11,06

Кристаллическая структура низкотемпературной модификации моноалюмината рубидия

© Г.Ш. Шехтман¹, Е.И. Волегова¹, В.И. Воронин², И.Ф. Бергер³, Е.И. Бурмакин¹

¹ Институт высокотемпературной электрохимии УрО РАН, Екатеринбург, Россия ² Институт физики металлов УрО РАН, Екатеринбург, Россия ³ Институт химии твердого тела УрО РАН, Екатеринбург, Россия E-mail: shekhtman@ihte.uran.ru

(Поступила в Редакцию 12 июля 2012 г.)

Методами порошковой нейтронографии и ДСК исследован моноалюминат рубидия RbAlO₂. Обнаружен структурный фазовый переход при 1050°С. Показано, что низкотемпературная форма RbAlO₂ имеет не ГЦКструктуру, как считалось ранее, а орторомбическую (*Pnma*, a = 0.5570(2); b = 1.1189(4); c = 1.5818(6) nm), близкую кристаллическим структурам низкотемпературных модификаций RbGaO₂ и RbFeO₂.

Работа выполнена в рамках научного конкурсного проекта молодых ученых и аспирантов УрО РАН, грант № 10-32-НП-100 и гранта РФФИ № 11-03-00663-а.

1. Введение

Твердые растворы на основе соединений Rb MO_2 (M = Al, Fe, Ga), образующиеся при замещении катионов Rb⁺ или M^{3+} ионами более высоких степеней окисления с компенсацией заряда дефицитом рубидия, имеют высокую проводимость по катионам Rb⁺ [1]. Одним из главных факторов, обеспечивающих высокую ионную проводимость этих твердых растворов, является их кристаллическая структура, которая близка ГЦКструктуре высокотемпературной γ -формы моноалюмината калия KAlO₂. Ранее было показано, что сам KAlO₂ в области существования γ -модификации (выше 540°C), а также твердые растворы, имеющие такую структуру, характеризуются структурной разупорядоченностью подрешетки катионов щелочного металла [2].

RbGaO₂ и RbFeO₂ в отсутствие добавок при температурах ниже соответственно 535 и 430°C имеют орторомбическую кристаллическую структуру [3,4], близкую низкотемпературной модификации KAlO₂, которая не характеризуется структурной разупорядоченностью катионной подрешетки, в то время как RbAlO₂, согласно литературным данным [5], уже при комнатной температуре имеет структуру γ -KAlO₂. Таким образом, следовало ожидать, что из рассматриваемых фаз RbMO₂ в низкотемпературной области наиболее высокую рубидий-катионную проводимость будет иметь моноалюминат рубидия.

Сопоставление температурных зависимостей электропроводности RbAlO₂ и RbGaO₂ (рис. 1), однако, показывает, что последний в области существования низкотемпературной формы имеет более высокую проводимость. Моноферрит рубидия также, по-видимому, имеет более высокую по сравнению с RbAlO₂ рубидий-катионную проводимость [6], однако в отсутствие добавок RbFeO₂ имеет смешанную ионно-электронную электропроводность, причем электронная составляющая доминирует. Поэтому данные по рубидий-катионной проводимости моноферрита рубидия требуют уточнения.

Низкая Rb⁺-катионная проводимость моноалюмината рубидия дала основание для проведения более детального изучения его кристаллической структуры.

2. Методика эксперимента

Исходными веществами для синтеза исследуемых материалов служили Rb_2CO_3 (х. ч.) и Al_2O_3 (ч. д. а.). Перед использованием оксид алюминия прокаливали при 1000°С, а карбонат рубидия при ~ 300°С. Требуемые количества просушенных исходных компонентов взве-

Рис. 1. Температурные зависимости удельной электропроводности RbAlO₂ и RbGaO₂.

Рис. 2. Экспериментальная (точки) и расчетная (линия) нейтронограммы RbAlO₂ при комнатной температуре; нижняя линия — разница между расчетом и экспериментом; штрихи выше — положения рефлексов.

шивали на аналитических весах FX-40CJ с точностью ± 0.0001 g, смешивали путем совместного перетирания в фарфоровой ступке и спекали в алундовых тиглях. Температура первой стадии спекания составляла 900°С, продолжительность — 6-8 h. После этого тигли охлаждали и взвешивали. Изменение массы при этом было близко к рассчитанному, исходя из предположения о полном разложении карбоната рубидия. Затем реакционные массы измельчали, часть полученного порошка прессовали в таблетки, помещали в тигли, засыпали порошком того же состава и выдерживали для завершения фазообразования при ~ 1100°C в течение 10-12 h. Полученные таблетки отделяли от засыпки и из порошка прессовали в стальной пресс-форме при давлении ~ 300 МРа образцы для исследований размером $4 \times 4 \times 30$ mm, которые затем спекали при 1200°C на платиновой подложке в засыпке из порошка того же состава. Применение засыпки, как на стадии синтеза, так и при спекании образцов служило для снижения потерь оксидных соединений рубидия вследствие летучести последних при высокой температуре.

Электросопротивление измеряли с серебряными электродами в интервале температур $300-750^{\circ}$ C с помощью моста переменного тока *P* 5083 в диапазоне частот 10^2-10^5 Hz. Сопротивление образцов определяли путем анализа частотной дисперсии импеданса.

Рентгенофазовый анализ проводился на установке Rigaku Dmax-2200 в медном K_{α} - излучении. Полученные результаты использовались для автоматизированного поиска по базе данных JCPDS.

Нейтронографические исследования проводились с использованием мультидетекторного нейтронного дифрактометра Д7а, расположенного на горизонтальном канале реактора ИВВ-2М (г. Заречный) в угловом интервале $9-111^{\circ}$ с шагом 0.1° (длина волны $\lambda = 0.1515$ nm, угловое разрешение $\Delta d/d = 0.3\%$ Образцы предварительно прокаливались, измельчались и помещались в запаянную кварцевую ампулу во избежание контакта с воздухом. Уточнение структурных параметров (координат, чисел заполнения атомов, размеров элементарной ячейки) было выполнено методом полнопрофильного анализа Ритвельда [7] с использованием программы Fullprof [8].

Термический анализ проводили с помощью дифференциального сканирующего калориметра (ДСК) STA 449C Jupiter[®] производства фирмы NETZSCH (Германия) в атмосфере аргона в интервале температур от комнатной до 1100°C.

3. Результаты и их обсуждение

Выполненное нами исследование методом порошковой нейтронографии (рис. 2) выявило ряд рефлексов небольшой интенсивности, отсутствующих в [5]. Расчеты показали, что структура RbAlO₂ относится к орторомбической сингонии, пространственная группа *Pmna*, a = 0.5570(2); b - 1.1189(4); c = 1.5818(6) nm и близка кристаллическим структурам RbGaO₂ и RbFeO₂. Параметры элементарных ячеек закономерно увеличиваются в ряду RbAlO₂ \rightarrow RbGaO₂ \rightarrow RbFeO₂ вследствие роста ионного радиуса трехзарядного катиона [9] (рис. 3), в

Рис. 3. Зависимость объема элементарной ячейки соединений RbMO₂ от радиуса катиона *M*³.

Рис. 4. Кривые ДСК и ТГ RbAlO₂ (a) и Rb1_{1.7}Al_{1.85}V_{0.15}O₄ (b).

этом же ряду должны увеличиваться и размеры каналов миграции катионов Rb^+ . Размеры эти минимальны в случае моноалюмината, поэтому подвижность ионов рубидия в $RbAlO_2$ ниже, чем в $RbGaO_2$ и $RbFeO_2$. Это находит отражение в несколько более высокой величине энергии активации проводимости $RbAlO_2$ по сравнению, например, с моногаллатом (рис. 1) и более низкой величине рубидий-катионной проводимости.

Исследование термического поведения RbAlO₂ показало наличие обратимого структурного фазового перехода при 1050°С. (рис. 4, a). Образование твердых растворов при введении в моноалюминат рубидия пятизарядных катионов, например ванадия, сопровождается стабилизацией высокотемпературной формы RbAlO₂ при низких температурах, о чем говорит исчезновение пика на кривой ДСК (рис. 4, b).

Ответ на вопрос о кристаллической структуре высокотемпературной формы $RbAlO_2$ может дать нейтронографическое исследование структуры этих твердых растворов, которое проводится в настоящее время. Структурные аналоги $RbAlO_2$, моногаллат и моноферрит рубидия, также претерпевают фазовые переходы соответственно при 535°С и ~ 430°С. В обоих случаях изоструктурные низкотемпературные орторомбические фазы переходят в высокотемпературные кубические. Можно полагать, что к этому же сводится и фазовый переход в $RbAlO_2$.

Список литературы

- [1] Е.И. Бурмакин, Е.И. Волегова, Г.Ш. Шехтман. Электрохимия 46, 1413 (2010).
- [2] Е.И. Бурмакин, Г.Ш. Шехтман. В сб.: Явления электропереноса в оксидных системах / Под ред. Е.И. Бурмакина. Наука, Екатеринбург (1994). С. 46.
- [3] E. Vielhaber, R. Hoppe. Z. Anorg. Allgem. Chem. 369, 14 (1969).
- [4] J. Nuss, N.Z. Ali, N. Jansen. Acta Cryst. B63, 719 (2007).
- [5] G. Langlet. C.R. Acad. Sci. 259, 103 (1964).
- [6] Е.И. Бурмакин, В.В. Смольников, Г.Ш. Шехтман, Е.С. Коровёнкова. Электрохимия 28, 947 (1992).
- [7] H.M. Rietveld. J. Appl. Cryst. 2, 65 (1969).
- [8] J. Rodriges-Carvajal. Physica B 192, 155 (1993).
- [9] R.D. Shannon. Acta Cryst. A 32, 751 (1976).