09;12 Исследование широкополосных хаотических СВЧ-колебаний в гибридной системе "лампа бегущей волны с коллектором-генератором"

© Ю.А. Калинин, А.А. Короновский, А.Е. Храмов

Саратовский государственный университет им. Н.Г. Чернышевского, 410012 Саратов, Россия e-mail: noios@sgu.ru; aeh@nonlin.sgu.ru

(Поступило в Редакцию 10 января 2007 г.)

Предложен и экспериментально исследован новый гибридный электровакуумный прибор диапазона сверхвысоких частот на основе широкополосного СВЧ-усилителя — лампы бегущей волны (ЛБВ), включающего в качестве одного из элементов многоступенчатый коллектор-генератор с возможностью формирования в его пространстве виртуального катода за счет торможения пучка электронов, выходящих из пространства взаимодействия ЛБВ. Показано, что такой прибор позволяет генерировать и усиливать широкополосные хаотические сигналы сантиметрового диапазона длин волн, определены характеристики генерируемых хаотических сигналов (спектральный состав и интегральная мощность) в различных режимах работы гибридного прибора. Кратко рассмотрен вопрос об усилении генерируемого с помощью виртуального катода в ЛБВ-усилителе.

PACS: 41.75.Fr, 84.40.Fe, 05.45.-a

Введение

Электронно-волновые системы, в которых в качестве активной среды используется электронный пучок с виртуальным катодом (ВК), представляются в настоящее время одним из перспективных источников сверхвысокочастотного (СВЧ) излучения среднего и высокого уровня мощности [1–5].

В работах [5-8] предложен и детально исследован генератор широкополосного шумоподобного сигнала на основе электронного пучка с виртуальным катодом, формирующимся в тормозящем статическом поле, так называемый низковольтный виркатор. Принцип функционирования генератора заключается в том, что нерелятивистский интенсивный электронный пучок инжектируется в пространство взаимодействия с тормозящим потенциалом. В результате этого в электронном пучке возникает ВК, колебания которого регистрируются широкополосной электродинамической системой. Подобный генератор способен демонстрировать различные режимы от генерации монохроматического сигнала до генерации хаотических сигналов с шириной полосы частот до 2 октав [6,7]. Однако уровень выходной СВЧ-мощности такого генератора достаточно низок [9]. В экспериментальном макете низковольтного виркатора при токе пучка J₀ = 100-300 mA и ускоряющем напряжении $V_0 = 1 - 3 \, \text{kV}$ были обнаружены СВЧ-колебания в диапазоне 1-5 GHz с мощностью порядка 0.2-1.0 W при электронном КПД, не превышающем нескольких процентов.

В настоящей работе представлены результаты экспериментального исследования нового "гибридного" прибора СВЧ на основе широкополосного СВЧ-усилителя — лампы бегущей волны (ЛБВ), включающего в качестве одного из элементов многоступенчатый коллектор с возможностью формирования в его пространстве виртуального катода за счет торможения пучка электронов, выходящих из пространства взаимодействия ЛБВ. Новый прибор обладает высокой мощностью, достижимой в ЛБВ, наряду с возможностями низковольтного виркатора по формированию различных режимов колебаний, включая режимы широкополосной хаотической генерации со слабой изрезанностью спектра мощности в диапазоне частот более октавы.

Схема прибора

На рис. 1, а представлены конструктивные элементы предложенного многофункционального СВЧ-прибора на основе широкополосного электронного усилителя с коллектором-генератором. Прибор состоит из нескольких основных функциональных модулей — источника электронов (электронной пушки) 1, мощного широкополосного усилителя СВЧ-сигнала 2, коллекторагенератора 3 и элемента связи 4. Усилительный модуль прибора (лампа бегущей волны) содержит источник электронов 1, формирующий электронный пучок с током J₀, который попадает в пространство взаимодействия 2. Пространство взаимодействия представляет собой отрезок электродинамической замедляющей системы, в котором происходит взаимодействие электронного потока с синхронной электромагнитной волной, за счет чего имеет место усиление СВЧсигнала, одновременно электроны пучка теряют часть своей кинетической энергии [3]. Далее отработанный пучок на выходе из замедляющей системы попадает в область многоступенчатого коллектора электронов 3,

Рис. 1. Блок-схема гибридного многофункционального генератора-усилителя.

совмещающего функции генератора СВЧ-сигналов на основе ВК (низковольтного виркатора). СВЧ-сигнал, снимаемый в коллекторе-генераторе с помощью широ-кополосного элемента связи (отрезок спирали или диафрагма, нагруженные на коаксиальную линию), по цепи связи 4 (волновод или коаксиальная линия) попадает на вход усилительного модуля (ЛБВ), далее, усиливаясь в ЛБВ до мощности $P_{\rm out}$ выводится через элемент вывода энергии 5 в нагрузку.

Таким образом, получаем комбинированный многофункциональный вакуумный СВЧ-прибор, в котором с помощью одного электронного пучка осуществляются генерация и усиление СВЧ-сигналов с различным спектральным составом и мощностью. Отметим, что в рассматриваемом устройстве отсутствует как таковая цепь обратной связи, что позволяет создать генератор СВЧ-сигналов с возможностью перестройки режимов генерации от монохроматического до широкополосного шумоподобного сигнала с малой изрезанностью спектра и шириной полосы частот, достигающей 1-2 октавы. Малая изрезанность спектра и широкая полоса генерируемых частот связаны с отсутствием строгих фазовых условий, определяемых цепью запаздывающей обратной связи, как это имеет место в источниках хаотического сигнала типа ЛБВ с обратной связью (шумотронов), в которых связываются цепью обратной связи непосредственно выход и вход ЛБВ, в результате чего система превращается в добротный резонатор [10-12]. Источником СВЧ-колебаний в предложенной системе на основе ЛБВ с коллектором-генератором служит нестационарный виртуальный катод, формируемый в коллекторерекуператоре со специально предусмотренным широкополосным выводом энергии. Управление режимами колебаний ВК возможно путем изменения тормозящего потенциала на ступенях коллектора.

На рис. 1, *b* представлена схема используемого в нашем эксперименте коллектора-генератора ЛБВ, на которой показаны: 1 — отработанный в пространстве взаимодействия ЛБВ электронный пучок, попадающий из него в область коллектора, 2 — первая секция коллекторарекуператора, на которую подается потенциал $V_1 < V_0$ (V0 — ускоряющий потенциал электронов пучка), 3 вторая секция коллектора-рекуператора с потенциалом *V*₂ < *V*₁, *4* — третья секция коллектора-рекуператора с потенциалом V₃ < V₂, 5 — широкополосный вывод энергии СВЧ-колебаний из коллектора-рекуператора (в рассматриваемой в статье конструкции коллекторагенератора в качестве вывода мощности используется коаксиальная линия, подключенная к диафрагме второй секции 3-секционного коллектора), 6 — схематическое изображение образующегося в коллекторе-генераторе виртуального катода (в зависимости от соотношения потенциалов секций коллектора ВК может возникнуть как во второй, так и в третьей секциях коллекторагенератора).

Рассмотрим кратко принцип действия многофункционального прибора "электронный усилитель (ЛБВ) с коллектором-генератором". Отработанный в ЛБВ электронный пучок с большим разбросом по скоростям (см., например, [13]) попадает в пространство взаимодействия коллектора-генератора. Далее, в коллекторегенераторе отработанный электронный пучок попадает в область тормозящего поля, образованного разностью потенциалов $V_1 - V_3$ ($V_3 \le V_2 \le V_1$), в результате чего в пучке формируется нестационарный ВК [6] (см. также [7], где обсуждаются формирование и нестационарные колебания ВК в пучке с большим разбросом электронов по скоростям, как это имеет место в ЛБВ). Пространственно-временные колебания ВК регистрируются отрезком широкополосной электродинамической системы коллектора-генератора. Характер колебаний изменяется от одночастотных и многочастотных до шумоподобных, в зависимости от соотношения потенциалов V1.2.3 секций коллектора. При этом, как было показано в работе [7], значительный разброс электронов пучка по скоростям, который имеет место за счет группирования и взаимодействия пучка с синхронной электромагнитной волной в ЛБВ [13], позволяет значительно улучшить характеристики СВЧ-сигнала в режиме хаотической генерации, т.е. ширина полосы частот генерируемых колебаний расширяется, а также уменьшается изрезанность спектра мощности хаотического сигнала.

СВЧ-сигнал колебаний ВК, снимаемый из коллекторагенератора, через элемент вывода энергии по цепи связи поступает на вход усилителя (лампы бегущей волны), где происходит усиление сигнала генерируемого коллектором-генератором. Далее полученный усиленный хаотический широкополосный сигнал выводится из комбинированного прибора с выхода ЛБВ в полезную нагрузку. За счет такой схемы имеется возможность значительно увеличить выходную мощность данного комбинированного прибора ЛБВ с коллекторомгенератором по сравнению с низковольтным виркатором при использовании тех же токов пучка и ускоряющих напряжений [5,6,9].

Результаты исследований генерации и усиления хаотических сигналов в комбинированной системе "ЛБВ с коллектором-генератором"

Рассмотрим результаты экспериментального исследования генерации и усиления широкополосного хаотического сигнала в электронно-волновой системе "ЛБВ-усилитель с коллектором-генератором". В качестве исследуемой ЛБВ использовались пакетированные спиральные ЛБВ сантиметрового диапазона длин волн (рабочая полоса частот 1-2 GHz) с трехступенчатым электростатическим коллектором. Основные характеристики ЛБВ следующие: ускоряющее напряжение $V_0 = 2 - 2.5 \,\text{kV}$, ток пучка $J_0 = 100 - 150 \,\text{mA}$. Коэффициент усиления в одночастотном режиме составляет $K_v = 40-45 \, \text{dB}$, выходная мощность $P_{\text{out}} = 40-55 \, \text{W}$, электронный КПД $\eta_e = 22 - 24\%$, технический КПД $\eta_1 = 35-42\%$. Рассматривались ЛБВ с нормальной +6%-ной дисперсией замедляющей системы и ЛБВ с аномальной -4%-ной дисперсией.

Для анализа широкополосных хаотических сигналов, генерируемых в системе, использовался высокочастотный анализатор спектра Agilent ESA E4402B (диапазон частот от 10 kHz до 3 GHz) и ваттметр поглощаемой мощности M3-51. Для анализа также использовались высокодобротные (полоса частот 2–4 MHz) фильтры с записью детектируемого сигнала с помощью ЭПП-09. Это позволяло определить спектральную плотность мощности шума колебаний, генерируемых электронным пучком с виртуальным катодом в коллекторе-генераторе и усиливаемых широкополосной ЛБВ среднего уровня мощности.

На рис. 2 показаны экспериментальные зависимости КПД η генерации и мощности P сигнала, регистрируемого с выхода коллектора-генератора при изменении потенциала V_2 второй секции коллектора при потенциале на третьей секции $V_3 = 0$ и двух различных потенциалах V_1 первой секции (отмечены на рисунках). Отметим, что

b

Рис. 2. Зависимость КПД η (*a*) и мощности *P* (*b*) СВЧ-колебаний в коллекторе-рекуператоре в зависимости от потенциала второй секции коллектора при двух значениях потенциала первой секции.

Рис. 3. Зависимость мощности *P* СВЧ-колебаний при изменении потенциала V_3 третьей секции коллектора-генератора при фиксировании различных тормозящих потенциалов на первой и второй секциях коллектора: $1 - V_1/V_0 = V_2/V_0 = 1$; $2 - V_1/V_0 = 0.7$; $V_2/V_0 = 0.5$; a - для статического режима ЛБВ (без входного сигнала), b - для динамического режима, когда на вход ЛБВ подается СВЧ-сигнал, генерируемый коллектором-генератором.

КПД колебаний в коллекторе-рекуператоре определялся как [14]

$$\eta = \frac{P}{\sum_i I_i V_i}, \quad i = 1, 2, 3,$$

где I_i и V_i — ток и потенциал *i*-й ступени коллекторарекуператора, P — мощность колебаний, регистрируемых на выходе коллектора.

Как видно из рис. 2, a, мощность генерации при этом достигает значения порядка 300 mW в наиболее благоприятном режиме работы. При этом КПД (см. рис. 2, b) подобного коллектора-генератора достигает от 4 до 14% в зависимости от тормозящего потенциала V_2 и различного соотношения потенциалов электродов внутри коллектора-генератора.

Аналогичные зависимости наблюдаются при изменении потенциала V_3 третьей секции коллекторагенератора при фиксировании различных тормозящих потенциалов на первой и второй секциях коллектора. Соответствующие зависимости построены для статического (рис. 3, *a*; случай, когда на вход ЛБВ не подается входной сигнал для усиления — статический режим ЛБВ, который характеризуется отсутствием разброса электронов по скоростям на выходе из замедляющей системы — на входе коллектора-генератора) и динамического режимов (рис. 3, *b*; на вход ЛБВусилителя подается для усиления СВЧ-сигнал, генериру-

Рис. 4. Спектры регистрируемых колебаний в коллекторе-генераторе; a, b — для статического режима работы ЛБВ при потенциалах коллектора $V_1/V_0 = 0.7$, $V_2/V_0 = 0.5$, $V_3/V_0 = 0.45$ и 0.25 соответственно; c, d — для динамического режима работы при $V_1/V_0 = 0.7$, $V_2/V_0 = 0.7$ и 0.6 соответственно.

емый коллектором-генератором, разброс по скоростям электронов достаточно велик). Видно, что с увеличением торможения мощность генерации достигает своего максимума и затем снова уменьшается. Последнее хорошо согласуется с результатами экспериментальных и теоретических исследований низковольтного виркатора [6,7,9].

Соответствующие спектры колебаний в пучке с виртуальным катодом, регистрируемые на выходе коллекторагенератора, в статическом и динамическом режимах работы ЛБВ показаны на рис. 4. Спектры на рис. 4, а, b получены по сигналу, снятому с выхода коллекторагенератора в статическом режиме, на рис. 4, *c*, *d* в динамическом режиме работы ЛБВ. Рис. 4, а и с построены при малых тормозящих потенциалах на ступенях коллектора, рис. 4, b и d — при большом торможении пучка в коллекторе. Видно, что при малом торможении в статическом режиме работы ЛБВ наблюдается генерация близкого к одночастотному сигнала (рис. 4, a). С увеличением торможения электронов в коллекторе или увеличением разброса электронов по скоростям (динамический режим работы ЛБВ) СВЧколебания ВК в коллекторе-генераторе начинают характеризоваться многочастотным хаотическим спектром генерации (рис. 4, *b*-*d*). Однако в динамическом режиме работы ЛБВ, который характеризуется значительным разбросом электронов по скоростям на входе в коллектор-генератор, спектр генерируемого сигнала демонстрирует сплошной спектр генерации в полосе частот $\Delta f > 1$ GHz и существенно меньшую изрезанность N в рабочей полосе частот ($N = P_{\text{max}}/P_{\text{min}}$, где P_{max} и P_{min} — максимальная и минимальные спектральные мощности в рассматриваемой полосе частот генерации). Последнее показывает, что, изменяя тормозящие потенциалы, подаваемые на ступени коллектора, можно управлять не только мощностью генерируемых колебаний, но и их спектральным составом.

Зависимости, представленные на рис. 5, позволяют продемонстрировать преимущества конструкции предложенного многофункционального прибора. На рис. 5 показаны зависимости выходной мощности и КПД (электронного η_e и технического η_T) многофункционального прибора, измеренные по характеристикам, снимаемым с выхода ЛБВ-усилителя с нормальной дисперсией замедляющей системы. Таким образом, на рис. 5 показаны характеристики всего прибора в целом, а не только коллектора-генератора, как на предыдущих рисунках. Видно, что интегральная мощность P_{out} широкополосных хаотических колебаний, регистрируемых в коллекторе-генераторе, усиливается более чем в сто раз, достигая 50 W, что составляет усиление по мощности около 30 dB. При этом технический КПД такого "гибрид-

Рис. 5. Зависимости интегральной выходной мощности усиливаемого сигнала $P_{\text{out}}(a)$, электронного η_e и технического η_T КПД (b) гибридного прибора в зависимости от потенциала V_2/V_0 второй секции коллектора-генератора.

Рис. 6. Зависимости выходной мощности (в относительных единицах) от частоты на выходе ЛБВ для случаев: I — одночастотный усиливаемый входной сигнал $\Delta f/f = 0$, ЛБВ с нормальной +6%-ной дисперсией спиральной замедляющей системы; 2 — одночастотный входной сигнал $\Delta f/f = 0$, ЛБВ с аномальной -4%-ной дисперсией; 3 — широкополосный хаотический входной сигнал (полоса частот входного сигнала $\Delta f/f = 0.5$), ЛБВ с нормальной +6%-ной дисперсией; 4 — широкополосный хаотический входной сигнал (полоса частот $\Delta f/f = 0.5$), ЛБВ с аномальной -4%-ной дисперсией; 5 — широкополосный хаотический входной сигнал (полоса частот $\Delta f/f = 1.5$), ЛБВ с аномальной +6%-ной дисперсией; 6 — широкополосный хаотический входной сигнал (полоса частот $\Delta f/f = 1.5$), ЛБВ с нормальной +6%-ной дисперсией; 6 — широкополосный хаотический входной сигнал (полоса частот $\Delta f/f = 1.5$), ЛБВ с аномальной -4%-ной дисперсией; 6 — широкополосный хаотический входной сигнал (полоса частот $\Delta f/f = 1.5$), ЛБВ с аномальной -4%-ной дисперсией; 6 — широкополосный хаотический входной сигнал (полоса частот $\Delta f/f = 1.5$), ЛБВ с аномальной -4%-ной дисперсией; 6 — широкополосный хаотический входной сигнал (полоса частот $\Delta f/f = 1.5$), ЛБВ с аномальной -4%-ной дисперсией.

ного" прибора увеличивается более чем в два раза — до 30%, а максимальный электронный КПД составляет порядка 25%.

Рассмотрим подробней результаты усиления СВЧ-сигналов с различной полосой частот с помощью ЛБВ-усилителя с нормальной и аномальной дисперсией. Зависимости выходной мощности ЛБВ от частоты сигнала приведены на рис. 6. На рисунке показаны зависимости выходной мощности для различных усиливаемых СВЧсигналов — одночастотных и широкополосных хаотических (с шириной полосы $\Delta f/f < 0.5-1.5$), генерируемых в области коллектора-генератора при различных потенциалах на секциях коллектора. Из рис. 6 видно, что с ростом ширины полосы усиливаемого сигнала выходная мощность быстро падает для ЛБВ как с нормальной, так и аномальной дисперсией. При усилении узкополосных сигналов $\Delta f / f < 1.0$ с точки зрения максимальной интегральной мощности более предпочтительно использовать ЛБВ с нормальной дисперсией (кривые 1, 3, 5 на рис. 6), которая характеризуется большей выходной мощностью на всех частотах в рабочей полосе ЛБВ. Однако при усилении широкополосных хаотических сигналов $\Delta f/f > 1.0$ использование спиральной замедляющей системы с аномальной дисперсией позволяет получить более широкую полосу усиливаемых частот выходного сигнала (ср. кривые 5 и 6, построенные при ширине полосы $\Delta f/f = 1.5$ входного, генерируемого в коллекторе-генераторе, сигнала). В заключение заметим, что вопрос усиления широкополосных хаотических сигналов со сплошным спектром в усилителе бегущей волны (ЛБВ) представляет важный самостоятельный интерес и требует дальнейшего теоретического и экспериментального анализа, поэтому здесь ограничимся только приведением предварительных экспериментальных данных по этому вопросу.

Выводы

В работе предложен и экспериментально исследован новый "гибридный" многофункциональный электронноволновой прибор СВЧ-диапазона на основе лампы бегущей волны с коллектором-генератором. Данный прибор предназначен для получения широкополосных хаотических СВЧ-сигналов сантиметрового и миллиметрового диапазона длин волн среднего и большого уровня мощности. Для генерации широкополосных хаотических колебаний в приборе используется принцип низковольтного виркатора [6,7], т.е. генерация маломощных колебаний в пучке с нестационарным виртуальным катодом, формируемым в статическом тормозящем поле. Нестационарный виртуальный катод в новом гибридном приборе формируется в коллекторе-рекуператоре ЛБВ. Сигнал, генерируемый ВК, снимается с помощью широкополосного элемента связи и подается на вход ЛБВ, где и усиливается до среднего уровня мощности. К преимуществам нового прибора можно отнести следующее.

1. Предложенный гибридный прибор сочетает достоинства низковольтного виркатора в плане получения сверхширокополосных хаотических сигналов в СВЧдиапазоне и большую выходную мощность, характеризующую лампу бегущей волны. При этом принципиально широкая рабочая полоса усиливаемых частот в ЛБВ позволяет эффективно усиливать широкополосный хаотический СВЧ-сигнал, генерируемый с помощью колебаний виртуального катода в коллекторе. Одновременно в предлагаемой схеме нет необходимости формировать отдельный электронный пучок для создания нестационарного ВК в низковольтном виркаторе, который формируется в отработанном в ЛБВ электронном потоке, поступающем в коллектор-генератор. Последнее позволяет создать компактную многофункциональную систему с одним электронным пучком. КПД всей системы определяется в первую очередь КПД ЛБВ и может достигать 30-50%.

2. Характеристики хаотической генерации в предложенной схеме в плане увеличения ширины полосы частот и уменьшения изрезанности спектра могут быть более оптимальными по сравнению с ранее предложенным низковольтным виркатором, так как в динамическом режиме работы ЛБВ разброс скоростей электронов на входе в коллектор-генератор может быть весьма значителен. Как показано в работе [7], это позволяет значительно улучшить спектральные характеристики широкополосной хаотической генерации в системе с ВК.

3. Ширина и изрезанность (неравномерность) спектра генерации предложенной системы на основе ЛБВ с коллектором-генератором в отличие от ЛБВ-генератора с обратной связью (шумотрона) ограничены только шириной полосы генерируемых частот в пучке с ВК (который достигает при оптимальных условиях двух октав) и шириной полосы усиления ЛБВ и никак не определяются фазовыми и амплитудными условиями в цепи обратной связи благодаря ее отсутствию. Элемент связи между коллектором-генератором и входом ЛБВ фактически не является элементом обратной связи, обеспечивая только подачу маломощного хаотического сигнала, генерируемого ВК, на вход усилителя.

В заключение отметим, что существует возможность значительно увеличить выходную мощность широкополосного хаотического сигнала в такой схеме путем использования более мощных ЛБВ-усилителей, в частности ЛБВ с электродинамическими системами типа цепочек связанных резонаторов [3].

Авторы выражают благодарность чл.-корр. РАН, проф. Д.И. Трубецкову за полезные обсуждения данной работы.

Работа поддержана Российским фондом фундаментальных исследований (проекты № 07-02-12071 и 06-02-72007), а также Президентской программой поддержки Ведущих научных школ РФ (проект НШ-355.2008.2). А.Е. Храмов благодарит за поддержку Президентскую программу поддержки молодых докторов наук (проект МД-1884.2007.2) и фонд некоммерческих программ "Династия".

Список литературы

- [1] Рухадзе А.А., Столбецов С.Д., Тараканов В.П. // РЭ. 1992. Т. 37. № 3. С. 385.
- [2] Дубинов А.Е., Селемир В.Д. // РЭ. 2002. Т. 47. № 6. С. 575.
- [3] Трубецков Д.И., Храмов А.Е. Лекции по сверхвысокочастотной электронике для физиков. В 2-х т. М.: Физматлит, 2003, 2004.

- [4] Дубинов А.Е., Ефимова И.А., Корнилова И.Ю., Сайков С.К., Селемир В.Д., Тараканов В.П. // ФЭЧАЯ. 2004. Т. 35. № 2. С. 462.
- [5] Егоров Е.Н., Калинин Ю.А., Левин Ю.И., Трубецков Д.И., Храмов А.Е. // Изв. РАН. Сер. физич. 2005. Т. 69. № 12. С. 1724.
- [6] Калинин Ю.А., Короновский А.А., Храмов А.Е. и др. // Физика плазмы. 2005. Т. 31. № 11. С. 1009–1025.
- [7] Калинин Ю.А., Храмов А.Е. // ЖТФ. 2006. Т. 76. Вып. 5. С. 25–34.
- [8] Филатов Р.А., Калинин Ю.А., Храмов А.Е. // Письма в ЖТФ. 2006. Т. 32. Вып. 11. С. 61–67.
- [9] Егоров Е.Н., Калинин Ю.А., Короновский А.А., Храмов А.Е., Морозов М.Ю. // Письма в ЖТФ. 2006. Т. 32. Вып. 9. С. 71–78.
- [10] Кислов В.Я., Мясин Е.А., Залогин Е.Н. // РЭ. 1979. Т. 24. № 6. С. 1118.
- [11] Кислов В.Я., Мясин Е.А., Залогин Н.Н. // РЭ. 1980. Т. 25. № 10. С. 2160.
- [12] *Кузнецов С.П. //* Изв. вузов. Радиофизика. 1982. Т. 25. С. 1410.
- [13] Калинин Ю.А., Панин А.Ф., Украинская Т.Н. // Электронная техника. 1976. Сер. 1 (2). С. 111.
- [14] Лебедев И.В. Техника и приборы СВЧ. Высш. шк. 1972.