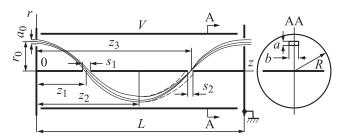
Краткие сообщения

11

Фильтр по энергии из цилиндрического и плоского электродов с прямолинейным ходом пучка заряженных частиц на входе и выходе системы

© Т.Я. Фишкова

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: fishkova@mail.ru


(Поступило в Редакцию 17 декабря 2007 г.)

С целью улучшения разрешения по энергии фильтра из цилиндрического и плоского электродов с заземленными торцевыми диафрагмами теоретически исследованы его режимы работы с двумя пересечениями пучком заряженных частиц продольной оси системы. Найдены оптимальная с точки зрения достижения максимальной разрешающей способности по энергии геометрия и сила фильтра. Проведено сравнение с параметрами энергофильтра аналогичной конструкции, в которой пучок пересекает продольную ось системы один раз.

PACS: 41.85.-p

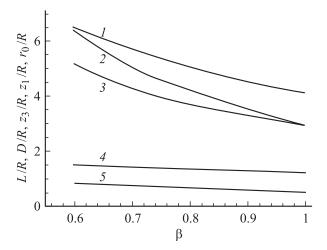
В работе [1] предложен фильтр по энергии заряженных частиц в виде цилиндра, в меридиональной плоскости которого, а также по его торцам расположены плоские электроды. В работе [2] авторы определили в аналитическом виде распределение потенциала такой системы и рассчитали ее численно по собственной программе в режимах работы с двойной фокусировкой при одном пересечении пучком заряженных частиц продольной оси системы. При таком ходе траекторий значение дисперсии по энергии мало, и, как следствие, проявляется недостаточное для многих задач разрешение.

В настоящей работе для улучшения основных параметров, а также с целью решения ряда задач, в которых требуется прямолинейный ход пучка, описанная выше система исследована теоретически в режимах с двумя пересечениями оси траекториями заряженных частиц (рис. 1). Расчеты проведены численно с использованием программы, описанной в предыдущей работе [2]. Программа была дополнена с целью проведения стыковки траекторий в области второго пересечения ими оси

Рис. 1. Двухэлектродный фильтр по энергии с плоскими торцевыми диафрагмами. Показан ход траекторий заряженных частиц с энергией настройки (сплошные линии) и другими энергиями (штриховые линии).

системы, а также определения положения задней торцевой диафрагмы, обеспечивающего для параллельного пучка на входе минимальные углы наклона траекторий к оси на выходе системы.

В первую очередь, осуществлялся поиск оптимального режима работы системы в ее меридиональной плоскости, являющейся плоскостью дисперсии, с целью получения максимально возможного разрешения по энергии при большой светосиле. Расчеты проведены в широком диапазоне изменения силы энергофильтра $\beta = eV/\varepsilon_0$, где V — потенциал цилиндрического электрода (плоский и торцевые электроды заземлены), е заряд частиц, ε_0 — энергия настройки. Ввод пучка осуществлялся параллельно продольной оси системы через переднюю торцевую диафрагму, вывод — через заднюю. Для обеспечения такого прямолинейного хода пучка с минимально возможными углами наклона траекторий к продольной оси на выходе системы для каждой величины β находились положения задней диафрагмы (длина системы L). При этом расстояния базовой траектории пучка, вокруг которой имеет место фокусировка пучка, от продольной оси на входе в систему r_0 , а также точки ее первого (z_1) и второго (z_3) пересечений с продольной осью имеют строго определенные значения.


Величины указанных параметров и коэффициент линейной дисперсии системы по энергии *D*, выраженные в единицах радиуса цилиндрического электрода, представлены на рис. 2. Видно, что с увеличением силы все параметры монотонно убывают. Однако размер сфокусированного на вторую щель пучка, ответственный наряду с величиной дисперсии за разрешение системы по энергии, по мере роста силы энергофильтра сначала уменьшается, достигая минимума, а затем начинает увеличиваться. *Т.Я. Фишкова*

Табп	MIIO	1
табл	ица	

$oldsymbol{eta}$	0.6	0.65	0.68	0.7	0.72	0.75	0.8	0.9	0.95	1
s_1/R	0.19	0.18	0.17	0.14	0.12	0.10	0.08	0.05	0.04	0.02
$s_2 \cdot 10^{-2}$	12.4	4.3	2	1.7	1.4	1.4	1.3	1.3	1.4	1.5
$\pm \rho \cdot 10^{-3}$	16	7.6	3.7	3.4	2.9	3.1	3.2	3.7	4.7	5.3

В табл. 1 приведены размеры щелей в плоском электроде для прохождения широкого пучка размером a=0.1R, стартующего параллельно продольной оси системы: s_1 — при первом пересечении пучком оси, s_2 — при втором, а также величина разрешения по энергии $\rho=\pm\Delta\varepsilon/\varepsilon_0$. Последнее имеет оптимум в области изменения силы $0.7\leq\beta\leq0.8$. Следует отметить, что для всех подобранных режимов угол на выходе базовой траектории пучка α_i не превышает 1.5° .

Расчеты в области оптимальной силы фильтра, выполненные с большей точностью, позволили определить наилучший режим работы, который обеспечивает максимальное разрешение по энергии $\rho=2.7\cdot 10^{-3}$ и высокую светосилу (размер пучка на входе и выходе a=(0.79-0.69)R при $r_0=0.75R$). При этом сила энергофильтра $\beta=0.715$, его длина L=5.6R, коэффициент линейной дисперсии по энергии D=5R. Размеры щелей в плоском электроде равны $s_1=0.12R$, $s_2=1.37\cdot 10^{-2}R$, они находятся на расстояниях от входа $z_1=1.39R$, $z_3=4.18R$ соответственно. Расстояние точки поворота траекторий от входа $z_2=2.79R$. Угол наклона базовой траектории к продольной оси на выходе системы $\alpha_i=-1^\circ$, а для других траекторий пучка он не превышает 3° .

Рис. 2. Зависимость параметров энергофильтра от его силы в режиме с двумя пересечениями траекторий продольной оси системы. Кривая I — длина системы (расстояние между торцевыми диафрагмами), 2 — коэффициент дисперсии по энергии, 4 и 3 — расстояния от переднего торца системы до точек первого и второго пересечений продольной оси базовой траекторией пучка соответственно, 5 — расстояние от продольной оси до входа в систему базовой траектории пучка.

Таблица 2.

_	a_0/R	$\pm b_0/2R$	s_1/R	s_2/R	$\pm b_i/2R$	$lpha_i,~^\circ$	γ_i , °	$ ho \cdot 10^{-3}$
	0.1	0.05	0.13	0.02	0.26	-0.7	6.2	4
	0.08	0.04	0.1	0.01	0.11	-0.8	4.9	2
	0.06	0.03	0.074	0.006	0.077	-1	3.7	1.2
	0.04	0.02	0.053	0.004	0.053	-1	2.5	0.8
	0.02	0.01	0.026	0.001	0.026	-1	1.2	0.2
	0.01	0.005	0.013	0.0006	0.013	-1	0.6	0.1

Примечание: $a_i = a_0$, $r_0 = 0.75R$, $\alpha_0 = \gamma_0 = 0$.

Для энергофильтра с такими геометрическими и электрическими параметрами были найдены условия пространственной фокусировки по углу, т.е. одновременно в меридиональной и азимутальной плоскостях при различной светосиле. Последняя определяется размерами входной диафрагмы $a \times b$ в двух взаимно перпендикулярных направлениях (рис. 1).

В табл. 2 приведены размеры щелей, обеспечивающие прохождение пучка квадратного сечения, который стартует параллельно продольной оси, а также углы наклона базовой траектории пучка к оси на выходе. Следует отметить, что размер пучка на выходе в плоскости дисперсии (a) остается неизменным, а размер в перпендикулярной плоскости (b) увеличивается.

Индексы "0" и "i" относятся к параметрам на входе и выходе соответственно. Расчеты показали, что разрешение по энергии улучшается практически прямо пропорционально уменьшению светосилы.

Таким оборазом, определены оптимальная геометрия и питание двухэлектродного энергофильтра для различных систем транспортировки пучков заряженных частиц, когда требуется, чтобы на входе и выходе фильтра пучок двигался по одной прямой. Такой ход достигается за счет двукратного пересечения траекториями продольной оси системы.

Сравнение исследованных фильтров по энергии с двумя и одним [2] пересечением оси системы показало, что в первом случае величина коэффициента линейной дисперсии по энергии в три раза больше, а разрешение при одинаковой светосиле в два раза выше.

Список литературы

- Овсянникова Л.П., Фишкова Т.Я., Сурков В.А. // ЖТФ. 2007.
 Т. 77. Вып. 12. С. 83-86.
- [2] *Овсянникова Л.П., Фишкова Т.Я.* // Сб. Тез. 8-го Всеросс. семинара "Проблемы теоретической и прикладной электронной и ионной оптики". М., 2007. С. 37–38.