05

Исследование мультиферроика GdMn₂O₅ µSR-методом

© С.И. Воробьев¹, А.Л. Геталов¹, Е.И. Головенчиц², Е.Н. Комаров¹, В.П. Коптев¹, С.А. Котов¹, И.И. Павлова¹, В.А. Санина², Г.В. Щербаков¹

¹ Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра "Курчатовский институт", Гатчина, Ленинградская обл., Россия

² Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия E-mail: vsiloa@pnpi.spb.ru

(Поступила в Редакцию 2 июля 2012 г.)

Мультиферроик GdMn₂O₅ (керамический образец и образец, составленный из большого числа хаотически ориентированных монокристаллов с линейными размерами 2-3 mm) был изучен µSR-методом в интервале температур 10-300 К. Обнаружены три аномалии в температурном поведении параметров функции релаксации поляризации мюонов: вблизи фазового перехода, обусловленного возникновением дальнего магнитного порядка в подсистеме ионов марганца ($T_{N1} = 40 - 41 \text{ K}$); вблизи lock-in-перехода, обусловленного скачкообразным изменением волнового вектора магнитного порядка ($T_L = 35$ K); вблизи температуры упорядочения ионов Gd^{3+} ($T_{N2} = 15 \text{ K}$). Анализ временных спектров прецессии спина мюонов во внутреннем магнитном поле образцов показал, что имеются две позиции предпочтительных мест локализации мюонов в образцах, различающиеся величинами частот прецессии и характером их температурной зависимости. Более низкочастотная прецессия, обусловленная ионами Mn⁴⁺, ферромагнитными комплексами $Mn^{4+}-Mn^{4+}+$ мюоний и ионами Gd^{3+} , наблюдалась во всей области температур $T < T_{N1}$ и практически не зависела от температуры. При температурах $T < T_L = 35 \,\mathrm{K}$ возникала также более высокочастотная прецессия, обусловленная ионами ${\rm Mn}^{3+}$. Для нее характерна температурная зависимость $\sim (1-T/T_{N1})^{eta}$ с показателем $\beta = 0.39$, типичная для 3D-магнетиков гейзенберговского типа. При $T < T_{N1}$ обнаружен недостаток полной асимметрии. Это, возможно, обусловлено образованием мюония и указывает на важную роль процессов переноса заряда при формировании дальнего магнитного порядка.

1. Введение

Создание материалов с управляемыми магнитными и электрическими свойствами стимулирует изучение мультиферроиков с близкими температурами магнитного и сегнетоэлектрического упорядочений, для которых характерно сильное магнитоэлектрическое взаимодействие. Примерами такого типа мультиферроиков являются редкоземельные манганиты RMnO₃ со структурой перовскитов [1,2] и семейство кристаллов RMn₂O₅ (R — редкоземельный ион, а также Y и Bi) [3–5].

При комнатной температуре кристаллы RMn₂O₅ обладают орторомбической симметрией с пространственной группой Pbam. Они имеют сложную кристаллическую структуру, содержащую ионы Mn³⁺ и Mn⁴⁺ в различных позициях в решетке, отличающихся типом кислородного окружения (октаэдры $Mn^{4+}O_6$ и пирамиды $Mn^{3+}O_3$) [5]. Наличие конкурирующих магнитных Mn-Mn и Mn-R взаимодействий обусловливает возникновение сложных магнитных структур этих кристаллов. Сегнетоэлектрическое упорядочение в RMn₂O₅ вероятнее всего обусловлено специальными типами зарядового и магнитного упорядочений, которые нарушают центральную симметрию решетки [6,7]. Зарядовое и спиновое упорядочения в цепочке ионов марганца вдоль оси b описываются чередованием ионов марганца разной валентности, имеющих также различную взаимную ориентацию спинов (цепочки $Mn_{\uparrow}^{3+} - Mn_{\uparrow}^{4+} - Mn_{\downarrow}^{3+}$). В неискаженной структуре *Рbam* расстояния $d_{\uparrow\uparrow}$ (между ионами Mn_{\uparrow}^{3+} и Mn_{\uparrow}^{4+} с параллельной ориентацией спинов) и $d_{\uparrow\downarrow}$ (между ионами Mn_{\downarrow}^{3+} и Mn_{\uparrow}^{4+} с антипараллельной спиновой ориентацией) одинаковы. Величины обменных взаимодействий между парами ионов $Mn^{3+} - Mn^{4+}$ для различных ориентаций спинов отличаются. Это приводит к уменьшению расстояния $d_{\uparrow\uparrow}$ по сравнению с $d_{\uparrow\downarrow}$, что обеспечивает понижение симметрии до нецентральной *Pb2*₁*m* и образование сегнетоэлектрического состояния [6,7].

По мере охлаждения в кристаллах RMn₂O₅ происходит последовательный ряд фазовых переходов [3-5]. Дальний магнитный порядок с несоразмерной фазой устанавливается при температуре Нееля $T_{N1} \approx 40-45$ К. Он описывается волновым вектором q(1/2, 0, z), где z = 0.25 - 0.37 в зависимости от типа иона \mathbb{R}^{3+} [5]. Вблизи $T_L \approx 35 \,\mathrm{K}$ наблюдается lock-in-переход, при котором скачком изменяется волновой вектор магнитной структуры, которая при $T < T_L$ становится соизмеримой и описывается волновым вектором q(1/2, 0, 1/4). Обычно вблизи этой же температуры при $T_{C1} \approx T_L$ в RMn₂O₅ устанавливается сегнетоэлектрическое упорядочение с поляризацией, ориентированной вдоль оси b кристалла. При дальнейшем понижении температуры вблизи $T_{C2} \approx 20-25 \,\mathrm{K}$ происходит фазовый переход, который сопровождается резким изменением электрической поляризации. При этом соразмерная магнитная фаза переходит в другую, несоразмерную фазу. Наконец, при температурах $T_{N2} \leq 10$ К устанавливается дальний магнитный порядок в системе магнитных ионов R^{3+} . Такая последовательность фазовых переходов была установлена при изучении некоторых кристаллов RMn_2O_5 методом дифракции нейтронов [4,5].

В настоящей работе была поставлена задача исследования особенностей магнитной структуры $GdMn_2O_5$ с помощью μ SR-метода. Большое сечение поглощения нейтронов ядрами Gd исключает возможность изучать магнитную структуру этого кристалла методом дифракции нейтронов. В то же время применение μ SR-метода для этой цели возможно, и, как показывает изучение манганита EuMn₂O₅ этим методом в нашей предыдущей работе [8], такой подход дает возможность получить сведения о некоторых деталях магнитной структуры и особенностях фазовых переходов, которые нельзя получить, используя интегральные методы исследования.

В настоящее время имеется довольно богатая экспериментальная информация о магнитных и сегнетоэлектрических свойствах $GdMn_2O_5$, полученных интегральными методами. Были изучены электрическая поляризация и магнитоэлектрический (ME) эффект [9–12], намагничивание, влияние сильного магнитного поля на магнитострикцию, поляризацию и магнитную восприимчивость [12,13], диэлектрическая проницаемость и магнитная восприимчивость, микроволновая и ME-динамика [13,14]. При этом последовательность фазовых переходов, обнаруженная в $GdMn_2O_5$ в основном подобна серии фазовых переходов, наблюдаемых при изучении других кристаллов RMn_2O_5 методом дифракции нейтронов. Однако были найдены и некоторые отличия.

Магнитное состояние GdMn₂O₅ определяется подсистемами ионов Mn³⁺, Mn⁴⁺ и Gd³⁺. Как и в других RMn₂O₅ кристаллах дальний магнитный порядок в GdMn₂O₅ устанавливается при температуре Нееля $T_{N1} \approx 40$ К. При $T < T_{N1}$ в GdMn₂O₅ наблюдается следующая последовательность фазовых переходов. Переход вблизи $T_L = 35 \,\mathrm{K}$ можно считать подобным lock-inпереходу в других RMn₂O₅ в соразмерную структуру с волновым вектором q (1/2, 0, 1/4). Однако, вопреки ожиданиям, вблизи этой температуры в GdMn₂O₅ не наблюдается переход в сегнетоэлектрическое состояние. Этот переход реализуется при более низкой температуре $T_{C1} \approx 30 \, \mathrm{K}$ (в литературе имеется некоторый разброс значений $T_{C1} = 25 - 30$ K). При $T_{C2} = 20 - 22$ К имеет место фазовый переход, который сопровождается резким изменением электрической поляризации. Наконец, при T_{N2} = 15 К происходит фазовый переход, при котором устанавливается дальний магнитный порядок в системе ионов Gd^{3+} .

Так как ион Gd^{3+} имеет самый высокий магнитный (чисто спиновый) момент $(7/2\,\mu_B)$ среди всех ионов R^{3+} , можно ожидать большое влияние ионов Gd^{3+} на свойства соединения $GdMn_2O_5$. Действительно, было обнаружено влияние Gd-Mn обменного взаимодействия

в CdMn₂O₅ на ME-динамику и фазовые переходы в сильных магнитных полях [12–14]. Возможно, что сдвиг температуры сегнетоэлектрического перехода в GdMn₂O₅ к более низким температурам по сравнению с другими кристаллами RMn₂O₅ связан с влиянием такого обменного взаимодействия [14]. Кроме того, дальний магнитный порядок в подсистеме ионов Gd³⁺ появляется при более высокой температуре, чем в других соединениях RMn₂O₅.

Проведенное в настоящей работе μ SR-исследование GdMn₂O₅ позволило установить важную роль процессов переноса заряда между парами ионов Mn³⁺-Mn⁴⁺ при формировании дальнего магнитного порядка. Аналогичное влияние было обнаружено при μ SR-исследовании EuMn₂O₅ [8], что свидетельствует об общем характере влияния переноса заряда между ионами марганца разной валентности в мультиферроиках RMn₂O₅. При исследовании второй оптической гармоники в TbMn₂O₅ [15] также отмечалась важная роль процессов переноса заряда.

2. Детали эксперимента и обработка экспериментальных данных

Эксперименты проводились на µSR-установке, расположенной вблизи выхода мюонного канала синхроциклотрона ПИЯФ. Использовался мюонный пучок с импульсом $p_{\mu} = 90 \, \text{MeV}/c$, импульсным разбросом $\Delta p_{\mu}/p_{\mu}(\text{FWHM}) = 0.02$ и продольной поляризацией $P_{\mu} \sim 0.90 - 0.95$. Образцы помещались в криостат, который позволял устанавливать и регулировать температуру в области 10-300 К с точностью ~ 0.1 К. Использовалась система катушек Гельмгольца, позволяющая прикладывать в объеме образца внешнее магнитное поле до 1.5 кОе. При этом стабильность тока питания катушек поддерживалась на уровне $\sim 10^{-3}$. Однородность магнитного поля в области расположения образца была оценена с помощью µSR-измерений на немагнитном образце (Си). При этом параметр λ скорости релаксации поляризации P_{μ} мюона $(P_{\mu} \sim \exp(-\lambda t))$ в Cu составляет $\lambda = (0.0053 \pm 0.0031) \, \mu s^{-1}$, что позволяет проводить µSR-измерения в магнитных материалах.

Временные спектры позитронов от распада мюонов были измерены в двух диапазонах $(10\,\mu s \ u \ 1.1\,\mu s)$, для которых цена деления каналов была 4.9 ns/chanel и 0.8 ns/chanel соответственно.

Для μ SR-исследований, требующих образцы большого объема, были изготовлены два образца GdMn₂O₅. Первый образец представлял собой керамический диск диаметром 30 mm и толщиной 12 mm, изготовленный с помощью технологии твердофазного синтеза. Размер зерен его структуры составлял несколько десятков микрон. Методом рентгеновского фазового анализа была подтверждена структура и однофазность керамического образца. Второй образец состоял из набора монокристаллов GdMn₂O₅ с линейными размерами (~ 2–3 mm), выращенных методом спонтанной кристаллизации. Монокристаллы помещались в контейнер того же размера, что и для керамического образца. При этом для µSRизмерений использовались монокристаллы из той же партии монокристаллов, на которых ранее проводились измерения магнитной и диэлектрической восприимчивости и магнитной динамики [13,14]. Оба образца (именуемых в дальнейшем как керамический образец и образец из монокристаллов) имели хаотичную ориентацию осей кристаллов и различались только размерами их "структурных единиц".

Детальное описание установки, системы регистрации и метода обработки экспериментальных данных можно найти в предыдущих публикациях [16,17].

Экспериментальные временные спектры позитронов распада мюонов были описаны следующим выражением:

$$N_e(t) = N_0 \exp(-t/\tau_{\mu})[1 + a_s G_s(t) + a_b G_b(t)] + B, \quad (1)$$

где N_0 — нормировочная константа; a_s и a_b — асимметрии позитронов распада мюонов, остановившихся в образце (a_s) и в конструктивных элементах установки $(a_b); G_s(t)$ и $G_b(t)$ — соответствующие функции релаксации поляризации мюонов; В — фон случайных совпадений. Уровень и временная структура последнего были определены из обработки событий начальной области временного спектра (до момента остановки мюона в образце), где отсутствовали как полезные, так и фоновые события от конструктивных элементов установки. Асимметрия *a*_b и параметры фоновой функции $G_b(t)$ для каждого образца были получены из обработки временного спектра, измеренного во внешнем магнитном поле при температуре $T < T_{N1}$. В этом случае наблюдаемая амплитуда частоты прецессии в заданном внешнем магнитном поле равна вкладу а_b в полную асимметрию. Из этой же обработки находится скорость релаксации поляризации мюонов λ_b , остановившихся в конструктивных элементах. Таким образом, слагаемое $a_b G_b(t) = a_b \exp(-\lambda_b t)$, не зависящее от температуры, определено полностью.

При обработке экспериментальных данных использовалось стандартное предположение о факторизации функции релаксации

$$a_s G_s(t) = a_s G_d(t) G_{st}(t).$$
⁽²⁾

Здесь $G_d(t) = \exp(-\lambda t)$ является динамической функцией релаксации, описывающей временные флуктуации магнитного поля в образце в течение времени жизни мюона. $G_{\rm st}(t)$ является статической функцией релаксации, вид и параметры которой определяются распределением локальных магнитных полей в зонах, предпочтительных для локализации мюона после его замедления в образце и завершения процесса его термализации. Вблизи этих положений локализации мюона имеют место быстрые короткодействующие флуктуации, и функция $G_{\rm st}(t)$ изменяется гораздо быстрее, чем $G_d(t)$. При этих условиях функция релаксации $G_s(t)$ может быть факторизована [18–21].

Введение понятия остаточной асимметрии *a_s* дает возможность принять во внимание потерю начальной

(полной) асимметрии a_0 благодаря появлению дополнительных каналов деполяризации мюона при изменении температуры образца. Параметр a_0 был определен из экспериментальных данных, полученных во внешнем магнитном поле, когда образец находился в парамагнитном состоянии.

3. Результаты эксперимента

В результате обработки экспериментальных данных были определены температурные зависимости параметров функции релаксации поляризации мюонов, остановившихся в образце.

Температурное поведение скорости динамической релаксации λ в области 10-80 К демонстрируется на рис. 1. Были выполнены измерения и при температуре T = 300 К; при этом оказалось, что величина λ при T = 300 К совпадает с ее значением при 80 К. Скорее всего, параметр λ не изменяется в области темпера-

Рис. 1. Температурная зависимость скорости динамической релаксации λ (*a* — керамический образец; *b* — образец из монокристаллов); темные точки относятся к измерениям при нагревании, светлые — при охлаждении, треугольники — к измерениям во внешнем магнитном поле *H* = 280 Oe; стрелками отмечены температуры фазовых переходов.

тур от 80 до 300 К. Необходимо отметить необычно высокое значение $\lambda(\sim 1\,\mu s^{-1})$, которое не изменяется во всей исследованной области температур, и на фоне которого наблюдаются аномалии вблизи фазовых переходов. Столь большое значение фоновой величины λ в GdMn₂O₅ и ее независимость от температуры могут быть обусловлены присутствием в образцах в широкой области температур ограниченных областей ближнего магнитного порядка. Измерения магнитной восприимчивости семейства мультиферроиков RMn₂O₅ показывают, что для них температура Кюри-Вейса $\theta_{\rm CW} \gg T_{N1}$, и имеет место довольно высокое фрустрационное отношение $\theta_{\rm CW}/T_{N1} \approx 6-7$ [22,23], свидетельствующее о том, что кристаллы RMn₂O₅ являются магнитнофрустрированными мультиферроиками. Известно, что в таких системах выше температуры T_{N1} , в температурном интервале, определяемом фрустрационным отношением, обычно формируется сильно коррелированное парамагнитное состояние [24]. Тот факт, что фоновые значения λ при 20 K < T < T_{N1} и в парамагнитной области совпадают, указывает на присутствие сильно фрустрированного состояния кристалла и при $T < T_{N1}$.

Аномалии параметра λ наблюдаются при температурах фазовых переходов, вблизи которых происходят значительные изменения магнитных свойств в соответствии с измерениями другими методами (рис. 1), а именно: $T_{N1} = 39-41$ К (установление дальнего магнитного порядка в подсистеме ионов марганца); $T_L = 35$ К (lockin-переход с изменением волнового вектора магнитного упорядочения в соразмерное с решеткой состояние); $T_{N2} = 15$ К (магнитное упорядочение в подсистеме ионов Gd³⁺). Наблюдаемый при измерениях МЕ-эффекта и поляризации структурный фазовый переход вблизи 22-26 К и установление сегнетоэлектрического упорядочения при $T \approx 30$ К в наших измерениях проявляются менее отчетливо. Это естественно, т. к. μ SR-метод позволяет исследовать только магнитную структуру вещества.

Измерения для керамического образца были выполнены в двух режимах: при охлаждении образца от 100 до 15 К, а затем в режиме нагревания от 10 до 32.5 К. В последнем случае образец предварительно охлаждался от комнатной температуры до температуры 10 К (в течение ~ 1 h). Как видно из рис. 1, *a*, в интервале температур от 20 до 32 К наблюдается гистерезис на зависимости $\lambda(T)$.

При некоторых температурах было изучено влияние внешнего магнитного поля. Конструкция установки позволяла работать с внешним магнитным полем, направленным поперек пучка мюонов. Это обстоятельство не является существенным, так как в обоих образцах ориентация осей отдельных кристаллов изотропно хаотическая. Как видно (рис. 1), приложение поля H = 280 Ое приводит к заметному уменьшению скорости динамической релаксации λ при температуре ниже T_{N1} и практически не изменяет ее уровень в парамагнитной области.

В области температур 10–15 К параметр λ также уменьшается, особенно резко для керамического образца, скорее всего из-за установления дальнего магнитного

порядка в подсистеме ионов Gd^{3+} . Отметим, что приложение магнитного поля при $T > 20 \,\mathrm{K}$ и упорядочение в системе ионов Gd^{3+} (при H = 0) при $T \leq 15 \,\mathrm{K}$ уменьшают параметр λ примерно до одинакового уровня.

Рассмотрим температурное поведение остаточной асимметрии a_s (рис. 2 и 3). В парамагнитной области ($T > T_{N1}$) величина a_s практически не зависит от температуры и остается равной полной асимметрии a_0 . Отметим, что величина остаточной асимметрии при T = 300 К имеет то же значение, что и при 40 K < T < 80 K. При температурах $T < T_{N1}$ асимметрия a_s должна быть равна 1/3 a_0 . Дело в том, что, когда образец находится в парамагнитном состоянии, асимметрия распада полностью поляризованного пучка мюона равна a_0 . Ниже температуры T_{N1} в каждом кристалле образца в результате процесса магнитного упорядочения магнитное поле ориентируется определенным образом относительно кристаллических осей. Но поскольку сами

Рис. 2. Температурная зависимость остаточной асимметрии a_s , нормированной к полной асимметрии a_0 (a — керамический образец; b — образец из монокристаллов); уровни нормированной асимметрии $a_s/a_0 = 1/3$ ($T < T_{N1}$) и $a_s/a_0 = 1$ ($T > T_{N1}$) отмечены штрих-пунктирными линиями; темные точки относятся к измерениям при нагревании, светлые — при охлаждении, треугольники — к измерениям во внешнем магнитном поле H = 280 Ое.

426

Рис. 3. То же, что на рис. 2, для области температур $T < T_{N1}$.

"структурные составляющие" образца ориентированы хаотично, эффект усредненной по направлениям осей картины такой же, как если бы для 1/3 всех мюонов магнитное поле имело направление вдоль их спина (и сохраняло асимметрию распада, равную a_0), а для остальных 2/3 всех мюонов оно было бы поперечным, приводило к прецессии спина мюонов и, как следствие, к значению асимметрии, равной нулю. В конечном счете наблюдаемая асимметрия оказывается равной 1/3а₀. Однако наблюдаемая величина *a*_s оказывается значительно ниже уровня $1/3a_0$, особенно для образца из монокристаллов. Это указывает на появление дополнительного канала потери поляризации мюонов при $T \leq T_{N1}$. Таким каналом может оказаться процесс образования мюония $Mu = \mu^+ e^-$. Возможно, ниже температуры T_{N1} увеличивается вероятность переноса заряда (электрона) между ионами Mn³⁺ и Mn⁴⁺ (двойной обмен), что и приводит к образованию мюония. Ранее эффект потери поляризации мюона наблюдался при изучении образцов манганита $EuMn_2O_5$ [8].

Включение внешнего магнитного поля приводит к увеличению потери ассиметрии только для керамического образца, в то же время оно не влияет заметным образом на асимметрию a_s в случае образца из монокристаллов (рис. 2 и 3).

Два режима изменения температуры керамического образца дают две ветви зависимости остаточной асимметрии с гистерезисом (рис. 3, *a*). Образец из монокристаллов изучался только в режиме нагревания. Отметим, что гистерезис был обнаружен ранее при изучении диэлектрической проницаемости, магнитной восприимчивости и магнитной динамики GdMn₂O₅ при $T \leq T_{N1}$ [13,14].

Быстрые процессы деполяризации мюона можно описать, используя статическую функцию релаксации коллинеарного ферромагнетика

$$a_s G_{st}(t) = \sum_i G^i_{\rm st}(t),$$

$$G_{\rm st}^i = a_i [1/2 + 2/3 \cos(\Omega_i t) \exp(-\Delta_i t)], \quad i = 1, 2.$$
 (3)

Здесь *a_i* — парциальные амплитуды наблюдаемых частот прецессии спина мюона в локальном внутреннем

Рис. 4. Функция релаксации $G_s(t)$ при температурах $T_L = 35 \text{ K}$ (*a*) и $T_{C2} = 22 \text{ K}$ (*b*) для керамического образца; сплошные линии получены в результате подбора параметров методом наименьших квадратов с одной (*a*) или двумя (*b*) частотами прецессии; 1 канал соответствует 0.8 ns.

магнитном поле $(a_1 + a_2 = a_s)$. Частоты $\Omega_i = 2\pi F_i(T)$ и скорости затухания прецессии $\Delta_i(T)$ зависят от величины локального магнитного поля и разброса этих полей в окрестности точек локализации мюона в момент его остановки в образце.

В качестве примера на рис. 4 приводятся найденные из обработки экспериментальных данных функции релаксации $G_s(t)$ при двух значениях температуры керамического образца. При $T_L = 35$ К в образце реализуется состояние только с одним предпочтительным местом локализации мюона с одной частотой прецессии (рис. 4, *a*). При температуре $T_{C2} = 22$ К существуют два таких места локализации с двумя частотами прецессии (рис. 4, *b*).

Температурное поведение наблюдаемых частот прецессии мюонов во внутреннем магнитном поле демонстрирует рис. 5. Следует отметить ряд особенностей в

Рис. 5. Температурные зависимости частот прецессии во внутреннем магнитном поле образца (*a* — керамический образец; *b* — образец из монокристаллов); темные точки относятся к частоте F_1 , светлые — к частоте F_2 ; стрелками отмечены температуры фазовых переходов $T_L = 35$ К и $T_{N1} = 40$ К; пунктирная кривая получена методом наименыших квадратов: $F_2 \sim (1 - T/T_L)^{\beta}$, $T_L = 35$ К; $\beta = 0.39 \pm 0.02$.

Рис. 6. Температурные зависимости нормированных парциальных вкладов (a — керамический образец; b — образец из монокристаллов); темные точки относятся к параметру a_1/a_s , светлые — к параметру a_2/a_s ; стрелками отмечены температуры фазовых переходов $T_{N2} = 15$ К и $T_L = 35$ К.

представленных зависимостях. Сразу ниже T_{N1} в интервале температур от 40 до 35 К наблюдается только одна частота F_1 , которая достаточно быстро выходит на плато температурной зависимости (на уровне 20–25 MHz). При температуре $T_L = 35$ К на обоих образцах дополнительно появляется прецессия на частоте F_2 , которая монотонно увеличивается по мере уменьшения температуры. Температурная зависимость частоты F_2 в областях вне зон фазовых переходов может быть аппроксимирована функцией Кюри–Вейса: $F_2 \sim (1 - T/T_L)^{\beta}$, с показателем $\beta = 0.39$, который характерен для 3D-магнетиков Гейзенберговского типа.

Парциальные вклады a_1 и a_2 на каждой из частот прецессии в остаточную асимметрию a_s определены с большей погрешностью, чем частоты прецессии (рис. 6). Тем не менее ряд фактов может быть определен с достаточной степенью точности: парциальная асимметрия a_1 , соответствующая частоте прецессии F_1 , скачком уменьшается при $T_L \approx 35$ К и в интервале температур 20-35 К остается ниже парциальной асимметрии a_2 ,

428

Рис. 7. Температурные зависимости скоростей статической релаксации (a — керамический образец; b — образец из монокристаллов); темные точки относятся к параметру $\Delta_1/2\pi$, светлые — к параметру $\Delta_2/2\pi$.

соответствующей частоте прецессии F_2 . При более низкой температуре поведение парциальных асимметрий определяется с большой погрешностью, особенно для образца из монокристаллов. Температурные зависимости скоростей статической релаксации $\Delta_{1,2}$ определены с еще большей погрешностью (рис. 7) и практически не могут быть адекватно проанализированы. Этот факт также свидетельствует о сильно фрустрированном состоянии кристалла и при $T < T_{N1}$.

4. Обсуждение результатов

Наблюдаемая температурная эволюция параметров функции релаксации поляризации мюонов прежде всего обязана изменениям магнитного состояния и фазовым переходам в исследуемых кристаллах.

Особенностью манганитов RMn_2O_5 является послойное расположение магнитных ионов в решетке: ионы Mn^{3+} находятся в слое z = 1/2c, ионы Mn^{4+} — в слоях

z = 1/4c и z = 3/4c, а ионы \mathbb{R}^{3+} — в слое z = 0 [5]. Дальний магнитный порядок реализуется за счет обменных взаимодействий между парами ионов Mn как с одинаковыми, так и с разными валентностями. Естественное место локализации положительно заряженного мюона находится около электроотрицательного иона кислорода в цепочке Mn–O–Mn. Частота прецессии спина мюона в локальном магнитном поле и вероятность его локализации вблизи различных пар ионов Mn определяется величинами обменных взаимодействий между этими ионами.

Имеются три различных цепочки косвенного обменного взаимодействия через ионы кислорода: Mn³⁺-O(1)- Mn^{3+} , Mn^{4+} -O(4)- Mn^{4+} и Mn^{3+} -O(3)- Mn^{4+} (рис. 8). Кроме того, существует значительно более сильный двойной обмен [25,26], обусловленный переносом e_g -электрона между ионами Mn^{3+} и Mn^4 $(Mn^{3+} \leftrightarrow Mn^{4+} + e_g)$. Ион Mn^{3+} имеет один делокализованный eg-электрон, сильно связанный с ионом кислорода, и три локализованных t_{2g}-электрона. Ион Mn⁴⁺ содержит только три локализованных t2g-электрона, которые связаны с ионом кислорода слабее. В результате обменное взаимодействие в цепочке Mn³⁺-O(1)-Mn³⁺ значительно сильнее, чем в цепочке Mn⁴⁺-O(4)-Mn⁴⁺. Исходя из этого мы полагаем, что ниже температуры перехода $T_{N1} = 40 \,\mathrm{K}$ более высокая частота прецессии F_2 и вероятность найти мюон вблизи иона O(1) соответствуют ситуации, когда мюон локализуется в цепочках $Mn^{3+}-O(1)-Mn^{3+}$.

Особая ситуация возникает с парами Mn³⁺-Mn⁴⁺, между которыми возможен двойной обмен. Такой обмен

Рис. 8. Кристаллическая структура соединения GdMn₂O₅; І — ионы в плоскостях z = 0 и z = 1/2c; II — ионы в плоскостях z = 1/4c и z = 3/4c; сплошные линии — связи между ближайшими ионами; пунктирная линия — дальняя связь для иона Mn³⁺.

описывается гамильтонианом [25,26]

$$H_{\rm DE} = -t\cos(\theta/2). \tag{4}$$

Здесь θ — угол между направлениями спинов S_1 и S_2 соседних ионов Mn^{3+} и Mn^{4+} , а t — интеграл переноса заряда ($t \approx 300 \,\mathrm{meV}$). Такой обменный механизм приводит к ферромагнитной ориентации спинов S₁ и S₂ и спина е_g-электрона в исходной антиферромагнитной матрице RMn₂O₅ [25,26]. Если принять во внимание возможность остановки мюона вблизи такой ферромагнитной пары Mn³⁺-Mn⁴⁺, то возможен сценарий образования мюония (когда мюон поглощает eg-электрон, принимающий участие в двойном обмене). В результате образуется ферромагнитный комплекс Mn⁴⁺-Mn⁴⁺ + мюоний. Вблизи этого комплекса возникает фрустрация в исходном магнитном и зарядовом порядке, которая эффективно ослабляет внутреннее поле при температуре ниже 40 К. Кроме того, это эффективно увеличивает число ионов Mn⁴⁺, локализация мюонов около которых приводит к более низкой частоте прецессии и уменьшению соответствующей парциальной амплитуды а1 (рис. 6). Отметим также, что ферромагнитные моменты пар ионов Mn⁴⁺ (из мюонных комплексов) не зависят от температуры. По этой причине более низкая частота прецессии F₁ практически не зависит от температуры (рис. 5).

Необходимо отметить, что превращение пар ионов $Mn^{3+}-Mn^{4+}$ в мюонный комплекс $Mn^{4+}-Mn^{4+}$ + мюоний может объяснить уменьшение остаточной асимметрии a_s ниже 40 K (рис. 2, 3). По-видимому, этот механизм типичен для всех кристаллов RMn_2O_5 , которые содержат как ионы Mn^{3+} , так и ионы Mn^{4+} . Такой эффект наблюдался нами ранее в $EuMn_2O_5$ [8]. В теоретических работах [6,7] показано, что процессы зарядового упорядочения, переноса заряда между ионами Mn разной валентности (двойной обмен) важны для формирования мультиферроичного состояния в RMn_2O_5 [5].

Как отмечалось выше, кристаллы GdMn₂O₅ являются сильно фрустрированными системами в широкой области температур. При исследовании поглощения микроволнового излучения, диэлектрической проницаемости и магнитной восприимчивости ниже температуры T_{N1} наблюдались гистерезисные явления [14,15]. Образование комплексов Mn⁴⁺ – Mn⁴⁺ + мюоний увеличивает степень фрустрации кристалла из-за дополнительных спиновых и зарядовых искажений и приводит к усилению гистерезисных явлений.

Обратимся к анализу различий в величинах потерь асимметрии a_s в керамическом образце и образце из монокристаллов, а также различного влияния магнитного поля на a_s в этих образцах. Потери асимметрии в образце из монокристаллов больше, чем в керамическом образце. В то же время приложение магнитного поля увеличивает значение потерь a_s в керамическом образце приблизительно до уровня потерь в образце из монокристаллов (рис. 2, 3). Размеры зерен в керамическом образце значительно меньше размеров отдельных монокристаллов в образце из монокристаллов. При этом границы между зернами керамики значительно тоньше, чем зазоры между отдельными монокристаллами. Перенос заряда между отдельными монокристаллами невозможен, в то время как он возможен (хотя и затруднен) через границы между зернами в керамике. В результате в керамическом образце весь объем кристалла (как зерна, так и границы между ними) участвует в процессе переноса заряда между ионами Mn разной валентности, в то время как в образце из монокристаллов это происходит только в объеме отдельных монокристаллов. Развитая поверхность границ между зернами в керамическом образце уменьшает вероятность процессов переноса заряда через эти границы. Увеличение потерь асимметрии в керамическом образце при приложении внешнего магнитного поля указывает на то, что основным блокирующим фактором для переноса заряда через границы зерен керамики является закрепление случайной ориентации спинов пар ионов Mn³⁺ и Mn⁴⁺ на этих границах. Рост ориентации спинов пар ионов Mn³⁺-Mn⁴⁺ вдоль приложенного магнитного поля увеличивает вероятность двойного обмена, процесса переноса заряда между этими парами (см. уравнение (4)) и образования мюонных комплексов. Это ведет к увеличению потери асимметрии в керамическом образце.

Вблизи *T* = 22-25 К имеет место изменение вкладов парциальных амплитуд *a*₁ и *a*₂ в полную асимметрию *a*_s: вклад *a*₁ значительно уменьшается. Эти изменения более выразительны для керамического образца, хотя в обоих образцах точность определения парциальных амплитуд при этом падает (рис. 6). Как уже отмечалось, при этих температурах в интегральных методах исследования фиксируется структурный фазовый переход с резким изменением электрической поляризации. Вблизи $T = 25 - 30 \,\mathrm{K}$ в GdMn₂O₅ формируется сегнетоэлектрическое упорядочение, при котором возможно, по аналогии с другими кристаллами RMn₂O₅, симметрия понижается до нецентральной *Pb2*₁*m* [6,7]. Переход в сегнетоэлектрическое состояние при 30К был изучен в ErMn₂O₅ в [27] методом рентгеновской дифракции в синхротронном излучении. Было установлено, что такой переход сопровождается смещениями ионов кислорода в цепочках Mn–O–Mn, приводя при этом к изменению расстояний между ионами и углов связей в цепочках Mn-O-Mn. Это должно приводить к перераспределению парциальных асимметрий.

Ниже 22 К начинает также проявляться магнитная подсистема ионов Gd^{3+} . Отклик ионов Gd^{3+} становится динамическим вблизи температуры $T_{N2} = 15$ К. Происходит магнитное упорядочение в системе ионов Gd^{3+} . Можно было бы ожидать, что это приведет к появлению третьей частоты прецессии. Однако этого не происходит, а фиксируется лишь перераспределение парциальных амплитуд асимметрии, указывающее на относительный рост эффективной концентрации ионов Mn^{4+} . В этой связи можно заметить, что магнитные состояния ионов Gd^{3+} (которые находятся в *S*-состоянии) и ионов Mn^{4+} (с тремя локализованными электронами в t_{2g} -состоянии

и с замороженными орбитальными моментами в основном состоянии) являются похожими, и возможно внутреннее магнитное поле вблизи ионов Gd^{3+} подобно полю в окрестности комплексов $Mn^{4+}-Mn^{4+}$ + мюоний.

5. Заключение

С помощью μ SR-метода были исследованы образцы GdMn₂O₅ (керамический и составленный из набора монокристаллов).

Были обнаружены аномалии в температурной зависимости параметров функции релаксации поляризации мюонов вблизи трех фазовых переходов: $T_{N1} = 40$ K, $T_L = 35$ K и $T_{N2} = 15$ K.

Установлено, что ниже температуры формирования дальнего магнитного порядка $T_{N1} = 40$ К в системе ионов Мп имеет место потеря полной остаточной асимметрии, что, возможно, связано с образованием мюония и указывает на важную роль процессов переноса заряда между парами ионов Mn³⁺-Mn⁴⁺ при формировании дальнего порядка в мультиферроике GdMn₂O₅.

Найдены две частоты прецессии мюона во внутреннем поле образцов. Их температурное поведение существенно различается. Более низкая частота F_1 появляется в области $T_{N1} < 40$ К, и она почти не зависит от температуры (за исключением окрестности $T \approx T_{N1}$). Прецессия спина мюона на этой частоте обусловлена цепочками ионов $Mn^{4+}-O-Mn^{4+}$, образованием изолированных ферромагнитных мюонных комплексов и упорядоченной подсистемой ионов Gd^{3+} . Вторая, более высокая частота прецессии F_2 появляется при температуре $T < T_L = 35$ К и связана с локализацией мюона вблизи цепочки ионов $Mn^{3+}-O-Mn^{3+}$. Ее температурная зависимость описывается законом Кюри-Вейса $F_2 \sim (1 - T/T_L)^{\beta}$ с показателем $\beta = 0.39$, типичным для 3D-магнетиков гейзенберговского типа.

Особенности температурного поведения скорости динамической релаксации λ и парциальных вкладов a_1 и a_2 в полную остаточную асимметрию вблизи $T = T_{N2} = 15$ К обязаны магнитному упорядочению в системе ионов Gd³⁺.

 μ SR-исследования свидетельствуют о сильно фрустрированном магнитном состоянии GdMn₂O₅ в широкой области температур, как ниже, так и выше температуры T_{N1} .

Список литературы

- T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura. Nature, **426**, 55 (2003).
- [2] S.-W. Cheong, M. Mostovoy. Nat. Matter 6, 13 (2007).
- [3] N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong. Nature 429, 392 (2004).
- [4] Y. Noda, H. Kimura, M. Fukunago, S. Kobayashi, I. Kagomiya, K. Kohn, J. Phys.: Cond. Matter 20, 434 206 (2008).
- [5] P.G. Radaelli, L.C. Chapon. Journ. Phys.: Cond. Matter 20, 434 213 (2008).

- [6] J. Van den Brink, D.I. Khomskii. J. Phys.: Cond. Matter 20, 434 217 (2008).
- [7] G. Giovanneti, J. Van den Brink. Phys. Rev. Lett. 100, 227 603 (2008).
- [8] С.И. Воробьев, Е.И. Головенчиц, В.П. Коптев, Е.Н. Комаров, С.А. Котов, В.А. Санина, Г.В. Щербаков. Письма в ЖЭТФ 91, 561 (2010).
- [9] A. Inomata, K. Kohn. J. Phys.: Cond. Matter 8, 2673 (1996).
- [10] H. Tsujino, K. Kohn. Solid State Commun. 83, 639 (1992).
- [11] M. Fukunago, Y. Noda. J. Phys. Soc. Jpn. 79, 054705 (2010).
- [12] Ю.Ф. Попов, А.М. Кадомцева, Г.П. Воробьев, С.С. Кротов, К.И. Камилов, М.М. Лукина. ФТТ 45, 2051 (2003).
- [13] Е.И. Головенчиц, В.А. Санина. Письма в ЖЭТФ 78, 99 (2003).
- [14] E. Golovenchits, V. Sanina. J. Phys.: Cond. Matter 16, 4325 (2004).
- [15] Th. Lottermoser, D. Meier, R. Pisarev, M. Fiebig. Phys. Rev. B 80, 100101 (R) (2009).
- [16] С.Г. Барсов, С.И. Воробьев, В.П. Коптев, С.А. Котов, С.М. Микиртычьян, Г.В. Щербаков. ПТЭ **50**, 36 (2007).
- [17] С.Г. Барсов, С.И. Воробьев, Е.Н. Комаров, В.П. Коптев, С.А. Котов, С.М. Микиртычьян, Г.В. Щербаков. Препринт ПИЯФ № 2738, Гатчина (2007), 34 с.
- [18] J.A. Dann, A.D. Hillier, J.G. Armitage, R. Cywinski. Proc. of the 8th Int. Conf. on Muon Spin Rotation, Relaxation and Resonance. Les Diablerets, Switzerland (1999). P. 38.
- [19] V.V. Krishnamurthy, K. Nagamine, I. Wanatabe, K. Nishiyama, S. Ohira, M. Ishikawa, D.H. Eom, T. Ishikawa. Proc. of the Eighth Int. Conf. on Muon Spin Rotation, Relaxation and Resonance. Les Diablerets, Switzerland (1999). P. 47.
- [20] R. De Reizi, S. Fanesi. Physica B 289–290, 209 (2000).
- [21] C.J. Boardman, R. Cywinski, S.H. Kilcoyne, C.A. Scott. Proc. of the 6th Int. Conf. on Muon Spin Rotation, Relaxation and Resonance. Maui, Hawaii (1993). P. 525.
- [22] A.F. Garcia-Flores, E. Granado, H. Martinho, R.R. Urbano, C. Rettori, E.I. Golovenchits, V.A. Sanina, S.B. Oseroff, S. Park, S.-W. Cheong. Phys. Rev. B 73, 104 411 (2006).
- [23] Е.И. Головенчиц, В.А. Санина и В.А. Бабинский. ЖЭТФ 112, 284 (1997).
- [24] A.P. Ramirez. Handbook of Magnetic Materials. Elsevier, N.Y. (2001). V. 13. P. 423.
- [25] Л.П. Горьков. УФН 168, 665 (1998).
- [26] М.Ю. Каган, К.И. Кугель. УФН 171, 577 (2001).
- [27] B. Roeslli, P. Fisher, P.J. Brown, M. Janoschek, D. Sheptyakov, S.N. Gvasaliya, B. Ouladdiaf, O. Zaharko, Eu. Golovenchits, V. Sanina. J. Phys.: Cond. Matter 20, 485 216 (2008).