01;05 Самоподобные магнитные структуры и "гигантский" крип магнитного потока

© И.Б. Краснюк

Донецкий физико-технический институт им. А.А. Галкина НАН Украины, 83114 Донецк, Украина

(Поступило в Редакцию 30 марта 2006 г.)

Рассмотрен процесс проникновения магнитного потока в высокотемпературный сверхпроводник второго рода, который занимает полупространство x > 0. На границе сверхпроводника амплитуда магнитного поля возрастает по закону $b(0,t) = b_0(1+t)^m$ в безразмерных переменных, где m > 0. Скорость проникновения вихрей определяется в режиме термоактивационного движения магнитного потока: $v = v_0 \exp\{-(U_0/T)(1 - b\partial b/\partial x)\}$, где U_0 — эффективная энергия пиннинга, T — тепловая энергия возбужденных вихревых нитей (или их связок). Рассмотрен "гигантский" крип магнитного потока, когда $U_0/T \ll 1$. Получено модельное уравнение Навье-Стокса с нелинейной "вязкостью" $\nu \propto U_0/T$ и скоростью конвекции $v_f \propto (1 - U_0/T)$. Показано, что при $j \to 0$ (j — плотность тока), движение вихрей является диффузионным. При конечных плотностях $0 < j < j_c$ возникает конвекция магнитного потока, которая приводит к увеличению амплитуды и глубины проникновения магнитного поля в сверхпроводник. Показано, что решение модельного уравнения в каждый момент времени является финитным, т.е. магнитный поток проникает на конечную глубину. Определены глубина проникновения $x_{\text{eff}}^{A}(t) \propto (1+t)^{(1+m/2)/2}$ магнитного поля в сверхпроводник и скорость движения фронта волны, которая возрастает линейно по показателю т, степенным образом по температуре Т и уменьшается с увеличением эффективного барьера пиннинга. Отличительной особенностью решений является их самоподобность, т.е. возникающие при "гигантском" крипе диссипативные магнитные структуры являются инвариантными относительно преобразований $b(x, t) = \beta^m b(t/\beta, x/\beta^{(1+m/2)/2}),$ где $\beta > 0.$

PACS: 74.25.Ha

Введение

В настоящей работе рассматривается процесс проникновения магнитного поля в высокотемпературный сверхпроводник второго рода, который занимает полупространство $x \ge 0$. Параллельно поверхности сверхпроводника приложено внешнее магнитное поле, проникающее в сверхпроводник со скоростью

$$\frac{\partial b}{\partial t}(0,t) = \lambda, \qquad \lambda > 0,$$
 (1)

где $b = B/B_{c_2}$, B_{c_2} — второе критическое поле. При $\lambda = 1$ граничное условие (1) рассматривалось при крипе потока в [1] для низкотемпературных сверхпроводников. При $\lambda = 0$ аналогичная задача при термоактивационном движении магнитного потока в режиме вихревого стекла рассматривалась в [2] для высокотемпературных (оксидных) сверхпроводников.

Можно проинтегрировать граничное условие (1) и показать, что оно равносильно линейному возрастанию магнитного поля со временем, что отвечает реальному эксперименту [3]. Оказывается, что при "гигантском" крипе амплитуда магнитного поля на границе сверхпроводника не может возрастать быстрее, чем \sqrt{t} . Это условие устойчивости магнитного потока: под устойчивостью мы понимаем требование, когда значение градиента магнитной индукции таково, что 0 < j < 1, где $j = J/J_c$, $J_c -$ критический ток.

Утверждения данной работы качественно совпадают с результатами [1,2], но получены в режиме термоактива-

ционного движения потока при "гигантском" крипе. Требование более слабого возрастания по времени магнитного поля на границе сверхпроводника объясняется тем, что в низкотемпературных сверхпроводниках скорость движения вихрей по крайней мере на два порядка меньше, чем соответствующие скорости при "гигантском" крипе в высокотемпературных сверхпроводниках.

Мы исследуем модельную задачу в возрастающем на границе внешним магнитным полем с учетом "гигантского" крипа, что имеет место при $U_0/k_BT \ll 1$ ([2], с. 1148), где U_0 — термоактивационный барьер, T — температура, k_B — постоянная Стефана—Больцмана. (В дальнейшем будем использовать энергетическую систему единиц $U \rightarrow U/k_B$.)

В этом случае скоростью движения вихрей

$$v = v_0 e^{-U_0/T}$$
(2)

при конвективном члене в диффузионном уравнении движения потока пренебрегать, как это делается для обычных сверхпроводников [4], нельзя. В соотношении (2)

$$U_0 = \lim_{j \to 0} U(j, b), \tag{3}$$

причем предел (3) имеет место равномерно при всех 0 < b < 1 для модели Кима-Андерсона [5,6].

В результате в соответствующем модельном уравнении следует учитывать конвекцию вихрей. Конвекция магнитного потока происходит со скоростью

 $v_f \propto (1 - U_0/T)$. Таким образом, учет "гигантского" крипа приводит к тому, что вихри движутся в высокотемпературном сверхпроводнике не только диффузионным образом как в низкотемпературных сверхпроводниках, но и с помощью конвективного движения. При этом формально постановка задачи корректна при выполнении неравенства $U_0 < T$.

Рассматривается режим термоактивационного движения магнитного потока в потенциале Кима-Андерсона [7] при условии, что выполняется требование существования "гигантского" крипа магнитного потока [2], что формально обеспечивается неравенством $U_0/T \ll 1$. Система уравнений Максвелла, моделирующая проникновением потока в сверхпроводник в режиме термоактивационного движения вихрей (уравнение (9)), при "гигантском" крипе (уравнение (12)), допускает редукцию к уравнению гидродинамического типа с нелинейной "вязкостью". Это означает, что "вязкость" зависит от амплитуды магнитного поля. Задача с граничным условием (1) (или его модификацией) имеет монотонно убывающие решения, которые проникают в сверхпроводник с конечной скоростью (см. рисунок). Краевая задача допускает автомодельные решения, которые удовлетворяют граничной задаче для обыкновенного дифференциального уравнения (уравнение (23)). Определяются положение фронта магнитного потока в каждый момент времени t > 0 и скорость проникновения магнитного поля в сверхпроводник.

Автомодельные решения типа бегущих волн для уравнения пористой среды с монотонно возрастающими по времени граничными условиями впервые были получены в [8]. Решения являются устойчивыми относительно возмущений начальных функций, краевых условий и нелинейного коэффициента диффузии, что подтверждает численный эксперимент [9,10]. Следствием математической устойчивости таких решений является из реализуемость на эксперименте [2,3].

Объясняется это тем, что решения удовлетворяют условию

$$v(x,t) \leq V(x,t),$$

где v — общее решение задачи, а V — решение типа бегущей волны. При их эволюции сохраняется свойство выпуклости решений. Эти фундаментальные результаты доказаны в монографии [11].

Постановка задачи

Рассмотрим задачу о проникновении магнитного поля в полупространство x > 0 для высокотемпературных сверхпроводников в параллельной геометрии **B** || *z*, **E**, **j** || *y* и **v** || *x*, где **B** — индукция магнитного поля, **E** — электрическое поле, **j** — транспортный ток, **v** — скорость движения вихрей. (Поскольку каждая из величин имеет только одну проекцию на соответствующую ось, то в дальнейшем векторные обозначения будем опускать.)

Рассмотрим классическую модель Кима–Андерсона для высокотемпературных сверхпроводников [2]. Тогда вихри движутся в эффективном потенциале пиннинга [7]

$$U = U_0 - |F|Vd, \tag{4}$$

где U_0 — энергия активации в отсутствие градиента потока, V — активационный объем, d — характерный линейный масштаб потенциала пиннинга. (В общем случае, как показывает эксперимент [2], эффективная энергия U_0 может зависеть от температуры, плотности тока и магнитного поля.)

Согласно модели критического состояния, вихревые нити (при T = 0) могут двигаться в жестком сверхпроводнике при условии, что сила Лоренца $F > F_p$, где F_p — сила пиннинга. В то же время при классическом крипе вихревые нити могут преодолевать барьер пиннинга U_0 даже, если $F < F_p$, при T = 0 с помощью тепловых флуктуаций [7].

Если зависимостью от магнитного поля в (4) пренебречь, то для модели критического состояния определение (4) допускает редукцию к модели слабого пиннинга в случайном (усредненном) потенциале пиннинга [2]

$$U(j \to j_c) = U_c \left[1 - \frac{j}{j_{c_0}} \right]^{\mu}, \qquad \mu > 0,$$
 (5)

где U_c — энергия активации для связки вихревых нитей в некотором элементарном объеме [2], j_{c_0} критический ток при T = 0. Параметр μ отвечает за энергию взаимодействия вихрей. При $\mu = 1$ мы имеем модель Андерсона [7]. Если $j_{c_0} \sim 1/B$, то из (5) вытекает классическая модель (4). (Плотность критического тока j_c меньше значения j_{c_0} , которое она имела бы в отсутствие тепловой активации.)

Функция |F|Vd в соотношении (4) является убывающей по |F| и определяется соотношением

$$F = -\frac{c}{4\pi} B \frac{\partial B}{\partial x},\tag{6}$$

где мы использовали определение силы Лоренца и уравнение

$$j = -\frac{c}{4\pi} \frac{\partial B}{\partial x}.$$
 (7)

Из (6), (7) и (4) вытекает соотношение

$$U = U_0 \left[1 - j_c^0 B_{c_2} k \left| b \frac{\partial b}{\partial x} \right| \frac{Vd}{U_0} \right], \tag{8}$$

где $k = cB_{c_2}/(\lambda j_{c_0})$, c — скорость света, λ — лондоновская глубина проникновения магнитного поля; j_c^0 —

Журнал технической физики, 2007, том 77, вып. 5

нормирующий множитель (в качестве которого можно принять $j_c^0 = j_{c_0}$).

Поскольку плотность нормирующей силы равна $\alpha = j_c^0 B_{c_2}$, то сила, действующая на связку потока с поперечным сечением L^2 и длиной L, равна $F_c = \alpha L^3$. Следовательно, работа по перемещению связки вихревых нитей в объеме $V = L^3$ на расстояние d равна $W_c = j_c B_{c_2} V d$ ([4], с. 192).

Введем обозначение $k \to k W_c/U_0$. В результате соотношение для энергии U можно записать в виде

$$U = U_0 \left[1 - k \left| b \frac{\partial b}{\partial x} \right| \right].$$

Вероятность скачков потока вперед определим из простого соотношения Аррениуса

$$\omega = \omega_0 e^{-(U/T)(1 - j/j_{c_0})},$$
(9)

где ω_0 — характеристическая частота вихрей. Формула (9) определяет так называемое термоактивационное движение магнитного потока в критическом состоянии [8], которое, в отличие от классического крипа, не учитывает плотности вероятности скачков потока назад.

Для модели классического крипа вместо формулы (9) следует рассматривать соотношение

$$v = v_0 e^{-U_0/T} \sinh\left(\frac{W}{T}\right),$$

где W = |F|Vd — работа, затрачиваемая против силы пиннинга.

Тогда из (8) и (9) вытекает, что скорость термоактивационного движения вихрей можно определить следующим образом:

$$v = v_0 \exp\left\{-\frac{U_0}{T}\left(1 - k\left|b\frac{\partial b}{\partial x}\right|\right)\right\},\$$

где $v_0 = d_p f_0$; d_p — характерный масштаб усреднения. Здесь $d_p = \xi$, где ξ — корреляционная длина, для отдельной вихревой нити при b < 0.2 и $d_p = a_0/2$ для связки вихревых нитей при b > 0.2, где $a_0 = a_0(B)$ есть шаг вихревой решетки [12]. Последнее соотношение определяет термоактивационное движение магнитного потока в эффективном потенциале пиннинга, зависящем от индукции магнитного поля.

При "гигантском" крипе мы можем воспользоваться нулевым приближением $U_0/T \ll 1$ для скорости движения вихрей:

$$v = v_0 \left(1 - \frac{U_0}{T} \left(1 + kb \frac{\partial b}{\partial x} \right) \right), \tag{10}$$

где $|b\partial b/\partial x| = -b\partial b/\partial x$, поскольку рассматриваются лишь монотонно убывающие по *x* решения. В частности, равенство (10) имеет место в окрестности критической температуры $T < T_c$ по непрерывности, поскольку $U(T_c) = 0$.

Движение вихревых нитей со скоростью v приводит к возникновению электрического поля

$$\mathbf{E} = [\mathbf{B}, \mathbf{v}]/c, \tag{11}$$

где [,] — векторное произведение.

Уравнение

$$\frac{1}{c}\frac{\partial B}{\partial t} = -\frac{\partial E}{\partial x}$$

с учетом соотношений (10) и (11) можно записать в виде

$$\frac{\partial b}{\partial t} + D_h (1 - \sigma) \frac{\partial b}{\partial t} = D_h k \sigma \frac{\partial}{\partial x} \left(b^2 \left| \frac{\partial b}{\partial x} \right| \right), \qquad (12)$$

где $\sigma = U_0/T$; $t \to t_h t$, $x \to \lambda x$; t_h — характерный масштаб изменения магнитного поля; коэффициент диффузии $D_h = t_h v_0/\lambda$, где v_0 — скорость вихрей в отсутствие тепловой активации. (Не ограничивая общности изложения в дальнейшем положим $D_h = 1$, что отвечает замене $t \to D_h t$.)

Если рассматривать отклик сверхпроводника на внешние возмущения при малых плотностях тока $j \rightarrow 0$, что также представляет теоретический интерес ([2], с. 1148), то конвективным членом в уравнении (12) можно пренебречь. В результате получим известное уравнение пористой среды, решения которого известны для так называемых степенных граничных режимов [8].

При конечных $0 < j < j_c$ для определения качественного поведения решений мы можем воспользоваться теоремой сравнения из ([8], с. 20), которая в приложении к уравнению (12) приводит к следующему утверждению: пусть выполняются условия

$$b_{-}(x,0) \le b_{0}(x) \le b_{+}(x,0)$$

И

$$b_{-}(0,t) \le b_{1}(0,t) \le b_{+}(0,t)$$

где *b*₋ — решение уравнения пористой среды (без конвекции), а *b*₊ — решение уравнения (12) с конвекцией.

Пусть выполняются неравенства

$$\partial b_{+}/\partial t = B(b_{+}), \qquad \partial b_{-}/\partial t \leq B(b_{0}).$$

где оператор

$$B(b) = k\sigma \frac{\partial}{\partial x} \left(b^2 \frac{\partial b}{\partial x} \right) - (1 - \sigma) \frac{\partial b}{\partial x}$$

где $\sigma = U_0/T$, тогда

$$b_{-} \leq b \leq b_{+}$$

всюду в области $x \ge 0, t > 0$.

В результате мы получаем, что учет конвекции в уравнении (12) приводит к увеличению амплитуды решения (и, следовательно, глубины проникновения магнитного поля) при заданном барьере пиннинга, что имеет простой физический смысл, поскольку с увеличением плотности тока увеличивается соответственно действующая на вихри сила Лоренца. Из уравнения (9) можно определить критическую плотность тока

$$j_{c} = j_{c_{0}} \left[1 - (T/U_{0}) \ln(\omega_{0}/\omega) \right].$$
(13)

Вследствие того что вклад потока в (13) пропорционален T/U_0 , в материалах с низкой энергией пиннинга и высокой критической температурой T_c может наблюдаться "гигантский" крип, на несколько порядков превосходящий крип в обычных сверхпроводниках второго рода с очень сильным пиннингом. Известно, что из-за высокой температуры и низких барьеров для пиннинга крип в этих материалах может осуществляться со значительно большей скоростью, чем в обычных сверхпроводниках.

Если в обычных сверхпроводниках $T/U_c \sim 10^{-3}$, то для оксидных сверхпроводников эта величина на несколько порядков выше, что является следствием малой длины когерентности и высокой анизотропии. Типичное значение $U_0 \sim 0.02$, что на один или два порядка меньше значений для обычных низкотемпературных сверхпроводников.

Конечная скорость распространения возмущений при "гигантском" крипе магнитного потока

Введем обозначение $\sigma = U_0/T$ и рассмотрим уравнение (12). Построим его частное автомодельное решение типа бегущей волны:

$$b(x,t) = f(\xi), \qquad \xi = x - \lambda t, \tag{14}$$

где $\lambda > 0$ — скорость движения магнитной волны. Подставив выражение (14) в (12), получим для $f(\xi) > 0$

$$k\sigma \frac{d}{d\xi} \left(f^2 \frac{df}{d\xi} \right) + \lambda \frac{df}{d\xi} - (1 - \sigma) \frac{df}{d\xi} = 0$$

и, что то же самое,

$$k\sigma f^2 \frac{df}{d\xi} + \Lambda f = C, \qquad (15)$$

где $\Lambda = \lambda - 1 + \sigma$, причем $\Lambda > 0$; C = 0 (чему это соответствует, будет ясно из дальнейшего). Интегрирование этого уравнения приводит к соотношению

$$f^{2}(\xi) - f^{2}(\xi_{0}) = \alpha(\xi - \xi_{0}),$$

где $\alpha = \Lambda/k\sigma$.

Пусть $\xi_0 = 0$; тогда продолжим f в область $\xi > 0$ тождественным нулем ([8], с. 31). Непрерывность магнитного потока $f^2 df/d\xi$, как следует из (15), при C = 0 при этом не нарушается. В результате получаем следующее автомодельное решение:

$$b(x,t) = \sqrt{b_0 + \alpha(\lambda t - x)_+},$$
 (16)

где $b_0 = f^2(0)$ — значение магнитного поля при t = 0в точке x = 0. Если сверхпроводник находится в смешанном состоянии, то можно положить $b_0 = (H_{c_1}/H_{c_2})^2$, поскольку магнитный поток начинает проникать в сверхпроводник при $B > H_{c_1}$. Соответствующее решение (16) изображено на рисунке.

Это решение первой краевой задачи для уравнения (12) с условиями

$$b(x, 0) = b_0, \qquad x > 0;$$

 $b(0, t) = \sqrt{b_0 + \lambda \Lambda t}, \quad 0 < t < t_0.$ (17)

Таким образом, задача (12), (17) имеет решение с всюду непрерывным магнитным потоком, которое при каждом $t \in (0, t_0)$ является финитным

$$b(x, t) = 0,$$
 $x > \lambda t,$ $0 < t < t_0.$

Поэтому уравнение (12) описывает процессы с конечной скоростью распространения возмущений. В точках фронта волны $x_f(t) = \lambda t$ решение обращается в нуль. В силу принципа сравнения [8] решения, которые возрастают быстрее \sqrt{t} , имеют структуру, изображенную на рисунке. При этом уменьшаются лишь их амплитуда и глубина проникновения магнитного поля в каждый момент времени t > 0.

Автомодельные диссипативные магнитные структуры

На эксперименте обычно реализуется линейное возрастание магнитного поля на границе сверхпроводника на некотором начальном интервале времени, а затем магнитное поле полагается постоянным [3]. Представляют интерес и другие режимы возрастания внешнего магнитного поля. Ниже мы ограничимся исследованием краевой задачи со степенным граничным режимом.

Тогда уравнение (12) имеет автомодельные решения следующего вида:

$$b(x,t) = t^{\alpha} v(\eta, t), \qquad \eta = x t^{-\delta}, \tag{18}$$

где $v(\eta, t)$ ограничена при $t \to \infty, \eta = 0(1)$. Подстановка соотношения (18) в уравнение (12) приводит к уравнению [13]:

$$\alpha t^{2(\delta-\alpha)-1}v + \alpha t^{2(\delta-\alpha)}\frac{\partial v}{\partial t} - \delta\eta t^{2(\delta-\alpha)-1}\frac{\partial v}{\partial\eta}$$
$$= k\sigma \frac{\partial}{\partial\eta} \left(v^2\frac{\partial v}{\partial\eta}\right). \quad (19)$$

Выберем в уравнении (19) $\delta = \alpha$. Тогда при $t \to \infty$ его решения будут близки к решениям уравнения пористой среды

$$\frac{\partial v}{\partial t} = k\sigma \left(v^2 \frac{\partial v}{\partial \eta} \right). \tag{20}$$

³ Журнал технической физики, 2007, том 77, вып. 5

Выполним замену $t \to (k\sigma)t$ и запишем уравнение (20) в виде

$$\frac{\partial v}{\partial t} = \left(v^2 \frac{\partial v}{\partial \eta}\right). \tag{21}$$

Пусть задан граничный режим

$$v(0, t) = (1+t)^m, \quad t > 0; \quad m > 0.$$

Тогда уравнение (21) имеет автомодельное решение следующего вида:

$$v(x,t) = (1+t)^m \theta_A(\hat{\xi}), \quad \hat{\xi} = x/(1+t)^{(1+m\sigma/2)}.$$
 (22)

Функция $\theta_A \ge 0$ в (22) удовлетворяет следующему обыкновенному дифференциальному уравнению, которое получается после подстановки выражения (22) в (21):

$$(\theta_A \theta_A')' + \frac{1+2m}{2} \theta_A' \xi - m \theta_A = 0, \quad \hat{\xi} > 0, \qquad (23)$$

причем должны быть выполнены краевые условия

$$\theta_A(0) = 1, \qquad \theta_A(\infty).$$
 (24)

При m = 1/2 задача (23), (24) имеет очевидное обобщенное решение

$$\theta_A(\hat{\xi}) = \sqrt{(1 - \sqrt{2}\hat{\xi})_+}.$$
(25)

В этом случае

$$v_A = (1+t)^{1/2} \theta_A(\hat{\xi}), \quad \hat{\xi} = x/(1+t),$$

и, следовательно,

$$b(\hat{\xi},t) = t^{\alpha}(1+t)^{1/2}\theta_A(\hat{\xi}), \quad \alpha > 0.$$
 (26)

Автомодельное решение (25) есть не что иное, как бегущая волна. Поведение решений (26) качественно совпадает с решениями типа простой бегущей волны по переменной $\xi = x - \lambda t$, которые рассматривались ранее. Данные примеры показывают, что разные граничные режимы порождают разные пространственно-временные диссипативные магнитные структуры.

Глубина проникновения магнитный волны, описываемой автомодельным решением (25), зависит от времени:

$$x_{\rm eff}^A(t) = \xi_{\rm eff} (1+t)^{(1+m/2)/2},$$
 (27)

причем $\theta_A(\xi_{\text{eff}}) = \theta_A(0) = 1/2$. Схематически эволюция автомодельного процесса проникновения магнитного поля в сверхпроводник изображена на рисунке. Траектория движения полуширины магнитной волны обозначена штриховой линией.

Из (27) естественно определить скорость проникновения магнитной волны в сверхпроводник

$$v_f^A(t) = \frac{\hat{\xi}_f}{2} \frac{T}{kU_0} \left(1 + \frac{m}{2}\right) \left(1 + \frac{T}{kU_0}t\right)^{1/2(m/2-1)}.$$
 (28)

Соотношение (28) показывает, что при "гигантском" крипе мы действительно можем ограничиться исследованием асимптотики $\bar{t} \to \infty$, где $\bar{t} = k\sigma t$ стремится к нулю при $U_0 \to 0$. Физический смысл формулы (29) достаточно очевиден: с увеличением скорости накачки m > 0 внешним магнитным полем скорость проникновения поля v_f^A естественно возрастает в точном соответствии с принципом максимума [8]. С увеличением барьера пиннинга (увеличением тепловой энергии T) скорость v_f^A уменьшается. Наконец, при $T \to T_c$ скорость $v_t^A(t) \to \infty$ при всех t > 0.

Список литературы

- [1] Романовский В.Р. // ЖТФ. 2000. Т. 70. Вып. 12. С. 47-57.
- Blatter G., Feigel'man M.V. // Phys. Rev. B. 1993. Vol. 48.
 N 9. P. 6477–6487.
- [3] Gurevich A., Kupfer H. // Phys. Rev. B. 1993. Vol. 48. N 9. P. 6477–6487.
- [4] Тинкхам М. Введение в сверхпроводимость. М.: Атомиздат, 1980. 310 с.
- [5] Anderson P.W., Kim Y.B. // Rev. Mod. Phys. 1964. Vol. 36. P. 39.
- [6] Anderson P.W. // Phys. Rev. Lett. 1962. N 9. P. 309-317.
- [7] Beasley M.R., Labush R., Webb W.W. // Phys. Rev. 1969.
 Vol. 181. P. 682–700.
- [8] Самарский А.А., Галактионов В.А., Курдюмов С.П., Михайлов А.П. Режимы с обостроением в задачах для квазилинейных параболических уравнений. М.: Наука, 1987. 480 с.
- [9] Краснюк И.Б., Медведев Ю.В. // Письма в ЖТФ. 2005. Т. 31. Вып. 10. С. 40–50.
- [10] Медведев Ю.В., Краснюк И.Б. // ФНТ. 2005. Т. 31. № 12. С. 1366–1370.
- [11] Galaktionov V.A. // Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications. Boca Raton–London–New York–Washington: D.C. 2005. 360 p.
- [12] Fisher K.H., Nattermann T. // Phys. Rev. B. 1991. Vol. 43.
 N 13. P. 10372–10382.
- [13] Grundy R.E. // IMA J. Appl. Math. 1983. Vol. 31. P. 121-137.