02;03;07 Инициирование горения метано-воздушной смеси в сверхзвуковом потоке за ударной волной при возбуждении молекул О₂ лазерным излучением

© А.М. Старик, Н.С. Титова

Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова", 111116 Москва, Россия e-mail: star@ciam.ru

(Поступило в Редакцию 8 января 2004 г.)

Анализируется возможность инициирования детонации в сверхзвуковом потоке смеси CH₄ + воздух за фронтом наклонной ударной волны при воздействии излучения с длиной волны $\lambda_l = 1.268 \,\mu$ m и 762 nm. Показано, что воздействие этого излучения приводит к возбуждению молекул O₂ в состояния $a^1\Delta_g$ и $b^1\Sigma_g^+$, что интенсифицирует цепной механизм горения смесей CH₄/O₂ (воздух). Даже при небольшом значении поглощенной одной молекулой O₂ энергии лазерного излучения ~ 0.05–0.1 eV удается реализовать детонационное горение в такой плохо воспламеняемой смеси, как CH₄/воздух, на расстояния всего 1 m от фронта первичной ударной волны при относительно небольших значениях температуры за фронтом (~ 1100 K) и атмосферном давлении.

Введение

Анализу особенностей детонационного горения различных смесей уделяется в последнее время значительное внимание [1–6]. Обусловлено это не только возможностью изучения кинетики горения в достаточно "чистых" с газодинамической точки зрения условиях, но и перспективой создания гиперзвуковых прямоточных воздушно-реактивных двигателей с детонационной схемой горения и пульсирующих детонационных двигателей [7–9]. Ключевым вопросом при реализации детонационного горения в сверхзвуковом потоке является уменьшение длины зоны индукции, величина которой при температурах за фронтом ударной волны $T_1 < 850$ К даже для водородо-воздушных смесей слишком велика (> 25 m).

Ранее было показано, что предварительное возбуждение молекулярных колебаний H_2 и N_2 [10] или молекул O_2 в электронное состояние $a^1\Delta_g$ [11] позволяет даже при невысоких температурах за фронтом $T_1 = 600$ К получить детонационную волну в сверхзвуковом потоке смеси H_2/O_2 на расстояниях ~ 1 m от фронта первичной ударной волны. Обусловлено это интенсификацией цепного механизма горения. Поскольку молекулярный кислород является активным окислителем не только для H_2 , но и для различных углеводородов, в частности для метана, то представляет интерес определить, как возбуждение молекул O_2 в состояние $a^1\Delta_g$ или $b^1\Sigma_g^+$ повлияет на изменение длины зоны индукции при горении в сверхзвуковом потоке смесей CH_4/O_2 (воздух), индуцированном наклонной ударной волной.

Одним из методов получения возбужденных молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ является облучение реагирующей смеси лазерным излучением с длиной волны $\lambda_I = 1.268\,\mu\text{m}$ и 762 nm соответственно. Недавно в [12] было показано, что воздействие лазерного излучения с $\lambda_I = 762 \text{ nm}$ на сверхзвуковой поток стехиометрической смеси H_2+O_2 перед фронтом наклонной ударной волны позволяет реализовать детонационное горение на расстояниях менее 1 m от фронта даже при небольших значениях потока энергии лазерного излучения (~ 1 J/cm²). Следует отметить, что ранее предлагалось инициировать детонацию в сверхзвуковом потоке за счет теплового действия лазерного излучения [13]. Однако эффективность этого способа, как будет показано ниже, невелика.

Целью данной работы является анализ кинетических механизмов, приводящих к инициированию горения в сверхзвуковом потоке смеси CH_4/O_2 (воздух) при возбуждении молекул O_2 излучением с $\lambda_I = 1.268 \, \mu m$ и 762 nm.

Основные допущения и постановка задачи

Рассмотрим схему течения со стационарной ударной волной, показанную на рис. 1. Здесь на однородную смесь СН₄ + воздух, движущуюся со сверхзвуковой скоростью, на интервале длиной δ перед ударной волной действует излучение постоянной интенсивности I_0 , частота которого v_I резонансна частоте связанно-связанного электронного перехода молекулы $O_2 - m(e', v', j', K') \rightarrow n(e'', v'', j'', K'')$, где $e' = X^3 \Sigma_g^-$, $e'' = a^1 \Delta_g$ или $b^1 \Sigma_g^+$, v' и v'' — колебательные, а j', K' и j'', K'' — вращательные квантовые числа в состояниях e' и e'' соответственно. Угол наклона фронта к вектору скорости u_0 невозмущенного потока $\beta \leq 30^\circ$. В этом случае скорость газа за фронтом остается сверхзвуковой.

Рис. 1. Схема течения при инициировании горения в сверхзвуковом потоке лазерным излучением. *1* — зона индукции, *2* лазерное излучение, *3* — фронт горения, *4* — фронт ударной волны.

Будем рассматривать электронно-возбужденные молекулы $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ как отдельные химические компоненты с соответствующей энтальпией образования и полагать, что между колебательными, вращательными и поступательными степенями свободы молекул смеси существует термодинамическое равновесие, которое не нарушается при индуцированных излучением переходах и химических реакциях. Газ будем считать невязким и нетеплопроводным. Пусть $\delta \ll L_v$, где L_v — длина поглощения лазерного излучения. При сделанных допущениях систему уравнений, описывающую физикохимические процессы, как в зоне воздействия излучения, так и за фронтом ударной волны можно представить в виде

$$u\frac{dN_i}{dx} = Q_{Ii} + Q_{ci} + Q_{si},\tag{1}$$

$$u\frac{du}{dx} + \frac{1}{\rho}\frac{dP}{dx} = 0,$$
 (2)

$$\begin{aligned} \frac{dH}{dx} + u \, \frac{du}{dx} &= \frac{k_{\nu}I_{0}}{\rho u}, \\ H &= \sum_{i=1}^{M} \frac{h_{0i}}{\mu} \, \gamma_{i} + C_{p}T, \\ C_{p} &= \frac{R}{\mu} \left(\frac{5}{2} + \sum_{i=1}^{S} C_{R}^{i} \gamma_{i} + \sum_{i=1}^{S} C_{\nu}^{i} \gamma_{i} \right), \, \mu = \sum_{i=1}^{M} \mu_{i} \gamma_{i}, \, P = \frac{\rho RT}{\mu}, \\ C_{\nu}^{i} &= \sum_{j=1}^{L} \left(\frac{\theta_{ij}}{T} \right)^{2} \frac{\exp(\theta_{ij}/T)}{\left[\exp(\theta_{ij}/T) - 1 \right]^{2}}, \, \, \gamma_{i} = \frac{N_{i}}{N}, \, \, N = \sum_{i=1}^{M} N_{i}, \\ Q_{ci} &= \sum_{q=1}^{M} S_{iq}, \quad S_{iq} = (\alpha_{iq}^{-} - \alpha_{iq}^{+})[R_{q}^{+} - R_{q}^{-}], \\ R_{q}^{+(-)} &= k_{+(-)q} \prod_{j=1}^{n_{q}^{+(-)}} N_{j}^{\alpha_{iq}^{+(-)}}, \end{aligned}$$

$$Q_{Ii} = l_{il}W_{I}\left(\frac{g_{n}}{g_{m}}N_{m} - N_{n}\right), \quad W_{I} = \sigma_{mn}I/h\nu_{I},$$

$$\sigma_{mn} = \frac{\lambda_{mn}^{2}}{4\pi b_{D}}A_{mn}\sqrt{\frac{\ln 2}{\pi}}H(x,a), \quad Q_{si} = \sum_{q}r_{iq}^{s}\sum_{j}A_{qj}^{s}N_{j},$$

$$k_{\nu} = \sigma_{mn}\left(\frac{g_{n}}{g_{m}}N_{m} - N_{n}\right), \quad N_{m} = N_{1}\varphi_{m},$$

$$N_{n} = N_{l}\varphi_{n}, \quad l = 2 \text{ или } 3,$$

$$\varphi_{m} = \frac{g_{m}B_{\nu'}}{kT}\frac{\exp(-\theta_{1}\nu'/T)}{1 - \exp(-\theta_{1}/T)}\exp\left(-\frac{E_{j'}}{kT}\right),$$

$$\varphi_{n} = \frac{g_{n}B_{\nu''}}{kT}\frac{\exp(-\theta_{l}\nu''/T)}{1 - \exp(-\theta_{l}/T)}\exp\left(-\frac{E_{j''}}{kT}\right). \quad (3)$$

6

Здесь P, ρ, T, u — давление, плотность, температура и скорость газа; N_i — плотность молекул (атомов) *i*-го сорта (*i* = 1, 2, 3 соответствуют $O_2(X^3 \Sigma_g^-)$, $O_2(a^1 \Delta_g)$, $O_2(b^1\Sigma_g^+)); \mu_i$ — их молекулярная масса; h_{0i} — энтальпия образования *i*-го компонента при T = 298 K; М — число атомарных и молекулярных компонентов в смеси; *S* — число только молекулярных компонентов; $C_R^i = 1$ — для компонентов из линейных молекул и $C_R^i = 1.5$ — для компонентов из нелинейных молекул; θ_{ij} — характеристическая колебательная температура *j*-й моды для *i*-го компонента $(j = 1, ..., L); M_1$ число реакций, приводящих к образованию (уничтожению) *i*-го компонента; α_{iq}^+ и α_{iq}^- — стехиометрические коэффициенты q-й реакции; $n_q^{+(-)}$ — число компонентов, участвующих в прямой (+) и обратной (-) реакции; $k_{+(-)q}$ — константы скорости этих реакций; R универсальная газовая постоянная; h — постоянная Планка; *k* — постоянная Больцмана; *l_{iI}* — число квантов теряемых (приобретаемых) і-м компонентом при индуцированных, r_{iq}^s — при спонтанных переходах; N_m и N_n — число молекул в нижнем и верхнем состоянии поглощающего перехода $m \rightarrow n$; g_m и g_n — кратности вырождения этих состояний; λ_{mn} — длина волны, соответствующая центру спектральной линии поглощающего перехода; $A_{mn}(A_{ai}^s)$ — коэффициент Эйнштейна; b_D допплеровская ширина спектральной линии перехода $m \to n; H(x, a)$ — функция Фойхгта; B_v — вращательная постоянная молекулы O₂ в состоянии v ($v' \in m, v'' \in n$); $E_{i'}$ и $E_{i''}$ — вращательные энергии молекулы O_2 в состояниях т и п. Их значения вычислялись с учетом расщепления уровня j' в состоянии $X^3\Sigma_g^-$ на три компонента с $j' = K' + 1, \ j' = K' \ \text{i} \ j' = K' - 1.$

При численном интегрировании системы (1)-(3) вся расчетная область разбивается на две подобласти. Первая соответствует зоне воздействия резонансного излучения до фронта наклонной ударной волны (ее протяженность $x_0 \le \delta < x_1$), а вторая — реакционной зоне $(x > x_1)$. Граничными условиями для системы уравнений (1)-(3) при $x = x_1$ являются параметры за фронтом ударной волны (далее их будем обозначать индексом 1),

которые определяются из решения следующей системы уравнений [14]:

$$\begin{split} \lambda_{n1} &= \lambda_{n0}^{-1}, \quad H_1 - H_0 = \frac{1}{2} \frac{P_0}{\rho_0} \left(\frac{P_1}{P_0} - 1 \right) \left(\frac{\rho_0}{\rho_1} + 1 \right), \\ &- \chi_{0e} M_{n0}^2 = \left(\frac{P_1}{P_0} - 1 \right) \left(\frac{\rho_0}{\rho_1} - 1 \right), \\ \lambda_n &= u_n \Big/ \sqrt{\frac{2\chi_e RT}{(\chi_e + 1)\mu}}, \quad M_n = u_n \Big/ \sqrt{\chi_e \frac{R}{\mu} T}, \\ \chi_e &= 1 + \left\{ \frac{\mu}{R} C_p - 1 \right\}^{-1}, \quad u_1 = \sqrt{u_{n1}^2 + u_{\tau 1}^2}. \end{split}$$

Здесь u_n — нормальная, u_{τ} — тангенциальная составляющая скорости потока по отношению к фронту, индекс 0 соответствует параметрам перед фронтом. Численное интегрирование уравнений (1)–(3) проводилось так же, как и в [10–12], с использованием неявной разностной схемы второго порядка аппроксимации.

Кинетическая модель

Известно, что для описания процессов воспламенения и горения смесей CH₄/O₂ (воздух) в широком диапазоне начальных температур и давлений необходимо использовать достаточно сложные кинетические схемы [15–17]. В качестве базовой нами была выбрана схема, предложенная в [17] для описания объемной реакции метана с воздухом и содержащая 433 обратимые реакции с участием 58 компонентов. Однако не все эти реакции играют существенную роль в инициировании горения за ударной волной. С целью определения минимального набора процессов, позволяющего правильно описать динамику воспламенения и тепловыделения в смеси CH₄/воздух за наклонной ударной волной в отсутствие молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$, был проведен анализ возможности редукции полной кинетической схемы [17].

Ранее было показано, что при воспламенении стехиометрических и обедненных топливом смесей CH₄/O₂ в замкнутом адиабатическом реакторе правильные значения периода индукции τ_{in} и конечной температуры газа Т_с удается получить при использовании редуцированной (по отношению к полной схеме [17]) модели, включающей 211 обратимых реакций с участием 35 компонентов (CO_x (x = 1, 2), HO_x, H₂O_x, H_x , O_y (y = 1, ..., 3), C_x , CH_q (q = 1, ..., 4), C_2H_z (z = 1, ..., 6), СН_qO_x, С₂Н_qO_x). В случае присутствия молекул N₂ в исходной смеси (СН₄/воздух) к этим реакциям необходимо добавить реакции с участием N, N₂, NO, NO₂ (реакции № 271-283 из [17]). Учет процессов с другими N-содержащими компонентами не приводит к заметному изменению τ_{in} и T_c . Поэтому в качестве основной рассматривалась именно данная схема (схема 1). Кроме нее рассматривалась схема, в которой по сравнению со схемой 1 исключены реакции с участием C₂, CH₂CO, CH₃CO, C₂HO, CH₃CHO, CH₃O₂CH₃, и схема 3, состоящая из 154 реакций с 29 компонентами (дополнительно исключены реакции с участием CH₂OH, CH₃OH, CH₃O₂, CH₃O₂H). Результаты расчета длины зоны индукции L_{in} и зоны горения L_c (величина L_{in} определялась как расстояние от фронта, на котором достигается максимальное значение градиента dT/dx, L_c — как расстояние, на котором $T = 0.99T_c$), значений T_c , P_c и M_c в конце зоны реакции для стехиометрической смеси CH₄/воздух (CH₄/O₂/N₂ = 0.5/1/3.76) с $P_0 = 10^4$ Ра и $T_0 = 300$ К при различных значениях M_0 и угле наклона фронта $\beta = 30^\circ$ показали, что редуцированная схема 2 позволяет получить удовлетворительную точность по L_{in} , L_c , T_c , M_c и P_c в рассматриваемом диапазоне изменения начальных параметров потока ($P_0 = 10^2 - 10^5$ Ра, $T_0 = 300$ К, $M_0 = 6 - 10$).

Эта схема была дополнена реакциями с участием молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$. Все они приведены в таблице. Поскольку реакции с участием электронновозбужденных молекул О2 протекают с пониженным по отношению к реакциям с $O_2(X^3\Sigma_g^-)$ энергетическим барьером [12,18], то в схему были введены реакции N₂ с $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$, а также реакции с участием этих молекул и N₂O, в которых образуются химически активные атомы О и молекулы О₃ (при участии невозбужденных молекул О2 скорость образования О и О3 в этих реакциях мала и не влияет на процесс воспламенения). Помимо химических реакций с возбужденными молекулами О2 в модель также были включены процессы тушения состояний $a^{1}\Delta_{q}$ и $b^{1}\Sigma_{q}^{+}$. Константы скоростей химических реакций с участием молекулы $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ определялись по методике, подробно рассмотренной в [12], где приведены температурные зависимости $k_{+(-)q}(T)$ для реакций в системе H₂-O₂-O₂ $(a^{1}\Delta_{g})$ -O₂ $(b^{1}\Sigma_{g}^{+})$. В частности, для эндотермических реакций № 32-47, 50, 51, 64-83 и 86-87 энергия активации процессов с электронновозбужденными молекулами О2 определялась по формуле

$$E_{a}^{e} = \frac{1}{2} \Big(\sqrt{(\Delta H + E_{e})^{2} + 4E_{a}^{0}(\Delta H + E_{a}^{0})} - (\Delta H + E_{e}) \Big),$$

где ΔH — тепловой эффект реакции, E_a^0 — энергия активации реакции с невозбужденными молекулами, E_e — энергия электронно-возбужденной молекулы.

Сама константа скорости вычислялась по известному выражению

$$k_q(T) = A_q T^{n_q} \exp(-E_{aq}^e/T).$$

Здесь *A_q* — коэффициент аррениусовской зависимости константы скорости реакции с участием невозбужденной молекулы, *n_q* — степенной коэффициент.

Как и в [12], для безбарьерных реакций, в которых молекула О₂ возникает в состояниях $X^3\Sigma_g^-$, $a^1\Delta_g$ и $b^1\Sigma_g^+$ (реакции № 52–55, 58–61, 84–85, 88, 89), полагалось, что выроятность образования $O_2(X^3\Sigma_g^-)$, $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ пропорциональна кратности вырождения

N₂	Реакция	N₂	Реакция
1	$\Omega_2(a^1 \Lambda) + M = 2\Omega + M$	47	$CH + O_2(h^1\Sigma^+) = CO + OH$
2	$O_2(u \Delta g) + M = 2O + M$ $O_2(h^1 \Sigma^+) + M = 2O + M$	48	$HCO + O = CH + O_2(a^1\Lambda)$
3	$O_2(a^1\Lambda) + H - OH + O$	49	$HCO + O = CH + O_2(u \Delta_g)$ $HCO + O = CH + O_2(h^1\Sigma^+)$
1	$O_2(u \ \Delta_g) + \Pi = O\Pi + O$ $O_2(h^1 \Sigma^+) + H = OH + O$	50	$\frac{1}{1} \frac{1}{1} \frac{1}$
-+	$O_2(b Z_g) + \Pi = O\Pi + O$ $H + O(a^1 \Lambda) = 2OH$	51	$CH_2OH + O_2(a \Delta_g) = CH_2O + HO_2$ $CH_2OH + O_2(b^1\Sigma^+) = CH_2O + HO_2$
6	$H_2 + O_2(u \Delta_g) = 2OH$ $H_2 + O_2(h^1 \Sigma^+) = 2OH$	52	$CH_2OH + O_2(b Z_g) = CH_2O + HO_2$ $CH_2O_2 + OH = CH_2OH + O_2(a^{1}\Lambda)$
0	$H_2 + O_2(b \ \Sigma_g) = 20H$	52	$CH_3O_2 + OH = CH_3OH + O_2(u \Delta_g)$ $CH_2O_2 + OH = CH_2OH + O_2(u \Delta_g)$
/	$HO_2 + M = O_2(a \Delta_g) + H + M$ $HO_2 + M = O_2(a \Delta_g) + H + M$	55	$CH_{3}O_{2} + OH = CH_{3}OH + O_{2}(b L_{g})$
8	$HO_2 + M = O_2(b L_g) + H + M$	54	$CH_3O_2 + CH_3O_2 = CH_3OH + CH_2O + O_2(d \Delta_g)$
9	$H_2 + O_2(a \Delta_g) = H + HO_2$ $H_1 + O_2(b \Sigma^+) = H + HO_2$	55	$CH_3O_2 + CH_3O_2 = CH_3OH + CH_2O + O_2(b \ \Sigma_g)$
10	$H_2 + O_2(D^2 \Sigma_g) = H + HO_2$	50	$CH_3 + O_2(a^2\Delta_g) = CH_3O_2$
11	$H_2O + O_2(a^2\Delta_g) = OH + HO_2$	57	$\operatorname{CH}_3 + \operatorname{O}_2(b^*\Sigma_g) = \operatorname{CH}_3\operatorname{O}_2$
12	$H_2O + O_2(b^*\Sigma_g) = OH + HO_2$	58	$CH_3O_2 + O = CH_3O + O_2(a^2\Delta_g)$
13	$OH + O_2(a^*\Delta_g) = O + HO_2$	59	$CH_3O_2 + O = CH_3O + O_2(b^2\Sigma_g)$
14	$OH + O_2(b^*\Sigma_g^+) = O + HO_2$	60	$CH_3O_2 + HO_2 = CH_3O_2H + O_2(a^{\prime}\Delta_g)$
15	$2\mathrm{HO}_2 = \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2(a^{\mathrm{T}}\Delta_g)$	61	$\mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{HO}_{2} = \mathrm{CH}_{3}\mathrm{O}_{2}\mathrm{H} + \mathrm{O}_{2}(b^{*}\Sigma_{g}^{+})$
16	$2\mathrm{HO}_2 = \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2(b^{+}\Sigma_g^{+})$	62	$\mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{CH}_{3}\mathrm{O}_{2} = \mathrm{CH}_{3}\mathrm{O} + \mathrm{CH}_{3}\mathrm{O} + \mathrm{O}_{2}(a^{\mathrm{T}}\Delta_{g})$
17	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}(a^{1}\Delta_{g}) = \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{O}$	63	$\mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{CH}_{3}\mathrm{O}_{2} = \mathrm{CH}_{3}\mathrm{O} + \mathrm{CH}_{3}\mathrm{O} + \mathrm{O}_{2}(b^{+}\Sigma_{g}^{+})$
18	$H_2O + O_2(b^1\Sigma_g^+) = H_2O_2 + O$	64	$\mathrm{C}_{2}\mathrm{H}_{6} + \mathrm{O}_{2}(a_{1}^{1}\Delta_{g}) = \mathrm{C}_{2}\mathrm{H}_{5} + \mathrm{HO}_{2}$
19	$O_3 + M = O_2(a_1^{\dagger}\Delta_g) + O + M$	65	$C_2H_6 + O_2(b_1\Sigma_g^+) = C_2H_5 + HO_2$
20	$\mathrm{O}_3+M=\mathrm{O}_2(b^1\Sigma_g^+)+\mathrm{O}+M$	66	$\mathrm{C}_{2}\mathrm{H}_{5} + \mathrm{O}_{2}(a_{1}^{1}\Delta_{g}) = \mathrm{C}_{2}\mathrm{H}_{4} + \mathrm{H}\mathrm{O}_{2}$
21	$O_3 + H = OH + O_2(a^1 \Delta_g)$	67	$C_2H_5 + O_2(b^1\Sigma_g^+) = C_2H_4 + HO_2$
22	$\mathrm{O}_3 + \mathrm{H} = \mathrm{OH} + \mathrm{O}_2(b^1\Sigma_g^+)$	68	$\mathrm{C}_{2}\mathrm{H}_{4} + \mathrm{O}_{2}(a^{1}\Delta_{g}) = \mathrm{C}_{2}\mathrm{H}_{3} + \mathrm{HO}_{2}$
23	$\mathbf{O}_3 + \mathbf{O} = \mathbf{O}_2(X^3\Sigma_g^-) + \mathbf{O}_2(a^1\Delta_g)$	69	$C_2H_4 + O_2(b^1\Sigma_g^+) = C_2H_3 + HO_2$
24	$\mathrm{O}_3 + \mathrm{O} = \mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{O}_2(b^1\Sigma_g^+)$	70	$\mathrm{C_2H_3} + \mathrm{O_2}(a^1\Delta_g) = \mathrm{C_2H_2} + \mathrm{HO_2}$
25	$O_3 + OH = HO_2 + O_2(a^1 \Delta_g)$	71	$\mathrm{C_2H_3} + \mathrm{O_2}(b^1\Sigma_g^+) = \mathrm{C_2H_2} + \mathrm{HO_2}$
26	$\mathrm{O}_3 + \mathrm{OH} = \mathrm{HO}_2 + \mathrm{O}_2(b^1\Sigma_g^+)$	72	$C_2H_2 + O_2(a^1\Delta_g) = HCO + HCO$
27	$\mathrm{O}_3 + \mathrm{HO}_2 = \mathrm{OH} + \mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{O}_2(a^1\Delta_g)$	73	$\mathrm{C_2H_2} + \mathrm{O_2}(b^1\Sigma_g^+) = \mathrm{HCO} + \mathrm{HCO}$
28	$\mathrm{O}_3 + \mathrm{HO}_2 = \mathrm{OH} + \mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{O}_2(b^1\Sigma_g^+)$	74	$\mathrm{C_2H_2} + \mathrm{O_2}(a^1\Delta_g) = \mathrm{C_2H} + \mathrm{HO_2}$
29	$O_3 + O_2(a^1\Delta_g) = 2O_2(X^3\Sigma_g^-) + O$	75	$\mathrm{C_2H_2} + \mathrm{O_2}(b^1\Sigma_g^+) = \mathrm{C_2H} + \mathrm{HO_2}$
30	$\mathrm{O}_3 + \mathrm{O}_2(b^1\Sigma_g^+) = 2\mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{O}_3$	76	$C_2H + O_2(a^1\Delta_g) = CO + HCO$
31	$2\mathrm{O}_2(a^1\Delta_g) = \mathrm{O}_2(b^1\Sigma_g^+) + \mathrm{O}_2$	77	$\mathrm{C_2H} + \mathrm{O_2}(b^1\Sigma_g^+) = \mathrm{CO} + \mathrm{HCO}$
32	$CH_2O + O_2(a^1\Delta_g) = HO_2 + HCO$	78	$N + O_2(a^1\Delta_g) = O + NO$
33	$CH_2O + O_2(b^1\Sigma_g^+) = HO_2 + HCO$	79	$\mathrm{N} + \mathrm{O}_2(b^1\Sigma_g^+) = \mathrm{O} + \mathrm{NO}$
34	$HO_2 + CO = HCO + O_2(a^1\Delta_g)$	80	$NO + O_2(a^1\Delta_g) = O + NO_2$
35	$\text{HO}_2 + \text{CO} = \text{HCO} + \text{O}_2(b^1 \Sigma_g^+)$	81	$\mathrm{NO} + \mathrm{O}_2(b^1\Sigma_g^+) = \mathrm{O} + \mathrm{NO}_2$
36	$CH_4 + O_2(a^1\Delta_g) = CH_3 + HO_2$	82	$NO + NO + O_2(a^1\Delta_g) = NO_2 + NO_2$
37	$CH_4 + O_2(b^1\Sigma_{\rho}^+) = CH_3 + HO_2$	83	$NO + NO + O_2(b^1\Sigma_{\theta}^+) = NO_2 + NO_2$
38	$CH_3 + O_2(a^1\Delta_g) = CH_3O + O$	84	$O_3 + NO = NO_2 + O_2(a^1\Delta_g)$
39	$CH_3 + O_2(b^1\Sigma_q^+) = CH_3O + O$	85	$O_3 + NO = NO_2 + O_2(b^1\Sigma_{e}^+)$
40	$CH_3O + O_2(a^{1\Delta_{e}}) = CH_2O + HO_2$	86	$N_2 + O_2(a^1\Delta_r) = N_2O + O$
41	$CH_3O + O_2(b^1\Sigma_a^+) = CH_2O + HO_2$	87	$N_2 + O_2(b^1\Sigma_a^+) = N_2O + O_2O$
42	$CH_3 + O_2(a^1\Delta_r) = CH_2O + OH$	88	$O_3 + N_2 = N_2 O + O_2(a^1 \Delta_e)$
43	$CH_3 + O_2(b^1\Sigma_a^+) = CH_2O + OH$	89	$O_3 + N_2 = N_2O + O_2(b^1\Sigma_+^+)$
44	$CO + O_2(a^1\Delta_a) = CO_2 + O_2$	90	$O_2(a^1\Delta_g) + M = O_2(X^3\Sigma_g^-) + M$
45	$CO + O_2(a^{-\frac{1}{2}}) = CO_2 + O_2$	91	$O_2(b^1\Sigma_a^+) + M = O_2(a^1\Lambda_a) + M$
46	$CH + O_2(a^1\Delta_a) = CO + OH$		-2(-g) + m2(-g) + m
10	$c_1 + c_2(w - g) = c_0 + c_1$	11	I

Реакции с участием возбужденных молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$, включенные в кинетическую схему для расчета горения метана в воздухе

этих состояний: $q_X = 0.5$, $q_a = 0.33$, $q_b = 0.17$. При этом константы скоростей суммарных процессов были взяты из [17]. При вычислении констант скоростей прямых реакций № 48–49, 62–63 энергетический барьер увеличивался на величину энергии соответствующего электронного состояния ($E_a^e = E_a^0 + E_e$). Данные по константам скорости тушения (электронно-поступательной E-T-релаксации) состояний $a^{1}\Delta_{g}$ и $b^{1}\Sigma_{g}^{+}$ молекулы О₂ (реакции № 90,91) для $M = O, O_{3},$ О₂, H₂, H₂O, HO₂, H₂O₂ были взяты из [12], а для $M = CO_{2}$, CO, N₂ из [18,19]. Для M = H, C, N полагалось, что тушение происходит с той же вероятностью,

-

что и для M = O; для $M = CH_q$, C_2H_q , CH_qO , CH_3O_2 , CH_3O_2H — так же, как и для $M = H_2O$; для M = NO, NO_2 , N_2O — так же, как и для $M = N_2$. Константы скоростей реакций, протекающих в обратном направлении, вычислялись на основе принципа детального равновесия.

Инициирование горения смеси СН₄/O₂ (воздух) в сверхзвуковом потоке при воздействии излучения

Конкретный анализ проведем на примере стехиометрической смеси CH₄/воздух (CH₄/O₂/N₂ = 0.5/1/3.76) для случая поглощения излучения на переходах с v' = v'' = 0, j' = 9, j'' = K' = K'' = 8 (при таких вращательных квантовых числах при $T_0 = 300 \,\mathrm{K}$ коэффициент поглощения для обоих рассматриваемых переходов: $X^{3}\Sigma_{g}^{-} \rightarrow a^{1}\Delta_{g}$ и $X^{3}\Sigma_{g}^{-} \rightarrow b^{1}\Sigma_{g}^{+}$ максимален). Длины волн, соответствующие центрам линий этих переходов, равны 1.268 µm и 762 nm, а коэффициенты Эйнштейна соответственно $2.58 \cdot 10^{-4} \, \text{s}^{-1}$ и $8.5 \cdot 10^{-2} \, \text{s}^{-1}$. При вычислении функции Фойхгта H(x, a), как и в [12], полагалось, что коэффициенты столкновительного уширения спектральной линии поглощения пропорциональны газокинетическим сечениям столкновения молекулы О2 с М-м партнером (в зоне воздействия $M = CH_4, O_2, N_2),$

При низких температурах газа перед ударной волной ($T_0 = 300 \,\mathrm{K}$) скорости химических реакций в зоне облучения существенно меньше скорости индуцированных переходов и скорости Е-Т-релаксации состояний $a^{1}\Delta_{g}$ и $b^{1}\Sigma_{g}^{+}$. При этом концентрация молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ в зоне облучения определяется отношением между временем индуцированных переходов $\tau_I = W_I^{-1}$, временем E-T-релаксации и временем воздействия $au_p = \delta/u_0$. При рассматриваемых параметрах потока: $P_0 = 10^2 - 10^4$ Ра и $T_0 = 300$ К длина зоны поглощения $L_{\nu} = k_{\nu}^{-1}$ для излучения с $\lambda_I = 1.268 \,\mu\text{m}$ составляет $2 \cdot 10^4 - 600 \,\text{m}$, а для излучения с $\lambda_I = 762 \text{ nm} - 320 - 10 \text{ m}$. Поэтому всегда $\delta \ll L_{\nu}$ и облучение газа перед фронтом ударной волны можно проводить путем многократного сканирования поперек потока лазерным пучком с радиусом 0.2-1 cm и таким образом добиться нужной величины поглощенной газом энергии излучения.

При прохождении газом фронта ударной волны его температура и давление повышаются, что приводит к увеличению скорости химических реакций и воспламенению смеси на некотором расстоянии от фронта. Присутствие в смеси молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ резко ускоряет этот процесс. Это иллюстрирует рис. 2, на котором показано изменение как в зоне воздействия, так и за фронтом ударной волны мольных долей (γ_i) основных компонентов, ответственных за развитие цепного механизма воспламенения смеси CH₄/воздух, при отсутствии излучения (a) и в случае воздействия

Рис. 2. Изменение концентраций (мольных долей) компонентов вдоль потока при $M_0 = 8$, $\beta = 30^{\circ}$ в смеси $CH_4/O_2/N_2 = 0.5/1/3.76$ с $P_0 = 10^4$ Pa, $T_0 = 300$ K при отсутствии излучения (*a*) и при воздействии излучения с $\lambda_I = 1.268$ (*b*) и 762 nm (*c*) для $I_0 = 10$ kW/cm², $\delta = 50$ cm. Вертикальная пунктирная линия соответствует положению фронта ударной волны.

излучения с $\lambda_I = 1.268 \,\mu\text{m}$ (b) и $\lambda_I = 762 \,\text{nm}$ (c) на длине $\delta = 50 \,\text{сm}$ при $I_0 = 10 \,\text{kW/cm}^2$, $M_0 = 8$ и $\beta = 30^\circ$. Видно, что даже при небольшой температуре за фронтом ($T_1 = 1102 \,\text{K}$) воздействие излучения с $\lambda_I = 762 \,\text{nm}$ приводит к воспламенению смеси CH₄/воздух уже на расстоянии 8.8 m от фронта даже при относительно низком давлении газа $P_1 = 1.9 \cdot 10^5 \,\text{Pa}$ и небольшом значении потока подведенной к газу энергии излучения $E_{\rm in} = I_0 \cdot \tau_p = 1.76 \,\mathrm{J/cm}^2$ (при отсутствии излучения $L_{\rm in} = 230 \,\mathrm{m}$, т.е. при данных условиях воспламенения метано-воздушной смеси не происходит). При воздействии излучения с $\lambda_I = 1.268 \,\mu\mathrm{m}$ длина зоны индукции $L_{\rm in}$ существенно больше и составляет 170 m. Объясняется такое отличие тем, что поглощенная одной молекулой O₂ энергия излучения $E_s = k_v I_0 \tau_p / N_1$ при возбуждении состояния $a^1 \Delta_g$ существенно меньше ($E_s = 4 \cdot 10^{-4} \,\mathrm{eV/molecule}$), чем при возбуждении $b^1 \Sigma_g^+$ ($E_s = 3.8 \cdot 10^{-2} \,\mathrm{eV/molecule}$).

Далее будет показано, что при одинаковом значении E_s величина L_{in} при воздействии излучения с $\lambda_I = 1.268 \,\mu m$ даже несколько меньше, чем для излучения с $\lambda_I = 762$ nm. Связано это с тем, что возбужденные молекулы $O_2(b^1\Sigma_a^+)$ заметно быстрее релаксируют по каналу № 91 (здесь и далее нумерация реакций соответствует нумерации в таблице) с образованием $O_2(a^1\Delta_g)$, чем молекулы $O_2(a^1\Delta_p)$ в основное электронное состояние (реакция № 90). Это приводит к тому, что в процессе возбуждения молекул O_2 в состояние $b^1\Sigma_g^+$ температура в конце зоны воздействия увеличивается. Увеличивается при этом и температура за фронтом. Так, при $I_0 = 0$ ее величина составляет 1093 K, а при $I_0 = 10$ и 20 kW/cm² $T_1 = 1102$ и 1110 соответственно. В то же время при тех же значениях І0 величина Т1 в случае возбуждения состояния $a^{1}\Delta_{g}$ излучением с $\lambda_I = 1.268 \,\mu m$ не превышает 1093 К.

Такая же ситуация характерна и для метано-кислородной смеси. Однако вследствие того, что в стехиометрической смеси CH₄/O₂ = 0.5/1 абсолютное количество метана заметно больше, чем в смеси СН₄/воздух $(CH_4/O_2/N_2 = 0.5/1/3.76)$, то и конечная температура продуктов сгорания выше. А большая концентрация молекул О2 приводит к тому, что при одинаковых значениях E_{in} и E_s в смеси CH₄/O₂ концентрация молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ в зоне облучения больше, чем в смеси СН₄/воздух. Поэтому, несмотря на то, что при отсутствии облучения ($E_{in} = 0$) величина L_{in} для смесей СН₄/O₂ и СН₄/воздух при рассматриваемых параметрах практически одинакова, в случае воздействия излучения как с $\lambda_I = 1.268 \,\mu$ m, так и с $\lambda_I = 762 \,\text{nm}$ сокращение длины зоны индукции в смеси CH₄/O₂ заметно больше, чем в смеси СН₄/воздух, хотя значения T₁ для смеси CH₄/O₂ даже несколько меньше (в смеси CH₄/O₂ при $I_0 = 10$ и 20 kW/cm^2 $T_1 = 993$ и 1014 K). Это иллюстрирует рис. 3, на котором показано изменение температуры в зоне облучения ($\delta = 0.5 \, \text{m}$) и за фронтом ударной волны ($\beta = 30^{\circ}$) для смеси CH₄/O₂ = 0.5/1 (*a*) и смеси $CH_4/O_2/N_2 = 0.5/1/3.76$ (b) с $T_0 = 300$ K, $P_0 = 10^4 \, {
m Pa}, \, M_0 = 8 \, {
m s}$ случае воздействия излучения с $\lambda_I = 1.268 \,\mu\text{m}$ и 762 nm при $I_0 = 10$ и 20 kW/cm² $(E_{\rm in} \approx 2$ и 4 J/cm²). Видно, что для реализации воспламенения смеси СН₄/воздух на приемлемых расстояниях от фронта ($\sim 1-3 \, \text{m}$) необходимы существенно (в 2–3 раза) большие значения E_{in} , чем для смеси CH₄/O₂. Важно отметить, что возбуждение молекул O_2 в состояния $a^1 \Delta_{\rho}$

Рис. 3. Изменение температуры газа в зоне облучения и за фронтом ударной волны $(M_0 = 8, \beta = 30^\circ)$ при воздействии на смесь CH₄/O₂ = 0.5/1 (*a*) и на смесь CH₄/O₂/N₂ = 0.5/1/3.76 (*b*) излучения с $\lambda_l = 1.268 \, \mu m$ (пунктир) и 762 nm (сплошные линии) при $I_0 = 0$; 10 и 20 kW/cm² (1-3), $\delta = 50$ cm при $T_0 = 300$ K, $P_0 = 10^4$ Pa.

и $b^{1}\Sigma_{g}^{+}$ не приводит к увеличению концентрации оксидов азота (NO и NO₂) в продуктах сгорания.

Основной причиной сокращения длины зоны индукции является, конечно не увеличение T₁ в случае воздействия излучения, а интенсификация цепного механизма горения смеси СН4/О2. Напомним, что основной реакцией инициирования цепи при низких температурах ($T < 1300 \,\mathrm{K}$) в смесях $\mathrm{CH}_4/\mathrm{O}_2$ (воздух) является взаимодействие CH₄ с O₂, при котором образуется активный радикал СН3 и двуокись водорода. Эти соединения также взаимодействуют с O₂ в реакциях $CH_3 + O_2(X^3\Sigma_g^-) = CH_2O + OH$, $CH_3+O_2(X^3\Sigma_g^-)=CH_3O+O$ и $HO_2+O_2(X^3\Sigma_g^-)=O_3+OH.$ Продуктами этих реакций являются химически активные радикалы CH₂O, OH, атомы O и озон, который, диссоциируя, также дает атомарный кислород. Атомы О и радикалы ОН взаимодействуют с СН4, образуя вновь CH_3 и OH ($CH_4 + O = CH_3 + OH$, $CH_4 + OH = CH_3 + H_2O$). Однако при *T* < 1100 K радикалы СН3 интенсивно рекомбинируют, образуя пассивные соединения C_2H_6 и CH_3O_2 ($2CH_3 + M = C_2H_6 + M$; $CH_3 + O_2 + M = CH_3O_2 + M$). Эти реакции протекают с выделением энергии и приводят к увеличению Т.

Рис. 4. Зависимость длины зоны индукции $L_{\rm in}$ от начального давления стехиометрической смеси CH₄/воздух для $T_0 = 300$ K, $M_0 = 8$, $\beta = 30^{\circ}$ при возбуждении молекул O₂ излучением с $\lambda_I = 1.268 \,\mu$ m и 762 nm (сплошные кривые и пунктир) при различных значениях поглощенной одной молекулой O₂ энергии: $E_s = 0.01, 0.05, 0.1$ eV/molecule (1-3). Штриховая кривая — зависимость $L_{\rm in}(P_0)$ при отсутствии облучения.

При этом скорости этих реакций уменьшаются и концентрация CH₃ в смеси растет. Увеличивается и скорость реакции CH₃ + $O_2(X^3\Sigma_g^-) = CH_3O+O$, в которой образуются активные атомы O. Распад радикалов CH₃O приводит к образованию CH₂O и H, т.е. эта реакция является реакцией разветвления цепи. Атомы H, реагируя с O₂, дают O и OH (H+O₂($X^3\Sigma_g^-) = OH+O$). Высокая концентрация активных центров O, H, OH, CH₃ и образование радикалов C₂H₅ при разрушении пассивного C₂H₆ приводит к воспламенению смеси. Однако при отсутствии излучения при $T \approx 1000$ K все эти процессы протекают очень медленно и поэтому длина зоны индукции при $M_0 = 8$, $\beta = 30^\circ$ и $P_0 = 10^4$ Pa превышает 200 m.

При возбуждении моделул О2 как излучением с $\lambda_I = 1.268 \,\mu\text{m}$, так и с $\lambda_I = 762 \,\text{nm}$ схема процессов образования активных атомов и радикалов остается в основном прежней. Однако скорости всех процессов, в которых участвуют молекулы $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$, возрастают до 10³-10⁴ раз. Прежде всего это относится к реакциям инициирования и продолжения цепи с участием молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$. Вследствие того, что концентрации всех активных радикалов увеличиваются, возрастают и скорости даже тех реакций, в которых возбужденные молекулы О2 не принимают непосредственного участия. Сокращение длины зоны индукции в этом случае зависит от концентрации молекул $O_2(a^1\Delta_g)$ и $\mathrm{O}_2(b^1\Sigma_g^+)$ в конце зоны воздействия, следовательно, от величины E_{in}. Величина этого сокращения зависит также от параметров смеси перед фронтом ударной волны P₀, T₀, которые наряду с величиной E_{in} определяют значение поглощенной одной молекулой О2 энергии излучения E_s . На рис. 4 приведена зависимость L_{in} от P_0 при $M_0 = 8, \ \beta = 30^\circ, \ T_0 = 300 \, {\rm K}$ при различных значениях E_s в случае воздействия излучения с $\lambda_I = 1.268 \, \mu \text{m}$ и 762 nm. Как и ожидалось, при одинаковом значении E_s сокращение длины зоны индукции в случае воздействия излучения с $\lambda_I = 1.268 \,\mu m$ больше, чем для излучения с $\lambda_I = 762$ nm. Вследствие того, что длина поглощения излучения с $\lambda_I = 1.268 \,\mu m$ много больше, чем для излучения с $\lambda_I = 762 \,\mathrm{nm}$ (при $T_0 = 300 \,\mathrm{K}$ и $P_0 = 10^4 \,\mathrm{Pa}$ значения L_{ν} соответственно равны $6 \cdot 10^4$ cm и 610 cm), для достижения одинакового значения Е_s при воздействии излучения с $\lambda_I = 1.268 \, \mu m$ требуется большее число проходов лазерного пучка поперек потока. Весьма важным с практической точки зрения является тот факт, что даже при высоком давлении смеси $(P_0 = 10^5 \text{ Pa})$ сокращение величины L_{in} при малом значении энергии, поглощенной одной молекулой $O_2, E_s = 0.05 \,\text{eV/molecule}$ (при $M_0 = 8$ и $\delta = 0.5$ m это значение E_s соответствует подведенному потоку лазерного излучения с $\lambda_I = 762 \, \mathrm{nm}$ $E_{\rm in} = 38 \, {\rm J/cm^2})$ составляет 28 раз, а сама величина $L_{\rm in}$ для излучения с $\lambda_I = 762 \text{ nm}$ равна 0.6 m.

Метод, основанный на возбуждении молекул О₂ в состояния $a^1\Delta_g$ или $b^1\Sigma_g^+$ лазерным излучением, намного эффективнее для инициирования горения и детонации в сверхзвуковом потоке, чем рассматриваемый в настоящее время метод [13,20], основанный на простом нагреве среды лазерным излучением. На рис. 5 показана зависимость $L_{in}(M_0)$ при различных значениях E_s в случае воздействия излучения с $\lambda_I = 1.268 \,\mu$ m на смесь СН₄/воздух, когда происходит возбуждение молекул О₂ в состояние $a^1\Delta_g$, а также когда вся поглощенная энер-

Рис. 5. Зависимость длины зоны индукции $L_{\rm in}$ от числа Маха невозмущенного потока стехиометрической смеси CH₄/воздух с $T_0 = 300$ K, $P_0 = 10^4$ Pa, $\beta = 30^\circ$ при возбуждении молекул O₂ в состояние $a^1\Delta_g$ с излучением $\lambda_I = 1.268\,\mu$ m и в случае, когда вся поглощенная энергия идет на нагрев газа (сплошные кривые и пунктир), при $E_s = 0.01$, 0.05, 0.1 eV/molecule (1-3). Штрихпунктир — случай отсутствия облучения ($E_s = 0$).

гия идет на нагрев газа. Видно, что во всем диапазоне изменения M_0 величина L_{in} при возбуждении молекул O_2 даже при небольшом значении $E_s = 0.05$ eV/molecule в 10–100 раз меньше, чем при чисто тепловом воздействии лазерного излучения. Для того чтобы получить такое же значение длины зоны индукции, как в случае возбуждения молекул O_2 при $E_s = 0.1$ eV/molecule для $M_0 = 8$, $P_0 = 10^4$ Pa ($L_{in} = 1$ m), при чисто тепловом воздействии необходимо вложить в газ энергию ~ 10 eV на молекулу O_2 .

Заключение

Воздействие лазерного излучения с длиной волны $\lambda_I = 1.268 \,\mu \text{m}$ или 762 nm на сверхзвуковой поток позволяет инициировать детонационное горение в смеси СН₄/воздух за фронтом относительно слабых ударных волн, когда температура газа за фронтом не превышает 1100 К, даже при малой величине поглощенной энергии ($E_s = 0.05 - 0.1 \, \text{eV/molecule}$). Обусловлено это интенсификацией формирования активных атомов О, Н и радикалов ОН, CH₃, CH₂O — носителей цепного механизма горения метанокислородных смесей вследствие образования возбужденных молекул $O_2(a^1\Delta_p)$ и $O_2(b^1 \Sigma_p^+)$ в зоне облучения. В смесях CH₄/воздух даже при высоких значениях давления перед фронтом ударной волны ($P_0 = 10^5 \, \text{Pa}$) уменьшение длины зоны индукции в случае возбуждения молекул O_2 как в состояние $a^1\Delta_g$, так и в состояние $b^1 \Sigma_g^+$ составляет 25–30 раз при малом значении поглощенной энергии ($E_s = 0.05 \, \text{eV/molecule}$) по сравнению со случаем отсутствия облучения. Это позволяет реализовать детонационное горение в сверхзвуковом потоке на малых расстояниях от зоны воздействия излучения (< 1 m) при атмосферном давлении смеси СН₄/воздух и невысоких значениях температуры за фронтом ударной волны ($T_1 \leq 1100 \,\mathrm{K}$). Данный метод инициирования горения в сверхзвуковом потоке существенно (в сотни раз) более эффективен, чем термический нагрев среды резонансным лазерным излучением.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты: № 02-01-00703 и 02-02-16915).

Список литературы

- [1] Yip T. // AIAA Paper. 1989. N 89-2567. 10 p.
- [2] Даутов Н.Г., Старик А.М. // Физика горения и взрыва. 1996. Т. 32. № 1. С. 94–110.
- [3] Li C., Kailasanath K., Oran E.S. // Combust. Flame. 1997.
 Vol. 108. N 1/2. P. 173–186.
- [4] Bezgin L., Ganzhelo A., Gouskov O., Kopchenov V. // AIAA Paper. 1998. N 98-1513.
- [5] Figueira Da Silva L.F., Deshaies B. // Combust. Flame. 2000.
 Vol. 121. N 1/2. P. 152–166.
- [6] Gonzalez D.E. // AIAA Paper. 1996. N 96-4560.
- [7] Chinitz W. // AIAA Paper. 1996. N 96-4536.

- [8] Bezgin L, Ganzhelo A., Gouskov O. et al. // Gaseous and Heterogeneous Detonations. Science to Applications / Ed. G. Roy, S. Frolov, K. Kailasanath, N. Smirnov. Moscow: Enas Publ, 1999. P. 285–300.
- [9] Eidelman S. // AIAA Paper. 1999. N 99-1067.
- [10] Старик А.М., Титова Н.С. // ЖТФ. 2001. Т. 71. Вып. 8. С. 1–12.
- [11] Старик А.М., Титова Н.С. // ДАН. 2001. Т. 380. № 3. С. 332–337.
- [12] Starik A.M., Titova N.S. // Confined Detonations and Pulse Detonation Engines / Ed. G. Roy et al. Moscow: Torus Press, 2003. P. 87–104.
- [13] Chou M.S., Fendell F.E., Behrens H.W. // Proc. SPIE. 1993.
 Vol. 1862. P. 45–58.
- [14] Старик А.М., Титова Н.С. // Физика горения и взрыва. 2000. Т. 36. № 3. С. 31–38.
- [15] Sloane T.M. // Combist. Sci. and Technol. 1989. Vol. 63. N 4–
 6. P. 287–313.
- [16] Leung K.M., Lindstedt R.P. // Combust. Flame. 1995. Vol. 102.
 N 1/2. P. 129–160.
- [17] Даутов Н.Г., Старик А.М. // Кинетика и катализ. 1997.
 Т. 38. № 2. С. 207–230.
- [18] Дидюков А.И., Кулагин Ю.А., Шелепин Л.А., Ярыгина В.Н. // Квантовая электрон. 1989. Т. 16. № 5. С. 892– 904.
- [19] Мак-Ивен М., Филлипс Л. Химия атмосферы. М.: Мир, 1978. 375 с.
- [20] Tanoff M.A., Smooke M.D., Teets R.E., Fell J.A. // Combust. Flame. 1995. Vol. 103. N 4. P. 253–280.