} = 0.$$
 (21)

Два первых из них определяют оптимальные значения дисперсионных функций на входе поворотного магнита за углом его скоса (далее везде индекс 1 при коэффициентах a, b, c, d, e опущен). Их решения

$$\eta_0 = \frac{e}{2\varphi_1}, \quad \eta'_0 = -\frac{d}{2\varphi_1}.$$
 (22)

Два вторых уравнения (21) определяют оптимальные значения параметров Твисса на входе (за углом скоса) в

Рис. 2. Зависимость минимального эмиттанса пучка от индекса неоднородности магнитного поля при различных углах поворота пучка в магните φ и энергии электронов 2.5 GeV, для магнитов группы 2. Ахроматичный режим: $1 - \varphi = 6, 2 - 7.5, 3 - 10, 4 - 15^{\circ}$; неахроматичный режим: $5 - \varphi = 6, 6 - 7.5, 7 - 10, 8 - 15^{\circ}$.

поворотный магнит

$$\begin{aligned} \alpha_0 &= \pm \frac{\left(b - \frac{ed}{2\varphi_1}\right)}{\sqrt{4\left(a - \frac{d^2}{4\varphi_1}\right)\left(c - \frac{e^2}{4\varphi_1}\right) - \left(b - \frac{ed}{2\varphi_1}\right)^2}},\\ \beta_0 &= 2 \frac{\left(c - \frac{e^2}{4\varphi_1}\right)}{\sqrt{4\left(a - \frac{d^2}{4\varphi_1}\right)\left(c - \frac{e^2}{4\varphi_1}\right) - \left(b - \frac{ed}{2\varphi_1}\right)^2}},\end{aligned}$$

$$y_0 = 2 \frac{\left(a - \frac{d^2}{4\varphi_1}\right)}{\sqrt{4\left(a - \frac{d^2}{4\varphi_1}\right)\left(c - \frac{e^2}{4\varphi_1}\right) - \left(b - \frac{ed}{2\varphi_1}\right)^2}},$$
 (23)

совпадающие с выражениями, которые могут быть получены по формулам (18) при подстановке туда значений η_0 , η'_0 из соотношений (22).

Для дисперсионных функций и параметров Твисса, имеющих вид (22), (23), минимальное значение функции f_x будет

$$f_x = \frac{4\left(a - \frac{d^2}{4\varphi_m}\right)\left(c - \frac{e^2}{4\varphi_m}\right) \mp \left(b - \frac{ed}{2\varphi_m}\right)^2}{\sqrt{4\left(a - \frac{d^2}{4\varphi_m}\right)\left(c - \frac{e^2}{4\varphi_m}\right) - \left(b - \frac{ed}{2\varphi_m}\right)^2}}.$$
 (24)

Знаки " \mp " в последнем выражении соответствуют знакам α_0 в (23). Радиальный эмиттанс минимален для верхнего знака α_0 в (21), соответствующего сходящемуся пучку. Для n = 0.5 и α_0 , β_0 , η_0 , η'_0 на входе магнита за углом скоса его торца, рассчитанных по формулам (20), (21), он равен

$$\varepsilon_{x\min} = \frac{C_q \gamma^2}{\rho \varphi_1} \sqrt{4\left(a - \frac{d^2}{4\varphi_1}\right)\left(c - \frac{e^2}{4\varphi_1}\right) - \left(b - \frac{ed}{2\varphi_1}\right)^2}.$$
(25)

Эта же формула пригодна и в том случае, если $n_1 \neq 0.5$, $n_1 < 1$ и минимизируется только f_x , а $J_x \neq 1$ вычисляется по формуле (15), где η_0 , η'_0 принимают значения (22).

2. Период накопителя содержит два магнита с $n_1 < 1$. В такой структуре $m_1 = 1$, n_1 может быть большим отрицательным, а выражение для эмиттанса имеет вид

$$\varepsilon_{x} = \frac{C_{q}\gamma^{2}}{J_{x}\rho_{1}\varphi_{1}} \left[\beta_{0}\alpha_{1} - \alpha_{0}b_{1} + \gamma_{0}c_{1} + (\gamma_{0}\eta_{0}^{2} + 2\alpha_{0}\eta_{0}\eta_{0}' + \beta_{0}\eta_{0}'^{2})\varphi_{1} + (\alpha_{0}\eta_{0} + \beta_{0}\eta_{0}')d_{1} - (\gamma_{0}\eta_{0} + \alpha_{0}\eta_{0}')e_{1}\right],$$
(26)

где

а

$$J_{x} = 1 - \frac{1 - 2n_{1}}{\rho_{1}\varphi_{1}} \left[\frac{\sin(\varphi_{1}\sqrt{1 - n_{1}})}{\sqrt{1 - n_{1}}} \eta_{0} + \rho_{1} \frac{1 - \cos(\varphi_{1}\sqrt{1 - n_{1}})}{1 - n_{1}} \eta_{0}' + \rho_{1} \frac{\varphi_{1}\sqrt{1 - n_{1}} - \sin(\varphi_{1}\sqrt{1 - n_{1}})}{(1 - n_{1})^{\frac{3}{2}}} \right].$$
(27)

Значения α_1 , β_1 , c_1 , d_1 , e_1 здесь вычисляются по формулам (15).

Если эти магниты образуют ахромат, то $\eta_0=\eta_0'=0$ и

$$\varepsilon_{x} = \frac{C_{q}\gamma^{2}}{J_{x}\rho_{1}\varphi_{1}} \left(\beta_{0}\alpha_{1} - \alpha_{0}b_{1} + \gamma_{0}c_{1}\right),$$
$$J_{x} = 1 - \frac{1 - 2n_{1}}{2\rho_{1}\varphi_{1}}e_{1}.$$
(28)

Эмиттанс будет минимален, если параметры Твисса на входе магнита удовлетворяют системе уравнений

$$rac{darepsilon_x}{deta_0}=0, \quad rac{darepsilon_x}{dlpha_0}=0.$$

Если подставить их решения

$$\alpha_{0} = \frac{b_{1}}{\sqrt{4a_{1}c_{1} - b_{1}^{2}}}, \quad \beta_{0} = \frac{2c_{1}}{\sqrt{4a_{1}c_{1} - b_{1}^{2}}},$$
$$\gamma_{0} = \frac{2a_{1}}{\sqrt{4a_{1}c_{1} - b_{1}^{2}}}$$
(29)

в формулу для эмиттанса из соотношений (28), то его его оптимальное по параметрам Твисса значение будет таким:

$$\varepsilon_x = C_q \gamma^2 \frac{\sqrt{4a_1c_1 - b_1^2}}{\left(n_1 - \frac{1}{2}\right)e_1 + \rho_1 \varphi_1}.$$
 (30)

Рис. 3. Зависимость натурального эмиттанса пучка накопителя — источника СИ от показателя неоднородности магнитного поля в ахромате из магнитов группы 1.

Оно зависит от величины индекса неоднородности магнитного поля n_1 . Минимальное по n_1 значение эмиттанса ε_x (30) проще всего найти графически, построив зависимость $\varepsilon_x(n_1)$. Зависимость имеет характерные особенности, общие для всех магнитных структур накопителей. Продемонстрируем это на примере магнитной структуры с N = 12, $m_1 = 1$, $\varphi_1 = 15^\circ$, $\rho_1 = 9.00$ m и оптимальными значениями параметров Твисса, выбранными согласно (29).

Эта зависимость для ахромата, составленного из магнитов группы 1, изображена на рис. 3. При $n_1 \approx -52$ знаменатель у ε_x стремится к нулю, а сам ε_x становится большим положительным, а затем, с увеличением $|n_1|$, — большим отрицательным. Это свидетельствует о том, что декремент затухания радиальных бетатронных колебаний J_x изменяет знак на отрицательный, и происходит раскачка радиальных колебаний. Минимальное значение эмиттанса достигается при значениях n_1 , близких к нулю. Отметим, что при $n_1 < 0.5$ значение J_x в (28) может быть < 1, что увеличивает ε_x . Поэтому для такой структуры суперпериода, возможно, предпочтительнее выбирать n > 1, т.е. делать кольцевой электромагнит накопителя из магнитов группы 2.

3. Период накопителя включает два магнита с $n_2 > 1$. В такой структуре $m_2 = 1$, n_2 может быть большим положительным, а эмиттанс

$$egin{aligned} &arepsilon_x = rac{C_q \gamma^2}{J_x
ho_2 arphi_2} \left[eta_0 lpha_2 - lpha_0 b_2 + \gamma_0 c_2
ight. \ &+ (\gamma_0 \eta_0^2 + 2 lpha_0 \eta_0 \eta_0' + eta_0 \eta_0'^2) arphi_2
ight. \ &+ (lpha_0 \eta_0 + eta_0 \eta_0) d_2 - (\gamma_0 \eta_0 + lpha_0 \eta_0') e_2
ight], \end{aligned}$$

где

$$J_{x} = 1 - \frac{1 - 2n_{2}}{\rho_{2}\varphi_{2}} \left(\frac{\operatorname{sh}(\varphi_{2}\sqrt{n_{2} - 1})}{\sqrt{n_{2} - 1}}\eta_{0} + \rho_{2}\frac{\operatorname{ch}(\varphi_{2}\sqrt{n_{2} - 1}) - 1}{n_{2} - 1}\eta_{0}' + \rho_{2}\frac{\operatorname{sh}(\varphi_{2}\sqrt{n_{2} - 1}) - \varphi_{2}\sqrt{n_{2} - 1}}{(n_{2} - 1)^{\frac{3}{2}}}\right).$$
(31)

Здесь a_2, b_2, c_2, d_2, e_2 задаются формулами (17). Значения дисперсионных и бетатронных функций берутся на входе магнита за углом входного скоса. Если эти магниты образуют ахромат, то $\eta_0 = \eta'_0 = 0$ и

$$\varepsilon_{x} = \frac{C_{q}\gamma^{2}}{J_{x}\rho_{2}\varphi_{2}} \left(\beta_{0}\alpha_{2} - \alpha_{0}b_{2} + \gamma_{0}c_{2}\right), \quad J_{x} = 1 + \frac{2n_{2} - 1}{2\rho_{2}\varphi_{2}}e_{2}.$$
(32)

Эмиттанс будет минимален, если параметры Твисса на входе магнита удовлетворяют системе уравнений

$$rac{darepsilon_x}{deta_0}=0, \quad rac{darepsilon_x}{dlpha_0}=0$$

с решениями

$$\alpha_{0} = \frac{b_{2}}{\sqrt{4a_{2}c_{2} - b_{2}^{2}}}, \quad \beta_{0} = \frac{2c_{2}}{\sqrt{4a_{2}c_{2} - b_{2}^{2}}},$$
$$\gamma_{0} = \frac{2a_{2}}{\sqrt{4a_{2}c_{2} - b_{2}^{2}}}.$$
(33)

Для таких значений параметров Твисса получим

$$\varepsilon_x = C_q \gamma^2 \frac{\sqrt{4a_2 c_2 - b_2^2}}{\left(n_2 - \frac{1}{2}\right)e_2 + \rho_2 \varphi_2}.$$
 (34)

Эмиттанс ε_x (34) зависит от индекса неоднородности магнитного поля n₂. С ростом n₂ растет знаменатель в выражении для ε_x и, следовательно, сам ε_x уменьшается. Найдем минимальное значение эмиттанса $\varepsilon_{x,\min}$ в зависимости от величины индекса n₂. Проще всего это сделать графически, построив зависимость $\varepsilon_x(n_2)$. Например, для структуры с $N = 12, m_2 = 1 \ \varphi_2 = 15^\circ, \rho_2 = 9 \ \text{m},$ с оптимальными значениями параметров Твисса (33) эта зависимость для ахромата, составленного из двух магнитов группы 2, изображена на рис. 2. Для $n_2 = 450$ минимальный эмиттанс равен 1 nm · rad. Согласно формулам (33), оптимальные значения бетатронных функций на входе магнита за углом его скоса должны быть равны: $\alpha_0 = 60.73561, \beta_0 = 25.41 \text{ m}, \gamma_0 = 145.1983 \text{ m}^{-1}$. Однако эти значения велики, и такой выбор n₂ неприемлем. Для сравнительно небольших значений $n_2 \approx 55$ радиальный эмиттанс также мал ($\varepsilon_x \approx 5 \,\mathrm{nm} \cdot \mathrm{rad}$) и такие значения показателя неоднородности магнитного поля уже можно использовать.

После простых преобразований, согласно (17), из (34) найдем

$$\varepsilon_x = \frac{C_q \gamma^2}{(n_2 - 1)^{0.5}} \frac{\sqrt{a'_2 c'_2 - b'_2}^2}{(2n_2 - 1)e'_2 + \varphi_2(n_2 - 1)^{1.5}},$$

где

$$\begin{aligned} a_2' &= \operatorname{sh}(2\varphi_2\sqrt{n_2-1}) - 2\varphi_2\sqrt{n_2-1}, \\ b_2' &= \left(\operatorname{ch}(\varphi_2\sqrt{n_2-1}-1)\right)^2, \\ c_2' &= \frac{3}{2}\,\varphi_2\sqrt{n_2-1} - 2\operatorname{sh}\left(\varphi_2\sqrt{n_2-1}\right) + \frac{1}{4}\operatorname{sh}\left(2\varphi_2\sqrt{n_2-1}\right), \\ e_2' &= \operatorname{sh}\left(\varphi_2\sqrt{n_2-1}\right) - \varphi_2\sqrt{n_2-1}. \end{aligned}$$

Следовательно, величина минимального эмиттанса ε_x для ахромата не зависит от радиуса магнита. Этот вывод остается верным и в неахроматическом режиме для одного магнита на полупериоде накопителя (см. предыдущий раздел).

Если магниты не образуют ахромата, то J_x также зависит от значения дисперсионных функций, и проводить аналитическую минимизацию ε_x сложно. Можно использовать приближенную минимизацию, заметив, что при больших n_2 значение $J_x > 1$ и, следовательно, ε_x имеет минимум при минимальном значении числителя. А числитель минимален, если дисперсионные функции и параметры Твисса на входе магнита будут выбраны согласно формулам (22), (23). Найдем

$$\varepsilon_{x} = \frac{C_{q}\gamma^{2}}{J_{x}\rho_{2}\varphi_{2}}\sqrt{4\left(a_{2} - \frac{d_{2}^{2}}{4\varphi_{m}}\right)\left(c_{2} - \frac{e_{2}^{2}}{4\varphi_{m}}\right) - \left(b_{2} - \frac{e_{2}d_{2}}{2\varphi_{m}}\right)^{2}}$$

где

$$J_x = 1 + \frac{2n_2 - 1}{\varphi_2^2(n_2 - 1)^2} \left(4 \operatorname{sh}^2 \left(\frac{\varphi_2}{2} \sqrt{n_2 - 1} \right) - \varphi_2^2(n_2 - 1) \right).$$

В этом случае эмиттанс ε_x будет меньше, чем для ахромата, поскольку $J_x > 1$. Точное значение минимального эмиттанса найдем при численной минимизации его по четырем параметрам: $\alpha_0, \beta_0, \eta_0, \eta'_0$. При оптимальном подборе дисперсионных функций минимизация действительно дает меньшее значение эмиттанса ($\varepsilon_{x \min} = 2.77 \text{ nm} \cdot \text{rad}$).

4. Период накопителя включает 2 магнита с *n* < 1 и два магнита с *n* > 1. Натуральный эмиттанс пучка рассчитывается по формуле

$$\begin{split} \varepsilon_{x} &= \frac{C_{q} \gamma^{2}}{J_{x} I_{0}} \\ \times \begin{pmatrix} \frac{1}{\rho_{1}^{2}} \left[\beta_{0} \alpha_{1} - \alpha_{0} b_{1} + \gamma_{0} c_{1} + (\gamma_{0} \eta_{0}^{2} + 2\alpha_{0} \eta_{0} \eta_{0}' \right. \\ &+ \beta_{0} \eta_{0}'^{2}) \varphi_{1} + (\alpha_{0} \eta_{0} + \beta_{0} \eta_{0}') d_{1} - (\gamma_{0} \eta_{0} + \alpha_{0} \eta_{0}') e_{1} \right]_{1} \\ &+ \frac{1}{\rho_{2}^{2}} \left[\beta_{0} \alpha_{2} - \alpha_{0} b_{2} + \gamma_{0} c_{2} + (\gamma_{0} \eta_{0}^{2} + 2\alpha_{0} \eta_{0} \eta_{0}' \right. \\ &+ \beta_{0} \eta_{0}'^{2}) \varphi_{2} + (\alpha_{0} \eta_{0} + \beta_{0} \eta_{0}') d_{2} - (\gamma_{0} \eta_{0} + \alpha_{0} \eta_{0}') e_{2} \right]_{2} \end{split}$$

7 Журнал технической физики, 2008, том 78, вып. 12

Индексы "1", "2" у внутренних скобок означают, что бетатронные и синхротронные функции вычислены на входе магнита 1 или 2 соответственно,

$$\begin{split} &J_x = 1 - \frac{1}{I_0} \Biggl\{ \frac{1 - 2n_1}{\rho_1^2} \Biggl[\frac{\sin(\varphi_1 \sqrt{1 - n_1})}{\sqrt{1 - n_1}} \eta_{01} \\ &+ \rho_1 \frac{1 - \cos(\varphi_1 \sqrt{1 - n_1})}{1 - n_1} \eta_{01}' \\ &+ \rho_1 \frac{\varphi_1 \sqrt{1 - n_1} - \sin(\varphi_1 \sqrt{1 - n_1})}{(1 - n_1)^{3/2}} \Biggr]_1 \\ &+ \frac{1 - 2n_2}{\rho_2^2} \Biggl[\frac{\sin(\varphi_2 \sqrt{n_2 - 1})}{\sqrt{n_2 - 1}} \eta_{02} + \rho_2 \frac{\operatorname{ch}(\varphi_2 \sqrt{n_2 - 1})}{n_2 - 1} \eta_{02}' \\ &+ \rho_2 \frac{-\varphi_2 \sqrt{n_2 - 1} + \sin(\varphi_2 \sqrt{n_2 - 1})}{(n_2 - 1)^{3/2}} \Biggr]_2 \Biggr\}. \end{split}$$

Расчеты по этим формулам и численные расчеты по программе MAD-8 [4] для разных магнитных структур накопителя дают одинаковые результаты.

Заключение

Получены формулы для расчета натурального радиального эмиттанса пучка накопителя — источника синхротронного излучения при произвольных значениях индекса неоднородности магнитного поля в его магнитах. Они позволяют оптимизировать структуру кольцевого электромагнита накопителя для получения минимального значения радиального эмиттанса пучка в нем. Оптимизация накладывает требования на формирование бетатронных и синхротронных функций ($\alpha_0, \beta_0, \eta_0, \eta'_0$) на входе магнитов за углами их торцевых скосов и на выбор значения индекса неоднородности магнитного поля в них.

Список литературы

- [1] Фетисов Г.В. Синхротронное излучение. Методы исследования структуры вещества. М.: Физматлит, 2007. 671 с.
- [2] Sands M. The Physics of electron storage ring. Report. SLAC, 1970. 121 p.
- [3] Штеффен К. Оптика пучков высоких энергий. М.: Мир, 1969. 222 с.
- [4] The MAD Program. Vers. 8.21. CERN http://hansg.web.cern.ch/hansg/mad/mad8/user/mad.html.