⁰⁵ Влияние изотопического замещения ${}^{16}O \rightarrow {}^{18}O$ на магнитные, электрические и теплофизические свойства манганита La_{0.8}Ag_{0.1}MnO₃

© А.Г. Гамзатов¹, А.Б. Батдалов¹, А.М. Алиев¹, И.К. Камилов¹, А.Р. Кауль², Н.А. Бабушкина³

¹ Институт физики им. Х.И. Амирханова ДагНЦ РАН, Махачкала, Россия ² Московский государственный университет им. М.В. Ломоносова, Москва, Россия ³ НИЦ "Курчатовский институт", Москва, Россия E-mail: gamzatov_adler@mail.ru

(Поступила в Редакцию 17 июля 2012 г.)

Представлены результаты влияния изотопического замещения кислорода ${}^{16}\text{O} \rightarrow {}^{18}\text{O}$ на восприимчивость, электросопротивление, теплоемкость и магнитокалорический эффект в одновалентно допированном манганите La_{0.8}Ag_{0.1}MnO₃. Показано, что замещение кислорода ${}^{16}\text{O}$ более тяжелым изотопом ${}^{18}\text{O}$ приводит к сдвигу $T_{\rm C}$ и сказывается на всех измеряемых коэффициентах. Этот результат указывает на необходимость учета динамики решетки при объяснении механизма колоссального магнитосопротивления в манганитах.

Исследование выполнено при финансовой поддержке РФФИ в рамках научных проектов № 11-02-01124-а, 12-02-96506-р-юг-а, 12-02-31171-мол_а и при финансовой поддержке Министерства образования и науки Российской Федерации по ГК № 16.552.11.7092 и по ГК № 16.523.11.3008, а также при финансовой поддержке программы ОФН РАН "Сильно коррелированные электроны в твердых телах и структурах".

В основе неослабевающего интереса к перовскитным манганитам помимо чисто научных лежат и вполне ясные практические аспекты: колоссальное магнитосопротивление и магнитокалорический эффект (МКЭ) в манганитах весьма велики и проявляются при комнатных температурах, что делает эти материалы перспективными для информационных технологий, медицины, низкотемпературной теплотехники.

Открытие изотоп-эффекта в манганитах [1,2], свидетельствующее о влиянии динамики решетки на электропроводность манганитов, придало дополнительный импульс изучению свойств этих материалов. Изотопическое замещение ${}^{16}\mathrm{O} \rightarrow {}^{18}\mathrm{O}$ в манганитах приводит к резкому уменьшению T_C , а иногда и к изменению основного магнитного состояния, заключающемуся в переходе образца из ферромагнитного (ФМ) проводящего в антиферромагнитное (АФМ) диэлектрическое состояние. В первом случае изотоп-эффект связан с тем, что замена кислорода ¹⁶О на более тяжелый изотоп ¹⁸О приводит к изменению спектра колебаний атомов кислорода в октаэдрах MnO₆, являющихся основными конструкционными элементами кристаллической решетки перовскитных манганитов. Это приводит к поляронному сужению зоны проводимости, следствием чего являются рост электросопротивления и сдвиг Т_с. Здесь прослеживается некая аналогия с зависимостью сопротивления проводника от эффективной массы носителей тока, которая в случае замены ¹⁶О на ¹⁸О растет [3]. Во втором случае изотопэффект является следствием образования магнитнодвухфазного состояния (МДФС) при низких температурах, когда проводящие ФМ- и изолирующие АФМ-фазы сосуществуют. Изотопическое замещение ${}^{16}\mathrm{O} \rightarrow {}^{18}\mathrm{O}$ сопровождается уменьшением объема ФМ-фазы и в конечном итоге может привести к переходу образца из проводящего ФМ- в диэлектрическое АФМ-состояние [4].

Все это указывает на необходимость учета динамики решетки и фазового расслоения при построении теории, объясняющей колоссальное магнитосопротивление и другие фундаментальные свойства манганитов.

В настоящей работе приводятся результаты экспериментального исследования влияния изотопического замещения $^{16}O \rightarrow ^{18}O$ на некоторые физические свойства манганита $La_{0.8}Ag_{0.1}MnO_3.$

Исследуемые образцы являются представителями одновалентно допированных манганитов с дефицитом лантана, в которых за появление магнетизма и металлической проводимости одновременно ответственны как вакансии лантана, так и ионы серебра.

В основе мотивации выбора данного состава для исследований лежат два обстоятельства. Во-первых, в литературе отсутствуют сведения о результатах исследования изотоп-эффекта в одновалентно допированных манганитах. Во-вторых, из всех исследованных нами образцов системы La_{1-x}Ag_yMnO₃ [5] данные образцы обладали наилучшими характеристиками.

Были измерены магнитная восприимчивость, электрои магнитосопротивление, теплоемкость и магнитокалорический эффект в образцах $La_{0.8}Ag_{0.1}Mn^{16}O_3$ и $La_{0.8}Ag_{0.1}Mn^{18}O_3$. Результаты исследований приведены на рис. 1–6.

Данные по магнитной восприимчивости (рис. 1) для La_{0.8}Ag_{0.1}Mn¹⁶O₃ указывают на переход в ФМ-состояние при $T_C = 318$ K, а при замещении ¹⁶O \rightarrow ¹⁸O температура перехода T_C сдвигается в сторону низких температур

Рис. 1. Температурная зависимость магнитной восприимчивости.

Рис. 2. Температурная зависимость электросопротивления.

до 313 К, т.е. изотоп-эффект равен $\Delta T_i = 5$ К, причем, как и в некоторых других манганитах [6,7], наблюдается уменьшение абсолютной величины восприимчивости. Аналогичные сдвиги температуры максимумов аномалий наблюдаются для электросопротивления $\rho(T)$, теплоемкости $C_P(T)$, магнитосопротивления $\Delta \rho / \rho(T)$ и МКЭ $\Delta T(T)$.

Остановимся несколько подробнее на результатах измерений. На рис. 2 приведены зависимости $\rho(T)$ для исследованных образцов в интервале температур 4.2–350 К. Поведение $\rho(T)$ для обоих образцов в парамагнитной фазе $(T > T_{MI})$ характерно для полупроводников, что интерпретируется на основе концепции поляронов малого радиуса, а в ферромагнитной фазе $(T < T_{MI})$ зависимость $\rho(T)$ носит металлический характер и объясняется путем учета нескольких механизмов рассеяния [5]. В непосредственной близости от T_{MI} для объяснения зависимости $\rho(T)$ привлекаются представления теории перколяций [8,9]. Температура перехода металл-изолятор T_{MI} для образца La_{0.8}Ag_{0.1}Mn¹⁸O₃ на

 $\Delta T_i = 6 \text{ K}$ меньше, чем для La_{0.8}Ag_{0.1}Mn¹⁶O₃, а абсолютные значения ρ больше для образца La_{0.8}Ag_{0.1}Mn¹⁸O₃. Этот результат согласуется с упомянутыми выше представлениями о сужении поляронной зоны проводимости и уменьшении подвижности носителей заряда при замещении ¹⁶O \rightarrow ¹⁸O [3].

Между тем на основе данных магнитных измерений в [10] был сделан вывод о существовании МДФС в пленках $La_{1-x}Ag_yMnO_3$, когда в ФМ-матрице, в которой сосредоточены носители заряда, расположены диэлектрические микрообласти с АФМ-характером магнитного упорядочения. Предполагая, что выводы [10] справедливы и для наших образцов, и учитывая идеологию [4,11], согласно которой в фазово-расслоенных манганитах изотоп-эффект проявляется в виде уменьшения объема ФМ-фазы при замещении ${}^{16}O \rightarrow {}^{18}O$, наблюдаемый нами изотоп-эффект в $La_{0.8}Ag_{0.1}MnO_3$ можно считать суммарным эффектом, включающим как вклад от сужения поляронной зоны проводимости, так и вклад от изменения соотношения объемов ФМ- и АФМ-фаз.

Однако, учитывая относительно небольшую величину изотоп-эффекта и отсутствие подтверждения существования МДФС в системе $La_{1-x}Ag_yMnO_3$ [5,12], можно предположить, что за изотоп-эффект в данном случае ответственны изменения в спектре колебаний атомов кислорода.

Рассмотрим результаты исследования магниторезистивного эффекта. Как и следовало ожидать, изотопэффект проявляется и в магнитосопротивлении; сдвиг температуры составляет $\Delta T_i(\Delta \rho / \rho) \approx 5 \text{ K}$ (рис. 3). Видно, что $\Delta T_i(\Delta \rho / \rho)$ несколько меньше, чем $\Delta T_i(\rho)$, что можно объяснить уменьшением изотоп-эффекта под действием магнитного поля [13].

Из рис. З также виден еще один эффект: рост $-\Delta\rho/\rho$ с понижением температуры, что не характерно для монокристаллических и крупнозернистых манганитов. Причина такого поведения $\Delta\rho/\rho(T)$ кроется в керамической природе исследованных образцов, в которых проводимость осуществляется путем туннелирования носителей

Рис. 3. Температурная зависимость магнитосопротивления при H = 11 kOe.

Рис. 4. Зависимость магнитосопротивления от магнитного поля при T = 4.2 K.

заряда от одной ферромагнитной гранулы к другой. Вероятность такого туннелирования определяется взаимной ориентацией магнитных моментов соприкасающихся гранул и резко зависит от величины магнитного поля. В качестве иллюстрации можно привести зависимость $-\Delta \rho / \rho = f(H)$ в области гелиевых температур (рис. 4). Под влиянием магнитного поля происходит ориентация магнитных моментов гранул по направлению поля, что приводит к увеличению вероятности туннелирования и соответственно к росту отрицательного магнитосопротивления с выходом на насыщение еще в слабых магнитных полях. С понижением температуры туннельный вклад в магнитосопротивление будет расти вследствие уменьшения вероятности рассеяния туннелирующих носителей на тепловых флуктуациях, что мы и наблюдаем [14].

Результаты измерения температурной зависимости теплоемкости для образцов La_{0.8}Ag_{0.1}Mn¹⁶O₃ и La_{0.8}Ag_{0.1}Mn¹⁸O₃ в интервале температур 77–360 К без поля и в магнитном поле 26 kOe представлены на рис. 5, *а, b*. Теплоемкость измерялась методом аскалориметрии [15]. Как видно из рисунков, температурная зависимость теплоемкости образцов подчиняется дебаевским представлениям о теплоемкости твердых тел, за исключением аномальной области, связанной с фазовым переходом ферромагнетик–парамагнетик. Магнитное поле 26 kOe подавляет аномалию теплоемкости и смещает максимум в сторону высоких температур. На зависимости теплоемкости $C_P(T)$ (рис. 5) достаточно точно прослеживается сдвиг температуры максимумов для $C_P(^{16}O)$ и $C_P(^{18}O)$.

Исследование МКЭ в манганитах $La_{1-x}Ag_yMnO_3$ ($x \le y$) [16] показало, что данные материалы обладают достаточно большими значениями МКЭ, максимумы которых приходятся на область комнатных температур. В связи с этим представляет интерес исследование влияния изотопического замещения на МКЭ в данных материалах. Результаты исследования влияния замещения $^{16}{\rm O} \rightarrow ^{18}{\rm O}$ на МКЭ в магнитном поле 26 kOe приведены на рис. 6. Измерение МКЭ проводилось прямым методом в температурном интервале 220–340 K

Рис. 5. Температурная зависимость теплоемкости для $La_{0.8}Ag_{0.1}Mn^{16}O_3(a)$ и $La_{0.8}Ag_{0.1}Mn^{18}O_3(b)$ в магнитном поле H = 0 и 26 kOe.

Рис. 6. Температурная зависимость адиабатического изменения температуры ΔT_{ad} при H = 26 kOe.

Рис. 7. Температурная зависимость изменения магнитной энтропии ΔS при H = 26 kOe.

(вблизи температуры фазового перехода). Как видно из рисунка, для La_{0.8}Ag_{0.1}Mn¹⁶O₃ максимальная величина эффекта $\Delta T_{max} = 1.5$ К наблюдается при $T_{max} = 309$ К, соответственно для La_{0.8}Ag_{0.1}Mn¹⁸O₃ $\Delta T_{max} = 1.2$ К при $T_{max} = 300$ К, т.е. изотопическое замещение приводит к уменьшению МКЭ. Температуры максимумов для образцов с ¹⁶O и ¹⁸O различаются.

С помощью соотношения $\Delta T = (T/C_H)\Delta S$ и наших экспериментальных результатов изучения по теплоемкости в магнитном поле C_H (рис. 5, *a*, *b*) были получены температурные зависимости изменения магнитной энтропии ΔS для исследованных образцов в магнитном поле 26 kOe, которые приведены на рис. 7. Максимальные значения изменения магнитной энтропии равны $\Delta S_{\text{max}} \approx 3.2$ и 2.6 J/kg · K для La_{0.8}Ag_{0.1}Mn¹⁶O₃ и La_{0.8}Ag_{0.1}Mn¹⁸O₃ соответственно. Эти результаты находятся в хорошем согласии с магнитными данными, из которых следует, что замещение ¹⁶O \rightarrow ¹⁸O приводит к ослаблению магнитных свойств материала.

Таким образом, исследовано влияние изотопического замещения ${}^{16}\text{O} \rightarrow {}^{18}\text{O}$ на магнитные, электрические и тепловые свойства керамического образца La_{0.8}Ag_{0.1}MnO₃. Показано, что изотоп-эффект проявляется в поведении электросопротивления, магнитосопротивления, магнитной восприимчивости, теплоемкости и МКЭ, что подтверждает важность учета динамики решетки при интерпретации физических свойств манганитов. Замещение ${}^{16}\text{O} \rightarrow {}^{18}\text{O}$ приводит к уменьшению критической температуры перехода, ослаблению магнитных свойств и уменьшению магнитокалорического эффекта.

Список литературы

- [1] G.M. Zhao, K. Conder, H. Keller, K.A. Muller. Nature **381**, 676 (1996).
- [2] N.A. Babushkina, L.M. Belova, O.Yu. Gorbenko, A.R. Kaul, A.A. Bosak, V.I. Ozhogin, K.I. Kugel. Nature **391**, 159 (1998).

- [3] G.-M. Zhao, D.J. Kang, W. Prellier, M. Rajeswari, H. Keller, T. Venkatesan, R.L. Greene. Phys. Rev. B 63, 060 402 (2001).
- [4] А.М. Балагуров, И.А. Бобриков, В.Ю. Помякушин, Д.В. Шепятков, Н.А. Бабушкина, О.Ю. Горбенко, М.С. Картавцева, А.Р. Кауль. ЖЭТФ 133, 605 (2008).
- [5] И.К. Камилов, А.Г. Гамзатов, А.М. Алиев, А.Б. Батдалов, Ш.Б. Абдулвагидов, О.В. Мельников, О.Ю. Горбенко, А.Р. Кауль. ЖЭТФ 132, 885 (2007).
- [6] N.A. Babushkina, L.M. Belova, V.I. Ozhogin, O.Yu. Gorbenko, A.R. Kaul, A.A. Bosak, D.I. Khomskii, K.I. Kugel. J. Appl. Phys. 83, 7369 (1998).
- [7] G. Zhao, Y.S. Wang, D.J. Kang, W. Prellier, M. Rajeswari, H. Keller, T. Venkatesan, C.W. Chu, R.L. Greene. Phys. Rev. B 62, R11949 (2000).
- [8] А.Г. Гамзатов, А.Б. Батдалов, А.Р. Кауль, О.В. Мельников. ФТТ 53, 170 (2011).
- [9] A.G. Gamzatov, A.B. Batdalov. Phase Trans. 83, 10 (2010).
- [10] Р.В. Демин, О.Ю. Горбенко, А.Р. Кауль, Л.И. Королева, О.В. Мельников, А.З. Муминов, Р. Шимчак, М. Баран. ФТТ 47, 2195 (2005).
- [11] Н.А. Бабушкина, Е.А. Чистотина, О.Ю. Горбенко, А.Р. Кауль, К.И. Кугель, А.И. Курбаков, В.А. Трунов, Ж. Андре. ФТТ 46, 1821 (2004).
- [12] L. Pi, M. Hervieu, A. Maignan, C. Martin, B. Raveau. Solid State Commun. 126, 229 (2003).
- [13] J.E. Gordon, C. Marcenat, J.P. Franck, I. Isaac, Guanwen Zhang, R. Lortz, C. Meingast, F. Bouquet, R.A. Fisher, N.E. Phillips. Phys. Rev. B 65, 024 441 (2001).
- [14] А.Г. Гамзатов, А.Б. Батдалов. ФТТ 54, 66 (2012).
- [15] Ш.Б. Абдулвагидов, Г.М. Шахшаев, И.К. Камилов. ПТЭ 5, 134 (1996).
- [16] I.K. Kamilov, A.G. Gamzatov, A.M. Aliev, A.B. Badalov, A.A. Aliverdiev, Sh.B. Abdulvagidov, O.V. Melnikov, O.Y. Gorbenko, A.R. Kaul. J. Phys. D 40, 4413 (2007).