05,06

Резонансные особенности динамической магнитной восприимчивости в гексаферрите BaFe₁₂O₁₉ при переходе из магнитоупорядоченного состояния в парамагнитное

© А.А. Безлепкин, С.П. Кунцевич

Харьковский национальный университет им. В.Н. Каразина, Харьков, Украина

E-mail-Anatoliy.A.Bezlyepkin@univer.kharkov.ua

(Поступила в Редакцию 23 апреля 2012 г.)

Представлены результаты экспериментального исследования динамической магнитной восприимчивости кристаллов бариевого гексаферрита в температурной области перехода из магнитоупорядоченного в парамагнитное состояние. Обнаруженные особенности поведения магнитной восприимчивости интерпретируются как характерные для сверхнизкочастотного естественного ферромагнитного резонанса спиновой подсистемы блоховских доменных границ. Полученные результаты хорошо согласуются с представлениями об особенностях критической спиновой динамики в области температуры Кюри.

Работа выполнена при поддержке фонда фундаментальных исследований Украины.

1. Введение

При создании радиоэлектронных устройств, работающих без подмагничивающего поля используется явление естественного ферромагнитного резонанса (ФМР). Низкочастотная граница таких устройств составляет величину $\sim 2 \text{ GHz}$ [1]. Поэтому использование физических принципов и разработка материалов, позволяющих наблюдать ФМР на более низких частотах, представляет не только научный, но и практический интерес.

В однодоменном состоянии в высокоанизотропном магнитноодноосном гексаферрите (BaM) при комнатной температуре частота естественного ФМР составляет 48 GHz [2]. В настоящей работе представлены результаты исследования в температурной области перехода из магнитоупорядоченного состояния в парамагнитное естественного сверхнизкочастотного ФМР спиновой подсистемы блоховских доменных границ (ДГ) в феррите BaM на частоте на три порядка меньше, чем частота естественного ФМР в однодоменном состоянии при комнатной температуре.

2. Условия наблюдения ФМР

В работе [3] показана принципиальная возможность наблюдения низкочастотного естественного ФМР спиновой подсистемы блоховских ДГ магнитноодноосного кристалла в области фазового перехода. Из работы [3] следует, что частота естественного ФМР ω зависит от ориентации спиновых моментов относительно направления легкого намагничивания и задается выражением

$$\omega = \gamma \, \frac{2K_1}{I_s} \, \cos \vartheta, \tag{1}$$

где *γ* — магнитомеханическое отношение; *K*₁ — константа энергии магнитной кристаллографической анизо-

тропии; I_s — намагниченность насыщения; ϑ — угол между направлением легкого намагничивания и намагниченностью.

Из соотношения (1) следует условие: $\omega \rightarrow 0$ при $\vartheta \to 0$. В блоховских ДГ магнитноодноосных кристаллов разворот спиновых моментов происходит по винтовой линии как показано на рис. 1. В середине ДГ спиновые моменты ориентированы под углом 90° к направлению легкого намагничивания, расположены в плоскостях параллельных XOZ и образуют слой с размагничивающим фактором $N_x = 0$. Слои середины ДГ, частоты ФМР которых попадают в интервал, задаваемый шириной резонансной линии, могут давать вклад в сигнал низкочастотного ФМР. Наблюдение ФМР возможно на частотах $f > T^{-1}$, где T — время релаксации магнитных моментов. Величина $T^{-1} \approx (\gamma/2\pi) \Delta H$, где ΔH ширина резонансной линии. При комнатной температуре для исследуемых кристаллов $\gamma/2\pi \approx 2.8$ MHz/Oe, $\Delta H \approx 80$ Oe. Поэтому $T^{-1} \approx 224 \, \text{MHz}$ и наблюдение при комнатной

Рис. 1. Ориентация спиновых моментов в блоховской доменной границе.

температуре ФМР на частотах $\omega < 224$ MHz невозможно.

В области перехода из магнитоупорядоченного состояния в парамагнитное критическая динамика спиновой подсистемы носит релаксационный характер [4]. При приближении к критической точке время релаксации быстро возрастает. При этом равновесное состояние устанавливается чрезвычайно медленно [5]. Увеличение Т в области фазового перехода обусловливает возможность наблюдения естественного ФМР на низких частотах от спиновой подсистемы в середине ДГ. В макрокристаллах ВаМ в области температуры Кюри магнитные фазы для спинов в середине ДГ можно рассматривать как субдомены с одинаковой и взаимно противоположной ориентацией спиновых магнитных моментов. К ним применимо рассмотрение связанных колебаний, проведенное в работе [6]. Из результатов этой работы следует, что условия наблюдения резонанса будут зависеть от ориентации вектора напряженности переменного магнитного поля \mathbf{h}^{\sim} относительно плоскости, в которой ориентированы спиновые моменты в середине ДГ. Для кристалла сферической формы при ориентации переменного поля параллельно плоскости ДГ и перпендикулярно направлению спинов в середине ДГ частота естественного Φ MP ω определяется соотношением [6]

$$\omega = \gamma \, \frac{4\pi}{\sqrt{3}} I_s. \tag{2}$$

Из выражения (2) следует возможность наблюдения резонанса в области перехода из магнитоупорядоченного состояния в парамагнитное. При этом "прохождение" резонансной линии будет происходить при изменении температуры, поскольку $I_s = f(T)$.

3. Образцы и методика измерений

В качестве образцов использовались монокристаллы ВаМ, выращенные из раствора в расплаве флюса ВаО · В₂О₃. Кристаллизация производилась на вращающуюся затравку в интервале температур 1150-1050°С. Фазовый состав кристаллов контролировался рентгенографическим методом. Постоянные кристаллической решетки при комнатной температуре: $a = 0.589 \,\mathrm{nm}$, c = 2.319 nm. Образцы имели форму, близкую к сферической с диаметром 5 mm. Температурная зависимость действительной части магнитной восприимчивости определялась исходя из экспериментальных значений резонансной частоты LC-контура при различных температурах. В катушку индуктивности помещался исследуемый образец, ориентированный определенным образом относительно переменного поля \mathbf{h}^{\sim} . Точность определения резонансной частоты контура $\approx 1 \, \mathrm{kHz}$. Для определения характеристик контура использовался анализатор спектров СК4-59.

Катушка индуктивности, изготовленная из платиновой проволоки, помещалась с образцом в электрическую печь, питание которой осуществлялось постоянным током, стабилизируемым на заданном уровне не хуже 0.01%. Нагреватель печи наматывался бифилярно на медную трубку, которая обеспечивала постоянство температуры в рабочем пространстве печи. Температура определялась по термоэдс дифференциальной термопары платина–платинородий, измерительный спай которой имел непосредственный тепловой контакт с образцом, а второй спай термостатировался при 0°С тающим льдом.

Экспериментальные результаты и обсуждение

На рис. 2 для интервала температур $437-469^{\circ}$ С представлена зависимость резонансной частоты контура с кристаллом, ориентированным гексагональной осью *с* вдоль вектора напряженности радиочастотного магнитного поля \mathbf{h}^{\sim} . Гексагональная ось *с* ориентирована вдоль направления легкого намагничивания. Изменение действительной части магнитной восприимчивости $\Delta \chi$ образца при изменении температуры и вызванное ею изменение частоты контура Δf связаны соотношением

$$\Delta \chi = -Bf^{-3} \Delta f, \qquad (3)$$

где *В* — величина, зависящая от параметров контура. Изменение резонансной частоты контура без образца

Рис. 2. Температурные зависимости частоты и напряжения на контуре с монокристаллическим образцом бариевого гексаферрита, ориентированным осью легкого намагничивания в направлении высокочастотного магнитного поля катушки индуктивности контура.

Рис. 3. Температурная зависимость действительной компоненты высокочастотной магнитной восприимчивости монокристалла BaM в направлении легкого намагничивания.

в интервале 430-480°C было незначительно, что позволило считать величину В не зависящей от температуры. При температурах, больших температуры Кюри исследуемых образцов T_c , величины χ' , $\Delta \chi'$ и Δf можно считать равными нулю. Температура Кюри исследуемых образцов $T_c = (451 \pm 1)^{\circ}$ С. Считая приблизительно, что при температуре $T = 467^{\circ}$ С $\Delta \chi' = 0$ и $\chi' = 0$, была рассчитана зависимость $\chi'(T)$ в относительных единицах. Она приведена на рис. 3. Как видно на рисунке, на фоне широкого максимума, связанного с уменьшением термодинамической устойчивости спиновой системы вблизи точки Кюри [7], наблюдается особенность резонансного вида. В области резонанса высокотемпературная часть особенности зависимости $\chi'(T)$ несколько искажена по сравнению с низкотемпературной, по-видимому, вследствие проявления корреляционных эффектов в области точки Кюри [7]. Информацию о диссипативных процессах при взаимодействии радиочастотного поля со спиновой подсистемой может дать изучение температурной особенности мнимой части магнитной восприимчивости χ'' . Изменение χ'' должно приводить к изменению добротности контура и соответственно напряжения на нем. На рис. 2 (кривая 2) представлена зависимость напряжения на LC-контуре в интервале 437-467°C. Как видно на рисунке, в области температуры Кюри имеется широкий минимум в зависимости напряжения, на фоне которого в области наблюдаемой резонансной особенности χ' имеет место узкий пик минимума напряжения, что

Физика твердого тела, 2012, том 54, вып. 12

свидетельствует об уменьшении добротности контура и росте χ'' .

2263

Ориентация \mathbf{h}^{\sim} вдоль гексагональной оси *с* соответствует ориентации параллельной плоскости ДГ и перпендикулярной направлению спинов в середине ДГ. В этом случае частота ФМР $\omega = 2\pi f$ зависит от намагниченности и определяется соотношением (2) [6]. Прохождения линии ФМР для χ' и χ'' обусловлено изменением величины I_s при изменении температуры. Резонансное значение частоты соответствует максимуму χ'' и минимуму напряжения на контуре. Из рис. 2 следует резонансное значение частоты f = 38.19 MHz. Из соотношения (2) воспользовавшись значением $\gamma/2\pi = 2.8$ MHz/Oe из работы [2] получим $I_s = 1.8$ Gs.

Рассмотренные резонансные особенности поведения динамической магнитной восприимчивости не наблюдались в магнитном поле, приложенном вдоль гексагональной оси *c*, которая является осью легкого намагничивания. На рис. 4 приведена зависимость резонансной частоты контура с образцом и напряжения на нем в магнитном поле 300 Ое в интервале температур 445–470°С. Магнитное поле 300 Ое обусловливает переход в однодоменное состояние образца с размагничивающим фактором сферы при $I_s = 80$ Gs. Такой намагниченности соответствует температура 410°С, что на 40°С ниже температуры Кюри. Отсутствие доменной структуры при фазовом переходе исключает возможность наблюде-

Рис. 4. Температурные зависимости частоты и напряжения на контуре с монокристаллическим образцом бариевого гексаферрита, ориентированным осью легкого намагничивания в направлении высокочастотного магнитного поля катушки индуктивности контура, во внешнем постоянном магнитном поле (H = 300 Oe).

Рис. 5. Температурная зависимость частоты контура с монокристаллическим образцом бариевого гексаферрита, ориентированным осью легкого намагничивания перпендикулярно направлению высокочастотного магнитного поля катушки индуктивности контура.

ния ФМР и поэтому на рис. 4 резонансные особенности не наблюдаются. На рис. 5 представлена зависимость частоты контура с образцом, ориентированным гексагональной осью *c* перпендикулярно \mathbf{h}^{\sim} для интервала температур 340–470°С. Как видно на рисунке, зависимость f(T) не имеет резонансных особенностей, а в области точки Кюри при 451°С наблюдается сингулярное поведение, характерное для фазового перехода из магнитоупорядоченного состояния в парамагнитное. Для рассматриваемой геометрии опыта при $\mathbf{h}^{\sim} \perp c \omega_p \rightarrow 0$, но от I_s не зависит [6], вследствие чего резонансные особенности не наблюдаются.

5. Выводы

Из проведенного рассмотрения следует, что наблюдаемые особенности поведения динамической магнитной восприимчивости в области перехода из магнитоупорядоченного состояния в парамагнитное следует интерпретировать как следствие сверхнизкочастотного естественного ФМР по следующим причинам:

1. Аномальное резонансное поведение χ' в области фазового перехода имеет место в области резкого роста диссипации в спиновой подсистеме.

2. Наблюдаемый эффект зависит от геометрии опытов, он наблюдается при $\mathbf{h}^{\sim} \parallel c$ и не наблюдается при $\mathbf{h}^{\sim} \perp c$.

3. Исчезновение доменной структуры в области фазового перехода при приложении внешнего магнитного поля приводит к исчезновению резонансных особенностей χ' .

4. Полученные экспериментальные результаты хорошо согласуются с представлениями о критической динамике спиновой системы в области температуры Кюри [4].

Список литературы

- А.Г. Гуревич. Магнитный резонанс в ферритах и антиферромагнетиках. Наука, М. (1973). 464 с.
- [2] J. Verweel. J. Appl. Phys. 38, 1111 (1967).
- [3] А.А. Безлипкин, С.П. Кунцевич. Вісн. ХНУ. Сер. Фізика 15, 962, 67 (2011).
- [4] В.Л. Покровский. УФН **179**, *11*, 1237 (2009).
- [5] Л.Д. Ландау, И.Н. Халатников. ДАН СССР 96, 469 (1954).
- [6] D. Polder, J. Smit. Rev. Mod. Phys. 25, 1, 89 (1953).
- [7] К.П. Белов. Магнитные превращения. Физматлит., М. (1959). 259 с.