11

Термическая диссоциация интеркалированных селенидов титана $Fe_x TiSe_2$ (x = 0.1, 0.25, 0.5)

© А.Н. Титов¹, Л.Н. Зеленина², Т.П. Чусова², Е.Г. Шкварина¹

¹ Институт физики металлов, УрО РАН,

Екатеринбург, Россия

² Институт неорганической химии им. А.В. Николаева СО РАН,

Новосибирск, Россия

E-mail: Alexander.Titov@usu.ru

(Поступила в Редакцию 23 апреля 2012 г.)

Методом статической тензиметрии измерено давление селена при диссоциации интеркалатных соединений Fe_x TiSe₂ в температурном интервале устойчивости однородного материала и в области распада, вызванного термическим уширением поляронной зоны. Показано, что в области устойчивости однородного состояния ковалентные центры, стабилизированные поляронным состоянием электронов проводимости, ведут себя как эффективные окислители, понижающие уровень Ферми. Уширение поляронной зоны в области высокой концентрации железа приводит к ослаблению окислительного влияния поляронов. При распаде интеркалатных соединений образуются селениды железа, что приводит к существенной неквазибинарности системы Fe—TiSe₂.

Работа выполнена при поддержке программ Президиума РАН 12-П-2-1018 и 12-П-2-1051.

1. Введение

Как было показано в работе [1], распад однофазного состояния в системе Fe_xTiSe₂, вызванный термическим уширением зоны гибридных Ti3d/Fe3d-состояний, сопровождается обменом халькогеном между выделяющейся фазой металлического железа и основной фазой. Очевидно, что изменение концентрации селена в конденсированной фазе должно изменять химический потенциал селена и, следовательно, равновесное давление насыщенного пара селена над материалом. Зная эту величину, можно вычислить изменение химического потенциала селена и металлического компонента с тем, чтобы понять характер влияния интеркаляции и распада интеркалатного соединения на термодинамику материала. Настоящая работа посвящена изучению давления диссоциации Fe_xTiSe₂ как функции концентрации железа х и температуры.

Для случая когда масса и состав фаз могут изменяться, полный дифференциал энергии Гиббса записывается в виде

$$dG = VdP - SdT + \sigma(\partial G/\partial n_i)_{P,T,n_i} dn_i,$$

где V — объем, P — давление, S — энтропия, T — температура, $(\partial G/\partial n_i)_P P, T, n_j$ — химический потенциал *i*-го вещества (μ_i) [2,3]. Изменение энергии Гиббса при удалении атома может быть представлено в виде суммы двух вкладов: изменения энергии Гиббса при удалении иона и изменения энергии Гиббса при удалении его электронов. Последний вклад представляет собой химический потенциал электронов (μ_e). Для окислительновосстановительных реакций, к которым относится реакция интеркалирования, этот вклад является преобладающим. Это означает, что изменение химического потенциала металла (селена) численно близко к изменению μ_e . Согласно соотношению Гиббса-Дюгема, при малом изменении содержания элементов в соединении уменьшение химического потенциала восстановителя (металла) — μ_m — эквивалентно увеличению химического потенциала окислителя (селена) — μ_{Se} .

Следовательно, определить характер реакции интеркаляции/деинтеркаляции — окисление или восстановление — можно по изменению давления селена в процессе диссоциации.

Осложняющим фактором, однако, является выделение металлического железа, также взаимодействующего с селеном. Поэтому можно ожидать различия температурных зависимостей давления селена в области однофазности и области смеси фаз.

2. Эксперимент

Исходные образцы интеркалатов $Fe_x TiSe_{2-\delta}$ (x = 0.1, 0.25, 0.5) получены и идентифицированы по методике, описанной в работе [4].

Давление диссоциации синтезированных образцов измерено методом статической тензиметрии с использованием кварцевых мембранных нуль-манометров [5] в изотермическом и неизотермическом вариантах [6]. При измерении давления в неизотермическом варианте манометра тонкая кварцевая мембрана на всем протяжении опыта находилась при постоянной температуре ($\sim 647^{\circ}$ C). Такая конструкция манометра позволила полностью избавиться от эффектов пластической деформации кварцевого стекла при высоких температурах, а также исключить возможность диффузии компенсирующего газа и газообразного селена через мембрану. Основные характеристики установки описаны в работе [7], точность измерения составляла 1 Торр для давления и 0.5°С для температуры. При проведении опытов использовался метод температурных площадок, на которые выходили как при нагревании манометра, так и при охлаждении. Совпадение измеренных давлений при выходе на заданную температуру при прямом и обратном ходе являлось критерием того, что эти давления относятся к равновесной системе. Время установления равновесия варьировалось от 70 h при минимальной температуре опыта до 1 h при максимальной температуре.

Исследование проведено в широком интервале температур (440–1138°С) при постоянном отношении массы вещества к объему мембранной камеры (m/V) в каждой серии экспериментов. Фиксация m/V вызвана тем обстоятельством, что диселенид титана в этом интервале температур и концентраций представляет собой твердый раствор TiSe_z, состав которого изменяется от z = 2.00 до 1.80 [8]; соответственно давление диссоциации TiSe_z является функцией температуры и состава P = f(T, m/V). Чтобы выявить "в чистом виде" влияние интеркаляции на термодинамические свойства селенида титана, мы зафиксировали параметр m/V и исследовали давление диссоциации интеркалатов в зависимости от температуры и концентрации железа.

Обработку экспериментальных данных проводили методом наименьших квадратов, минимизируя целевую функцию, рекомендованную в работе [9], с помощью программы, реализующей алгоритм модифицированного метода Ньютона—Гаусса с выбором шага по направлению. Погрешности искомых величин рассчитывались с учетом коэффициентов Стьюдента для 95% доверительного интервала.

3. Результаты и обсуждение

Для изучения процесса диссоциации интеркалированного селенида титана состава Fe_{0.1}TiSe₂ проведено три серии экспериментов в интервале температур 500-1020°С. В первых двух опытах перед началом измерений образцы отжигались при максимальной температуре опыта (при 1000°С в течение 1 h в опыте № 1 и при 940°С в течение 13 h в опыте № 2). После достижения постоянного значения давления (т. е. когда в пределах ошибки измерения давление не изменялось в течение часа) начинали тензиметрический эксперимент.

Результаты измерений приведены на рис. 1. На этом же рисунке представлены полученные ранее [8] результаты исследования давления диссоциации неинтеркалированного диселенида титана при таком же соотношении массы вещества к объему мембранной камеры $m/V = 30 \pm 0.2$ g/l.

Как видно из рисунка, в пределах погрешностей первые два опыта (опыты № 1,2) согласуются между собой и существенно отличаются от результатов измерений

Рис. 1. Температурные зависимости давления диссоциации Fe_{0.1}TiSe₂ и TiSe₂.

давления диссоциации неинтеркалированного диселенида титана. В интервале $600-950^{\circ}$ С давление диссоциации Fe_{0.1}TiSe₂ выше давления диссоциации TiSe₂. Максимальное различие наблюдается при температуре 700°С (давление селена над Fe_{0.1}TiSe₂ в 5 раз превышает давление селена над TiSe₂), при более высоких температурах различие давления уменьшается и при температуре выше 1000°С давление интеркалированного диселенида титана становится меньше давления диссоциации TiSe₂.

На рис. 2 представлена температурная зависимость свободной энергии Гиббса ($\Delta_{\rm dis}G^0$) для процессов диссоциации интеркалированного и неинтеркалированного диселенидов титана. В интервале температур 600–900°С $\Delta_{\rm dis}G^0$ интеркалата меньше, чем $\Delta_{\rm dis}G^0$ ТіSe₂, т.е. процесс диссоциации интеркалатного соединения термодинамически выгоднее диссоциации диселенида титана.

Очевидно, что это связано с увеличением μ_{Se} . Но совершенно ясно, что увеличение концентрации металла при интеркалировании не может обеспечить возрастание μ_{Se} в простом ионном приближении! Эффект представляется возможным объяснить, только используя

Рис. 2. Зависимости свободной энергии Гиббса процессов диссоциации от температуры в системе Fe_{0.1}TiSe₂ и TiSe₂.

представления о парциальном вкладе электронной подсистемы, который может уменьшаться при интеркаляции из-за формирования примесной зоны под уровнем Ферми. Такая зона отчетливо наблюдается спектральными методами, в частности методом фотоэмиссионной спектроскопии с угловым разрешением [10]. Поскольку она расположена ниже уровня Ферми, следует ожидать понижения энергии электронов — эффективного окисления материала. Следовательно, внедренное железо играет роль эффективного окислителя. Очевидно, что само железо, будучи металлом, окислителем быть не может. Эту роль могут играть ковалентные центры с его участием. Формирование таких центров обнаруживается при анализе не только электронной структуры, но и кристаллической структуры [11], кинетических и магнитных свойств [12]. Фазовая диаграмма системы Fe-TiSe₂ также объясняется только с учетом формирования таких центров и их температурной эволюции [1]. Представляется, что без учета формирования описанных центров невозможно объяснить и эффект увеличения давления диссоциации при интеркалировании.

Обратный переход, когда при высоких температурах давление селена над Fe_{0.1}TiSe₂ становится ниже давления селена над TiSe₂, очевидно можно связать с пересечением высокотемпературной границы области устойчивости ковалентных центров на фазовой диаграмме [4]. Согласно [4], выше этой температуры ковалентные центры термически диссоциируют. При сохранении кристаллической структуры в этом случае химическая связь железа с решеткой TiSe2 должна приобрести ионный характер с переносом электронов железа в зону проводимости TiSe2. Очевидно, что этот процесс должен сопровождаться увеличением μ_e , что и проявляется в понижении µ_{Se}. Однако такой процесс эквивалентен отрицательности энтропии (см. Введение), что противоречит второму началу термодинамики. Как показано в [4], выход состоит в экстракции железа. Следовательно, можно ожидать полного выделения железа в этом температурном интервале.

Для подтверждения гипотезы о распаде интеркалата измерения давления в опыте № 3 были начаты при температуре 1020°С. Давление при этой температуре в первые часы измерений было выше давления диссоциации неинтеркалированного диселенида титана, а после 30 h выдержки в пределах ошибки измеренное давление совпало с давлением диссоциации TiSe₂ в интервале температур 700–1000°С (рис. 1).

Расчет термодинамических параметров диссоциации $Fe_{0.1}TiSe_{2-\delta}$ мы провели для интервала $600-700^{\circ}C$. Ниже $600^{\circ}C$ измеряемые давления меньше 10 Torr и становится велика относительная ошибка измерений. Выше $700^{\circ}C$ возможен процесс распада интеркалата. Мы с большой долей вероятности можем утверждать, что в выбранном интервале температур измеряемые давления обусловлены одним-единственным процессом

$$Fe_{0.1}TiSe_2(sol) \rightarrow Fe_{0.1}TiSe_{2-\delta}(sol) + Se_2(gas)$$

Парциальные давления Se₂, рассчитанные по экспериментальным данным, аппроксимированы уравнением

$$\lg P_{\text{Se}_2}[\text{Torr}] = 7.917 - 6146.6/T[^{\circ}\text{C}](580 - 700^{\circ}\text{C}). \quad (1)$$

Отсюда энтальпия ($\Delta_{\rm dis}H_{645}$) и энтропия ($\Delta_{\rm dis}S^0_{645}$) процесса диссоциации для средней температуры измерений соответственно равны

$$\Delta_{\rm dis} H_{645} = 117.7 \pm 1.2 \, {\rm kJ/mol},$$

 $\Delta_{\rm dis} S^0_{645} = 96.4 \pm 1.3 \, {\rm J/mol} \cdot {\rm K}.$ (2)

Процесс диссоциации неинтеркалированного диселенида титана, проведенный в аналогичных условиях, описывается соответственно следующим образом:

$$\begin{split} \text{TiSe}_2(\text{sol}) &\to \text{TiSe}_{2-x}(\text{sol}) + \text{Se}_2(\text{gas}), \\ & \text{lg} \, P_{\text{Se}_2}[\text{Torr}] = 6.870 - 5345.6/T[^\circ\text{C}], \\ & \Delta_{\text{dis}}H_{645} = 102.3 \pm 0.8 \,\text{kJ/mol}, \\ & \Delta_{\text{dis}}S_{645}^0 = 76.4 \pm 0.8 \,\text{J/mol} \cdot \text{K}. \end{split}$$

Для изучения давления диссоциации интеркалатных соединений состава $Fe_{0.25}TiSe_2$ проведены три серии экспериментов в интервале температур 500–1138°С. Результаты измерений представлены на рис. 3.

Температурная зависимость давления диссоциации для $Fe_{0.25}TiSe_2$, полученная в опытах, аппроксимирована прямой

$$\lg P_{Se_2}[Torr] = 6.274 - 6741.2/T[^{\circ}C](722 - 1138^{\circ}C).$$
 (5)

Согласно данным ядерной гамма-резонансной спектроскопии [4], в этом температурном интервале интеркалат $Fe_{0.25}TiSe_2$ всегда представляет собой смесь трех фаз: $Fe_{0.25}TiSe_2$, FeSe и Fe. В интервале температур, в котором проводились тензиметрические измерения (722–1138°C), на долю $Fe_{0.25}TiSe_2$ приходится от 57.1

Рис. 3. Температурные зависимости давления диссоциации Fe_{0.25}TiSe₂ и TiSe₂.

до 92.4% интеркалированного Fe, 0.8-8.9% железа в виде FeSe, 43-0.4% в виде Fe. По данным [13] давление диссоциации FeSe при температуре 915°C составляет примерно 1 Torr. Опираясь на эту информацию, мы приняли в качестве физико-химической модели парообразования Fe_{0.25}TiSe₂ следующий процесс:

$$Fe_{0.25}TiSe_2(sol) \rightarrow Fe_{0.25}TiSe_{2-\delta}(sol) + Se_2(gas).$$

С использованием уравнения (5) рассчитаны величины энтальпии и энтропии диссоциации интеркалата исходного состава Fe_{0.25}TiSe₂

$$\Delta_{\rm dis} H_{930} = 129 \pm 13 \, \rm kJ/mol,$$

 $\Delta_{\rm dis} S^0_{930} = 65 \pm 10 \, \rm J/mol \cdot K.$ (6)

По сравнению с неинтеркалированным диселенидом титана (см. уравнения (3), (4)) и величи́ны давлений диссоциации, и термодинамические характеристики парообразования Fe_{0.25}TiSe₂ существенно другие:

$$10 < P(\text{TiSe}_{2-\gamma}) < 900 \text{ Torr},$$

 $0.3 < P(Fe_{0.25}TiSe_{2-\nu}) < 32$ Torr (при 722–1138°C),

где P (TiSe_{2- γ}) и P (Fe_{0.25}TiSe_{2 γ}) — давление паров селена над TiSe_{2- γ} и Fe_{0.25}TiSe_{2- γ} соответственно.

Давление диссоциации интеркалата $Fe_{0.5}TiSe_2$, измеренное в двух сериях экспериментов, приведено на рис. 4, 5. В отличие от опытов с низким содержанием интеркалированного железа измерения для образцов $Fe_{0.5}TiSe_2$ были выполнены в изотермическом варианте метода. Поэтому максимальная температура измерения составила 912°C. При этой температуре подвижный шток мембраны терял свои упругие свойства и надежность измерений резко падала. Как видно из рис. 4, в

Рис. 4. Температурные зависимости давления диссоциации $Fe_{0.5}TiSe_2$ и $TiSe_2$. Стрелкой отмечена величина давления, рассчитанная по кинетической зависимости p = f(t) для $t = \infty$ (см. рис. 5).

Рис. 5. Изменение давления в системе $Fe_{0.5}TiSe_2$ при температурах 765 и 912°С.

районе температур $400-600^{\circ}$ С имеет место термическое расширение паров свободного селена, имеющегося в исходных образцах. При температуре около 700° С начинается резкое падение давления в системе. На рис. 5 приведены изотермы давления при двух температурах. За 80 h выдержки образца Fe_{0.5}TiSe₂ при температуре 765° С давление в системе упало с 200 Torr практически до нуля. При 912° С 20 h оказалось достаточно, чтобы давление в системе стало меньше погрешности измерения.

Мы объясняем падение давления в системе связыванием свободного селена в интеркалат или низколетучий моноселенид железа. Согласно [4], в этом температурном интервале интеркалат состава $Fe_{0.5}TiSe_2$, как и в случае $Fe_{0.25}TiSe_2$, состоит из трех фаз: $Fe_{0.5}TiSe_2$ (86.8–85.8%), FeSe (12.2–11.5%) и Fe (1–2.7%). Следовательно, давление диссоциации интеркалата в этом интервале температур существенно ниже давления диссоциации исходного диселенида титана.

4. Заключение

Измерение давления паров селена показало, что при внедрении железа давление селена над интеркалированным образцом может быть выше давления над TiSe₂, что свидетельствует о понижении химического потенциала металла вследствие образования ковалентных центров Ti-Fe-Ti [10]. На это же указывает понижение величины $\Delta_{dis}G^0$ в интеркалатном соединении по сравнению с TiSe₂. Поскольку увеличение концентрации металла не может обеспечить возрастания давления халькогена, этот эффект представляется возможным связать только с концентрационной зависимостью парциального вклада электронной подсистемы. Эффект состоит в понижении химического потенциала электронов (энергии Ферми), т.е. он аналогичен акцепторному легированию. Следовательно, железо при внедрении в диселенид ти-

тана действует как эффективный окислитель. Поскольку железо не может быть окислителем, мы полагаем, что такой эффект связан с формированием ковалентных комплексов Ti-Fe-Ti, которые и действуют как ловушки электронов проводимости и эффективные окислители.

Три серии экспериментов с образцами $Fe_{0.1}TiSe_2$ можно разделить на две группы: когда максимальная температура опытов не превышает 1000°С (опыты № 1, 2), давление диссоциации интеркалата выше давления диссоциации диселенида титана; когда же максимальная температура опыта выше 1000°С, давление диссоциации интеркалата ниже или равно давлению диссоциации диселенида титана (опыт № 3).

Различие величин давления для этих двух типов зависимости наблюдается в температурном интервале ~ 600-950°С. Согласно предполагаемой диаграмме состояний [4], именно этот температурный интервал характеризуется областью двухфазности, и падение давления паров селена при продолжительном отжиге может объясняться выделением железа с образованием селенидов железа.

В образцах с большим содержанием железа наблюдается более интенсивное образование селенида железа, а значит, усиливается влияние сверхстехиометрического титана. Как показано в работе [14], титан в межслоевой позиции является донором и переносит электроны в зону проводимости, повышая энергию Ферми и приводя к уменьшению давления паров селена над образцами с железом (и сверхстехиометрическим титаном) по сравнению с TiSe₂ при температурах выше 600°С.

Таким образом, полученные зависимости давления диссоциации в системе $Fe_x TiSe_2$ хорошо согласуются с фазовой диаграммой этого материала, опубликованной ранее.

Список литературы

- А.Н. Титов, Е.Г. Галиева, О.В. Антонова. ФТТ 52, 1172 (2010).
- [2] Г.А. Голиков. Руководство по физической химии. Выс. шк., М. (1988). 383 с.
- [3] А.Г. Стромберг, Д.П. Семченко. Физическая химия. Выс. шк., М. (2001). 527 с.
- [4] Е.Г. Шкварина, В.А. Цурин, А.Н. Титов, С.Г. Титова, О.М. Федорова. ФТТ 54, 585 (2012).
- [5] А.В. Суворов. Термодинамическая химия парообразного состояния. Химия, Л. (1970). 208 с.
- [6] В.А. Титов, Т.П. Чусова, Г.А. Коковин. Изв. СО АН СССР. Сер. хим. 6, 14, 3 (1979).
- [7] T.P. Chusova, L.N. Zelenina, I.G. Vasilyeva, C. Graf, Th. Doert. J. Alloys Comp. 452, 94 (2008).
- [8] Л.Н. Зеленина, Т.П. Чусова, А.Н. Титов. В сб.: Тез. докл. 7-го Семинара СО РАН–УрО РАН. ИНХ СО РАН, Новосибирск (2010). 176 с.
- [9] В.А. Титов, Г.А. Коковин. В сб.: Математика в химической термодинамике / Под ред. Г.А. Коковина. Наука, Новосибирск (1980). С. 98.

- [10] X.Y. Cui, H. Negishi, S.G. Titova, K. Shimada, A. Ohnishi, M. Higashiguchi, Y. Miura, S. Hino, A.M. Jahir, A. Titov, H. Bidadi, S. Negishi, H. Namatame, M. Taniguchi, M. Sasaki. Phys. Rev. B 73, 08511-1 (2006).
- [11] А.Н. Титов, А.В. Долгошеин, И.К. Бдикин, С.Г. Титова. ФТТ 42, 1567 (2000).
- [12] А.Н. Титов, Ю.М. Ярмошенко, М. Neumann, В.Г. Плещев, С.Г. Титова. ФТТ 46, 1628 (2004).
- [13] S.R. Svendsen. Acta Chem. Scand. 26, 3757 (1972).
- [14] J.A. Wilson. Phys. Status Solidi B 86, 11 (1978).