07;11;12 Инфракрасная спектроскопия алмазоподобных кремний-углеродных пленок

© Б.П. Горшунов, М.Л. Шупегин, В.Ю. Иванов, А.С. Прохоров, И.Е. Спектор, А.А. Волков

Институт общей физики им. А.М. Прохорова РАН, 119991 Москва, Россия e-mail: gorshunov@ran.gpi.ru

(Поступило в Редакцию 26 июля 2007 г.)

Выполнены первые измерения инфракрасных спектров металлосодержащих алмазоподобных кремнийуглеродных пленок. Показано, что оптический отклик подсистемы свободных носителей заряда в металлосодержащих (хром) пленках может быть описан в рамках простой модели, рассматривающей носители, локализованные внутри кластеров размером несколько нанометров. Полученные результаты свидетельствуют о возможности управления электрическими и диэлектрическими свойствами пленок с помощью технологических методов их синтеза и соответствующего контроля за размерами, концентрацией и проводимостью металлических нанокластеров.

PACS: 77.84.Lf, 78.67.-n

Введение

Алмазоподобные кремний-углеродные пленки относятся к широкому классу материалов, вызывающих все возрастающий интерес у исследователей. Интерес обусловлен перспективностью применения пленок, обладающих такими свойствами, как простота и дешевизна синтеза, высокая адгезия к широкому ряду материалов (металлы, окислы, кристаллические и аморфные диэлектрики, все полупроводниковые материалы, керамика, пластики), химическая и коррозионная стойкость, низкий уровень остаточных упругих напряжений, твердость, низкий коэффициент трения, экологическая чистота [1–3]. Важным моментом является также и то, что технологическими методами удается получать покрытия со значениями электросопротивления, управляемо изменяемыми в широких пределах, от $10^{14} \Omega$ (диэлектрик) до 10⁻⁴ Ω · ст ("плохой" металл). Подобный набор свойств позволяет прогнозировать широкую востребованность данных материалов в объектах техники. В то же время эффективность их применения ограничивается практическим отсутствием систематических исследований фундаментальных физико-химических свойств. В этой связи целью настоящей работы было проведение первого детального исследования свойств алмазоподобных пленок методами оптической спектроскопии, являющейся одним из наиболее мощных инструментов экспериментальной физики.

Эксперимент

Алмазоподобные кремний-углеродные пленки относятся к нанокомпозитам и представляют собой аморфную матрицу (плазменно полимеризованный полифенилметилсилоксан, далее просто ПФМС), которая может содержать наночастицы отличного от матрицы материала (металлы Ti, Zr, Hf, Nb, Ta, Cr, Mo, W...; сплавы NiCr, FeNiCr и др.). Наибольшую временную стабильность свойств и инертность к воздействию окружающей среды проявил нанокомпозит хром/ПФМС (Cr/ПФМС), чем и объясняется его выбор для наших исследований. Исследованные образцы Cr/ПФМС были получены путем одновременного вакуумного осаждения плазмы паров ПФМС и магнетронного распыления хромовой мишени [4]. Были приготовлены две пленки на кварцевых подложках (толщина 1 mm): пленка N1 с толщиной 2000 Å, удельным сопротивлением 35 Ω на квадрат, с весовым содержанием хрома 73% и пленка N2 с толщиной 2800 Å, поверхностным сопротивлением 180 Ω на квадрат и весовым содержанием хрома 54%. Были также измерены оптические свойства ПФМС, не содержащего металлических включений; для этого был выращен плоскопараллельный слой без подложки с толщиной 139 µm.

Для металлосодержащих пленок при температурах 4.2–300 К были проведены измерения статической проводимости четырехконтактным методом.

Оптические измерения проводились в широком интервале частот с применением двух спектрометров. В субмиллиметровой области (частоты $\nu = 10 - 18 \, \mathrm{cm}^{-1}$ или 300-540 GHz), для температур 5-300 К были выполнены бесконтактные измерения спектров динамической проводимости $\sigma(v)$ и действительной $\varepsilon'(v)$ и мнимой $\varepsilon''(v)$ частей комплексной диэлектрической проницаемости $\varepsilon^*(v) = \varepsilon'(v) + i\varepsilon''(v)$ пленок. При этом использовался метод, детально описанный в [5,6]. В квазиоптической конфигурации измерялись спектры коэффициента пропускания Tr, фазового сдвига φ прошедшей через образец (пленка на подложке) волны и коэффициента отражения R. Из измеренных спектров, с применением соответствующих формул Френеля (см., например, [7]) для одно- или двуслойной (пленка на подложке) среды, напрямую рассчитывались спектры "оптических" характеристик пленок: $\varepsilon'(v), \varepsilon''(v), \sigma(v)$ и т.д. Диэлектрические характеристики подложек определялись предварительно путем измерения подложек без пленок.

Инфракрасные (ИК) измерения выполнялись при комнатной температуре в интервале частот 20-4000 cm⁻¹ на стандартном ИК фурье-спектрометре Bruker IFS 113V. Измерялись спектры пропускания Tr(v) и отражения $\mathbf{R}(v)$ подложек и пленок на подложках. По аналогии с субмиллиметровыми измерениями вначале определялись диэлектрические параметры подложек, а затем с учетом полученных данных на основе спектров Tr и R для двуслойных образцов (пленка на подложке) определялись характеристики пленок: спектры Tr и R обрабатывались метолом наименьших квалратов с применением соответствующих формул Френеля; для описания поглощения за счет молекулярных и решеточных резонансов использовалась модель Лоренциана (гармонического осциллятора), а для описания оптического отклика свободных носителей заряда в металлосодержащих пленках — модель проводимости Друде [8]. Таким образом, для диэлектрической проницаемости и динамической проводимости использовались следующие выражения:

$$\sigma(\nu) = \sigma_{\rm osc} + \sigma_{\rm Drude}, \qquad (1)$$

$$\varepsilon'(v) = \varepsilon'_{\rm osc} + \varepsilon'_{\rm Drude} + \varepsilon_{\rm inf},$$
 (2)

где

$$\sigma_{\rm osc} = \sum_{i} 0.5 f_{i} \nu^{2} \gamma_{i} \left[\left(\nu_{i}^{2} - \nu^{2} \right)^{2} + \gamma_{i}^{2} \nu^{2} \right]^{-1}, \quad (3)$$

$$\varepsilon_{\rm osc}' = \sum_{i} f_{i} \left(\nu_{i}^{2} - \nu^{2} \right) \left[\left(\nu_{i}^{2} - \nu^{2} \right)^{2} + \gamma_{i}^{2} \nu^{2} \right]^{-1}, \qquad (4)$$

$$\sigma_{\rm Drude} = \sigma_{\rm st} \gamma^2 \left(\gamma^2 + \nu^2\right)^{-1}, \qquad (5)$$

$$\varepsilon_{\rm Drude}' = -2\sigma_{\rm st}\gamma \left(\gamma^2 + \nu^2\right)^{-1}.$$
 (6)

При описании линий поглощения моделями осцилляторов суммирование ведется по количеству наблюдаемых резонансных линий поглощения; при этом в формулах (3), (4) v_i — резонансная частота, γ_i — затухание, $f_i = \Delta \varepsilon_i v_i^2$ — сила осциллятора и $\Delta \varepsilon_i$ — диэлектрический вклад; є_{inf} соответствует вкладу в диэлектрическую проницаемость от более высокочастотных (по отношению к диапазону измерений) механизмов дисперсии. Формулы (5) и (6) описывают отклик за счет свободных носителей тока; здесь $\sigma_{\rm st} = v_{\rm pl}^2/2\gamma = Ne\mu$ статическая проводимость, N, e — концентрация и заряд носителей тока соответственно, $\mu = e \tau / m^*$ — их подвижность, τ — время свободного пробега, m^* эффективная масса, $\nu_{\rm pl} = \left(Ne^2/\pi m^*\right)^{1/2}$ — плазменная частота и $\gamma = 1/2\pi\tau$ — частота релаксации. Согласно формулам (5) и (6), в рамках модели проводимости Друде проводимость и диэлектрическая проницаемость практически не изменяются в пределе низких частот, т.е. на частотах, значительно меньших частот релаксации у. При $\nu \approx \gamma$ наблюдается быстрый спад проводимости и увеличение диэлектрической проницаемости.

Экспериментальные результаты и их обсуждение

Спектры материала матрицы, ПФМС, не содержащего металлических включений, являются типичными для диэлектрика (рис. 1, пунктир): поглощение на низких частотах мало́ и определяется "хвостами" ИК-линий поглощения, которых на частотах вплоть до 4000 сm⁻¹ насчитывается 13, их суммарный диэлектрический вклад составляет порядка 4. Рассмотрим оптические свойства металлосодержащих пленок, представляющие наибольший интерес с точки зрения практических применений. Эти спектры представлены на рис. 1. Точками

Рис. 1. Спектры пропускания Tr, отражения R, динамической проводимости σ и диэлектрической проницаемости ε' алмазоподобных металлосодержащих пленок N I (54% хрома) и N 2 (73% хрома), нанесенных на кварцевые подложки. Точки отвечают измерениям на субмиллиметровом (10–20 сm⁻¹) спектрометре. Осцилляции в спектрах Tr и R ниже 200 сm⁻¹ связаны с интерференцией излучения внутри плоскопараллельного слоя подложек. Пунктирными линиями в райноне 4000 сm⁻¹ показано поведение σ и ε' , обусловленное откликом свободных носителей, за вычетом более высокочастотных (> 4000 cm⁻¹) механизмов дисперсии. Для сравнения пунктиром показаны также спектры пленки без металла (соответствующая сплошная линия — результат обработки по методу наименьших квадратов).

на наиболее низких частотах отдельно показаны результаты измерений на субмиллиметровом спетрометре. В спектрах отражения и пропускания ниже примерно 200 ст⁻¹ видны осцилляции, которые вызваны интерференцией монохроматического излучения в пленке без подложки (ПФМС без металла) и в кварцевой подложке (для металлосодержащих пленок); соответствующие слои представляют собой аналог интерферометра Фабри-Перо [7]. С увеличением содержания металла коэффициент пропускания обеих пленок уменьшается, а коэффициент отражения — увеличивается во всем интервале частот и, кроме того, происходят изменения в структуре линий поглощения: линии исчезают, появляются дополнительно, изменяют свои параметры. Результат обработки спектров R и Tr пленок N 1 и N 2 с помощью формул (1)-(6) показан на двух нижних панелях рис. 1 в виде спектров проводимости и диэлектрической проницаемости. Видно, что в спектрах доминирует отклик свободных носителей, причем для пленки N2 спектры $\varepsilon'(v)$ и $\sigma(v)$ имеют типично друдевский вид, как демонстрирует рис. 2: дисперсия на низких частотах отсутствует, величина низкочастотной проводимости равна проводимости, измеренной на постоянном токе (рис. 3), и значение низкочастотной диэлектрической проницаемости отрицательно (6). Спектры проводимости и диэлектрической проницаемости менее проводящей пленки N 1 также не содержат дисперсии на низких частотах, что типично для проводимости металлического типа. В то же время в районе 1000 cm⁻¹ наблюдаются широкий пик в спектре проводимости и соответствующее возрастание диэлектрической проницаемости в сторону низких частот — обе эти особенности не укладываются в представления друдевской модели.

Рис. 2. Схематическое поведение динамической проводимости σ и диэлектрической проницаемости ε' (сплошные линии) в рамках модели проводимости Друде на свободных носителях (5), (6) со статической проводимостью σ_{st} и частотой релаксации носителей γ . Пунктиром показано, как трансформируются спектры σ и ε' при наличии локализации носителей в рамках модели металлических ящиков; ν_{sc} — граничная частота, выше которой носители ведут себя как свободные, а ниже — как запертые внутри.

Рис. 3. Температурная зависимость статической (\bullet) и динамической (300–540 GHz, \circ) алмазоподобных металлосодержащих пленок N *I* (54% хрома) и N *2* (73% хрома).

Для интерпретации полученных результатов рассматриваем металлосодержащие пленки как диэлектрическую матрицу, в которую внедрены проводящие включения в виде кластеров определенного размера L. Электродинамические свойства такой системы могут в первом приближении быть описаны в рамках простой модели так называемой модели металлических ящиков [9,10], которым в рассматриваемом случае соответствуют металлические включения — кластеры. Модель предполагает наличие носителей заряда, запертых внутри области размера L. В такой ситуации на достаточно высоких частотах, когда в течение полупериода внешнего зондирующего электромагнитного поля (поле направлено в одном направлении) носитель заряда не успевает проходить расстояние L, равное размеру кластера, он не "чувствует" границ этого кластера и ведет себя как свободный по отношению к зондирующему полю, т.е. отклик на таких частотах должен соответствовать отклику системы, которая вовсе не содержала бы границ кластеров и была бы однородной. В то же время на достаточно низких частотах и тем более в статике носители заряда должны "чувствовать" границы кластеров, что должно приводить к соответствующему уменьшению значения низкочастотной и статической проводимости. "Граничная" частота должна быть порядка

$$v_0 = v_f / L. \tag{7}$$

В (7) предположили для простоты, что носитель движется со скоростью Ферми v_f . Схематично оптические спектры проводимости и диэлектрической проницаемости для рассматриваемой модели показаны на рис. 2: на высоких частотах поведение $\varepsilon'(v)$ и $\sigma(v)$ не отличается от поведения в рамках модели Друде (сплошные линии),

в то время как на низких частотах в спектрах проводимости "выедается" провал, ведущий (в соответствии с соотношениями Крамерса-Кронига) к возрастанию низкочастотной диэлектрической проницаемости (пунктир). На рисунке "выедание" щели промоделировано с помощью друдевских выражений (5) и (6) (удовлетворяющих соотношениям Крамерса-Кронига), но с отрицательным значением статической проводимости $\sigma_{\rm st} = -\sigma_0$. В таком представлении "глубина" щели определяется величиной σ_0 , а частота релаксации γ совпадает с v_{sc} . Увеличение низкочастотной диэлектрической проницаемости обусловлено дипольными моментами отдельных кластеров, возникающими вследствие локализации в них носителей тока, причем чем меньше частота v_{sc} и чем больше значение σ_0 "выедания" проводимости, тем больше должна быть величина низкочастотной (и статической) диэлектрической проницаемости [11]. Величина σ_0 (или $\sigma_{st} - \sigma_0$), в принципе, может определяться концентрацией носителей, термически активированных над потенциальными барьерами, образующими ящики, прозрачностью этих барьеров (туннелирование) или прыжковыми механизмами проводимости.

Возвращаясь к экспериментальным результатам для металлосодержащих пленок N1 и N2, отметим, что в зависимости от концентрации проводящих включений кластеры могут быть электрически изолированными или находиться в контакте друг с другом при концентрации выше порога протекания [3,12]. В последнем случае статическая электропроводность должна быть сквозной, и динамическая проводимость должна иметь металлический характер. Как видно из рис. 2, именно такая ситуация наблюдается для пленки N 2: спектры $\varepsilon'(v)$ и $\sigma(v)$ имеют друдевский вид, как и спектр отражения R(v), содержащий характерный пламенный край. Обработка спектров позволяет определить параметры свободных носителей тока для этой пленки: статическую проводимость $\sigma_{\rm st} = 1640 \,\Omega^{-1} {\rm cm}^{-1}$, частоту релаксации $\gamma = 1800 {\rm \,cm}^{-1}$, плазменную частоту $\nu_{\rm pl} = 13500 {\rm \,cm}^{-1}$, подвижность $\mu = e(2\pi m\gamma)^{-1} \approx 5 \text{ cm V}^{-1} s^{-1}$, концентрацию $n = \pi m v_{\text{pl}}^2 e^{-2} \approx 2 \cdot 10^{21} \text{ cm}^{-3}$.

В отношении пленки N1 полагаем, что ее низкочастотная проводимость имеет меньшее значение, вследствие того что доля в ней проводящих наночастиц, находящихся в непосредственном контакте, меньше, чем в пленке N2 (значения концентрации Cr для обеих пленок превышают критические для порога протекания [3]), а доля изолированных частиц с локализованными внутри носителями — больше. Спектры Tr и R для этой пленки удалось вполне удовлетворительно описать, добавив к набору параметров, полученных для пленки N2, лишь одно дополнительное слагаемое друдевского типа с параметрами $\sigma_0 = -1040 \,\Omega^{-1} {
m cm}^{-1}$ и $\gamma \approx 800 \, {
m cm}^{-1}$. Это говорит о том, что описанная выше простая модель может быть применена для качественного описания инфракрасных спектров пленки N 1, т.е. дополнительное друдевское слагаемое с отрицательной величиной σ_0 фактически отвечает "выеданию" диэлектрического провала в спектре проводимости пленки, а частота рассеяния у соответствует граничной частоте v_{sc} (рис. 2). Тогда, взяв для скорости Ферми носителей внутри кластеров величину в пределах $10^7 - 10^8 \text{ cm s}^{-1}$, получим оценку размера кластера L = 4 - 40 nm, в хорошем согласии с данными экспериментов по электронной дифракции [13], в которых для кластеров Cr были получены размеры 4-5 nm (для вольфрама и платины — порядка 1 и 6 nm соответственно).

Как следует из рис. 3, величины статической и высокочастотной (300–540 GHz) проводимости для обеих пленок в пределах экспериментальной точности совпадают. Это исключает возможность прыжкового механизма электропроводности, в рамках которого проводимость возрастает с частотой как $\sigma \sim v^s$ с $s \sim 1$ [14]. Температурный ход проводимости не является простым активационным, характерным для полупроводников, или типичным для металлов. Выяснение механизма электропроводности пленок требует дальнейших исследований.

Заключение

Выполнены первые измерения инфракрасных спектров металлосодержащих алмазоподобных кремнийуглеродных пленок в диапазоне частот 10-4000 cm⁻¹ и температур 5-300 К. Показано, что спектры пленок, не содержащих металла, имеют типичный для диэлектриков вид. При значительном (73%) легировании металлом (хромом) инфракрасные свойства пленок являются типичными для металлов. При умеренном (54%) легировании в спектрах динамической проводимости появляется провал, приводящий к значительному увеличению низкочастотной и статической диэлектрической проницаемости. Показано, что такие изменения в спектрах качественно описываются в рамках модели, рассматривающей оптический отклик диэлектрической матрицы с проводящими включениями (кластерами) размером в несколько нанометров. Это говорит о том, что низкочастотные диэлектрические свойства таких пленок в существенной степени должны определяться геометрическими и физическими параметрами проводящих нановключений: размерами, концентрацией, проводимостью. Можно предположить, что манипулирование этими параметрами с помощью технологических методов синтеза пленок в сочетании с адекватными микроскопическими моделями электропроводности открывает перспективы создания нового класса материалов с управляемыми электрическими и диэлектрическими свойствами.

Авторы благодарны О.С. Рябовой за помощь в измерениях и обсуждение результатов.

Работа выполнена в рамках программы президиума РАН "Квантовая макрофизика", подпрограмма "Влияние атомно-кристаллической и электронной структуры на свойства конденсированных сред".

Список литературы

- Dorfman V.F., Pypkin B.N. // Surf. Coat. Technol. 1991. Vol. 48. P. 198.
- [2] Dorfman V.F. et al. // Thin Solid Films. 1992. Vol. 2129. P. 274.
- [3] Dorfman V.F. et al. // Thin Solid Films. 1998. Vol. 330. P. 76.
- [4] Божско А.Д., Шупегин М.Л. // Тр. XI межнац. совещания "Радиационная физика твердого тела". Севастополь, 2001. С. 377.
- [5] Kozlov G., Volkov A. // Topics in Appl. Phys. Vol. 74 / Ed. by G. Grüner. Berlin: Springer–Verlag, 1998.
- [6] Волков А. и др. // ЖЭТФ. 1989. Т. 95. Вып. 1. С. 261.
- [7] Борн М., Вольф Э. Основы оптики. М.: Наука, 1970.
- [8] Соколов А.В. Оптические свойства металлов. М.: Наука, 1961.
- [9] Rice M.J., Bernasconi J. // J. of Phys. F. 1973. Vol. 3. N 1. P. 55.
- [10] Ignatov A.A. // Sol. St. Com. 1982. Vol. 41. N 6. P. 495.
- [11] Мосс Т., Баррел Е., Эллис Б. Полупроводниковая оптоэлектроника. М.: Мир, 1979.
- [12] Dorfman V.F. // Thin Solid Films. 1992. Vol. 212. P. 267.
- [13] Васильева Н.Д., Воронцов В.Н., Попов А.И., Шупегин М.Л. // Тр. IV Междунар. конф. "Аморфные и микрокристаллические полупроводники". СПб.: Изд-во СПбГ-ПУ, 2004. С. 109.
- [14] Мотт Н., Дэвич Э. Электронные процессы в некристаллических веществах. М.: Мир, 1982.

Журнал технической физики, 2008, том 78, вып. 5

8*