04;11;12 Запаздывание пробоя в вакууме

© А.А. Емельянов

Орловский государственный технический университет, 302020 Орел, Россия e-mail: orelrce@ostu.ru

(Поступило в Редакцию 7 октября 2002 г.)

На основе механизма джоулева инициирования рассмотрено запаздывания пробоя в вакууме. Исследовано влияние материала катода на время запаздывания пробоя. Сформулирован критерий оптимальности кондиционирования электродов вакуумного промежутка. Показано, что реализация оптимальных режимов кондиционирования формирует поверхность катода с минимальным значением коэффициента усиления поля на ее микронеоднородностях, позволяя оценивать эмиссионные параметры поверхности катода, а также импульсную электрическую прочность вакуумной изоляции.

Введение

Воздействие высоковольтного импульса на электроды вакуумного промежутка может приводить к электрическому пробою, возникающему с некоторым запаздыванием после приложения импульса. Запаздывание пробоя в вакууме определяется инерционностью процессов, приводящих к его инициированию. Время запаздывания пробоя t_d зависит от состояния поверхности и электрофизических параметров материала катода, а также от величины и формы воздействующего импульса.

Применение импульсов напряжения наносекундного диапазона длительностей существенно сокращает число возможных механизмов инициирования вакуумного пробоя, при этом основным остается катодный механизм, когда инициирование вызвано взрывным разрушением эмиттера в результате джоулева разогрева протекающим через него термоавтоэлектронным током.

Использование механизма джоулева инициирования проводит к аналитическим соотношениям, связывающим время запаздывания пробоя в вакууме с напряженностью электрического поля и физическими постоянными материала катода. Эти соотношения позволяют не только объяснять экспериментальные результаты, но и дают возможность проанализировать влияние материала электродов за время запаздывания пробоя, сформулировать критерий оптимальности кондиционирования электродов вакуумного промежутка. Обработка электродов высоковольтными импульсами длительностью равной времени запаздывания пробоя $t_p = t_d$ соответствует оптимальному режиму кондиционирования. Данный режим формирует поверхность катода с минимальным значением коэффициента усиления напряженности электрического поля β на ее микронеоднородностях и максимизирует испульсную электрическую прочность изоляции. Реализация оптимальных режимов кондиционирования позволяет достигать заданной электрической прочности вакуумной изоляции, а также оценивать эмиссионные параметры поверхности катода [1].

Критерий инициирования

Использование импульсов напряжения длительностью

$$t_r \ll t_p \ll h^2 \rho c / \lambda, \tag{1}$$

где t_r — время термической релаксации; h — высота эмиттера; ρ , c, λ — соответственно плотность, удельная теплоемкость и коэффициент теплопроводности материала эмиттера, позволяет привести краевую задачу для распределения температуры эмиттера [2] к виду

$$\begin{cases} \rho c \ \frac{dT}{dt} = j_0^2 \left(\frac{\pi T/2T^*}{\sin(\pi T/2T^*)} \right)^2 \kappa_0 T, \\ T \big|_{t=0} = T_0, \qquad T \big|_{t=t_d} = T_{\rm cr}, \end{cases}$$
(2)

где j_0 — плотность тока автоэлектронной эмиссии, κ_0 — коэффициент пропорциональности в зависимости удельного сопротивления материала эмиттера от температуры $\kappa(T) = \kappa_0 T$; T^* — температура инверсии, равная $T^* = 5.67 \cdot 10^{-7} \varphi^{-1/2}$; φ — работа выхода [3].

Решение задачи (2) позволяет, не конкретизируя геометрию эмиттирующего участка катодной поверхности, получить аналитические соотношения, представляющие время запаздывания t_d как функцию критической микронапряженности $E_{\rm cr}$ электрического поля и физических постоянных материала катода.

Запись уравнения (2) в интегральной форме

$$\int_{0}^{t_{d}} j_{0}^{2}(t)dt = a \, \frac{\rho c}{\kappa_{0}},\tag{3}$$

где

$$a = \left[Ci(x) - \frac{\sin x}{x} - \frac{1}{2} \frac{\sin^2(x/2)}{(x/2)^2}\right] \Big|_{x=\pi T_0/T^*}^{x=\pi T_{\rm er}/T^*},$$
$$Ci(x) = -\int_x^\infty \frac{\cos y}{y} \, dy.$$

является критерием инициирования вакуумного пробоя, согласно которому инициирование происходит в результате выделения в эмиттере за промежуток до взрыва

Материал	ρ , kg/m ³	T_f , °C	λ , W/m · °C	c, J/kg · °C	κ , $10^{-10} \Omega m/K$	ϕ , eV	$\rho c/\kappa_0$, $10^{16} \mathrm{A}^2 \cdot \mathrm{s/m}^4$
Zr	6500	1860	17	276	15.02	3.70	0.12
Ti	4500	1725	15	577	17.58	3.85	0.15
Be	1850	1284	167	200	1.46	3.90	0.25
Nb	8570	2410	50	272	5.13	4.00	0.45
Та	16 700	2850	54	142	4.94	4.10	0.48
Al	2703	657	209	922	0.96	4.25	2.60
Mo	10 200	2620	151	264	1.90	4.27	1.42
Ag	10 500	961	408	234	0.59	4.30	4.16
Au	19 300	1063	311	126	0.81	4.30	3.00
Fe	7870	1535	73	452	3.59	4.31	1.00
Cu	8890	1083	394	386	0.63	4.40	5.44
Ni	89 001	1455	95	444	2.67	4.50	1.48
W	19 300	3380	168	218	2.01	4.54	2.09
Cr	7100	1890	67	461	7.69	4.58	0.43
Re	20 500	3180	71	138	7.69	4.80	0.37

Физические постоянные металлов

энергии, равной энергии его разрушения [4]. Величина $a\rho c/\kappa_0$ определяет удельную энергию разрушения эмиттера.

время *t_d* на прямоугольном импульсе, что соответствует экспериментальным результатам [6].

Время запаздывания пробоя

Экспериментальное определение времени запаздывания t_d выполняют на импульсах напряжения прямоугольной формы при различных соотношениях длительностей фронта t_f и импульса t_p . При этом значения t_d , определенные на прямоугольных импульсах с бесконечно коротким фроном ($t_f \ll t_p$), отличаются как от значений t_{d1} , измеренных на прямоугольных импульсах с конечным фронтом ($t_f \sim t_p$), так и от значений t_{d2} , определенных на фронте импульса ($t_f = t_p$).

Решение уравнения (3) дает выражения для времени запаздывания на импульсах разной формы: прямоугольный импульс с бесконечно коротким фронтом

$$t_{d} = 4.2 \cdot 10^{11} \frac{a\rho c}{\kappa_{0}} \varphi^{2} \exp\{-21.6\varphi^{-1/2}\}$$
$$\times \frac{\exp\{1.32 \cdot 10^{10}\varphi^{3/2}E_{\rm cr}^{-1}\}}{E_{\rm cr}^{4}}, \qquad (4)$$

косоугольный импульс

$$t_{d2} = 1.32 \cdot 10^{10} \, \frac{\varphi^{3/2}}{E_{\rm cr}} \, t_d, \tag{5}$$

прямоугольный импульс с конечным фронтом

$$t_{d1} = t_d + t_f (1 - 7.58 \cdot 10^{-11} \varphi^{-3/2} E_{\rm cr}).$$
 (6)

Зависимости $t_d = f(E_{cr})$, рассчитанные по выражениям (4)–(6) для вольфрама, удовлетворительно соответствуют экспериментальным результатам [5], что указывает на справедливость использованного подхода и сделанных допущений. При $E_{cr} = \text{const}$ время запаздывания t_{d2} на косоугольной волне на порядок превосходит

Влияние материала электродов

Аналитические выражения (4)-(6) представляют время запаздывания пробоя как функцию критической микронапряженности электрического поля, работы выхода и удельной энергии разрушения эмиттера. По выражению (4) для металлов со значениями работы выхода от 3.7 до 4.8 eV построены зависимости $t_d = f(E_{\rm cr})$. Физические постоянные [7–9], использованные при расчетах, приведены в таблице.

На рис. 1 представлены зависимости времени запаздывания пробоя от микронапряженности электрического поля, инициирующего пробой, рассчитанные по выражению (4) для циркония, бериллия, тантала, молибдена и меди.

Рис. 1. Зависимость времени запаздывания от микронапряженности электрического поля для разных металлов: 1 - Zr, 2 - Be, 3 - Ta, 4 - Mo, 5 - Cu. t_d — в секундах.

Журнал технической физики, 2003, том 73, вып. 9

Рис. 2. Удельная энергия разрушения эмиттера (a) и время запаздывания пробоя (b) как функции работы выхода. t_d — в секундах.

При $E_{\rm cr}$ = const переход от циркония к меди сопровождается ростом времени запаздывания на 4 порядка величины. Зависимости $t_d = f(E_{\rm cr})$, рассчитанные для никеля, вольфрама, хрома и рения, мало отличаются от приведенной кривой для меди, практически совпадая с ней. При переходе от одного материала к другому существенное влияние не величину времени запаздывания t_d оказывают как работа выхода φ , так и удельная энергия разрушения эмиттера $a\rho c/\kappa_0$.

На рис. 2, *а* приведены значения удельной энергии разрушения $a\rho c/\kappa_0$ для разных металлов как функция работы выхода.

Переход от циркония ($\varphi_{Zr} = 3.7 \,\text{eV}$) к меди ($\varphi_{Cu} = 4.4 \,\text{eV}$) сопровождается ростом работы выхода на 0.7 eV, при этом удельная энергия разрушения увеличивается в ~40 раз, достигая максимального значения у меди $a\rho c/\kappa_0 = 7.24 \cdot 10^{16} \,\text{A}^2 \text{s/m}^4$. Переход от меди к рению ($\varphi_{Re} = 4.8 \,\text{eV}$) увеличивает φ на 0.4 eV, однако при этом $a\rho c/\kappa_0$ уменьшается в ~13 раз до $5.4 \cdot 10^{15} \,\text{A}^2 \text{s/m}^4$. Наличие максимума в зависимости $a\rho c/\kappa_0 = f(\varphi)$ существенным образом сказывается на характере кривой $t_d = f(\varphi)$.

На рис. 2, *b* приведены значения логарифма времени запаздывания при $E_{\rm cr} = 7 \cdot 10^9$ V/m для разных металлов, представленные в виде функции от работы выхода.

Переход от циркония к меди сопровождается ростом времени запаздывания на 4 порядка величины, при этом 2 порядка дает увеличение работы выхода и столько же увеличение удельной энергии разрушения. Переход от меди к рению практически не изменяет значение времени запаздывания, так как рост t_d за счет увеличения φ скомпенсирован соответствующим уменьшением $a\rho c/\kappa_0$.

Приведенные результаты позволяют обосновывать выбор материала электродов вакуумных промежутков. Для обеспечения заданной электрической прочности следует использовать материалы не только с высоким значением работы выхода, но и с максимальной величиной удельной энергии разрушения.

Критерий оптимальности

При длительности высоковольтного импульса, меньшей времени запаздывания пробоя $t_p < t_d$, энергии импульса недостаточно для разрушения эмиттера. С увеличением длительности и приближения к критическому состоянию, инициирующему пробой и характеризуемому равенством $t_p = t_d$, имеет место сглаживание микрорельефа и полировка поверхности катода [10].

При $t_p > t_d$ энергия высоковольтного импульса идет не только на разрушение эмиттера, но и на развитие коммутационных процессов в промежутке. С уменьшением длительности импульса тока взрывной эмиссии по мере приближения длительности высоковольтного импульса к критической величине, равной времени запаздывания пробоя в вакууме $t_p = t_d$, происходит сокращение размеров микрократеров вплоть до полировки катодной поверхности [11,12].

При $t_p = t_d$ энергия, запасаемая в эмиттере за промежуток времени до взрыва, оказывается равной энергии его разрушения. Энергии импульса достаточно лишь для инициирования пробоя, ее не хватает на поддержание и дальнейшее развитие разряда. Обработка поверхности катода высоковольтными импульсами длительностью $t_p = t_d$ лишь разрушает микровыступы поверхности катода без регенерации новых центров эмиссии.

Таким образом, режим обработки электродов вакуумного промежутка, при котором длительность высоковольтного импульса равна времени запаздывания пробоя $t_p = t_d$, является оптимальным, обеспечивающим максимальное выравнивание микрорельефа поверхности катода и соответствующую ему максимальную импульсную электрическую прочность вакуумной изоляции при минимальной продолжительности процесса кондиционирования. Критерий оптимальности получаем в результате подстановки $t_p = t_d$ в (3)

$$\int_{0}^{t_{p}} j_{0}^{2}(t)dt = a \, \frac{\rho c}{\kappa_{0}}.$$
(7)

Рост мощности импульсов при соответствующем уменьшении их длительности, обеспечивающем выполнение равенства $t_p = t_d$, повышает эффективность процесса кондиционирования электродов, приводя в пределе к полировке поверхности катода.

Оценка эмиссионных параметров

В экспериментах по времени запаздывания пробоя электроды вакуумного промежутка предварительно тренируют высоковольтными импульсами $t_p = \text{const}$ с минимальным перенапряжением, достигая для каждого значения амплитуды кондиционирующего импульса стабильной величины времени запаздывания, а следовательно, и стабильного состояния поверхности катода, характеризуемого коэффициентом усиления β напряженности электрического поля на ее микронеоднородностях. Локальная и макронапряженности электрического поля связаны соотношением

$$E = \beta E_0. \tag{8}$$

Экспериментальная зависимость $t_d = f(E_0)$, получаемая в результате высоковольтной тренировки с минимальным перенапряжением, соответствует реализации оптимального режима кондиционирования, когда $t_p \approx t_d$. Из сравнения при $t_d = \text{const}$ экспериментальной $t_d = f(E_0)$ и расчетной $t_d = f(E_{\text{cr}})$ кривых можно определять величину коэффициента усиления β , достигаемую при оптимальных режимах кондиционирования. Сопоставление при $E_0 = \text{const}$ экспериментальных зависимостей $t_d = f(E_0)$ для импульсов разной формы позволяет оценивать значения как коэффициента усиления поля, так и работы выхода.

1. Коэффициент усиления поля. Экспериментальные результаты по времени запаздывания пробоя в вакууме наиболее полно представлены для медных электродов. Они получены в техническом и сверхвысоком вакууме для широкого диапазона межэлектродных промежутков от 3μ m до 20 сm, перекрывающего пять порядков величины [13–17]. На рис. 3 представлены экспериментальная $t_d = f(E_0)$ (кривая 1) и расчетная $t_d = f(E_{\rm cr})$ (кривая 2) зависимости времени запаздывания вакуумного пробоя от напряженности электрического поля, инициирующего пробой, для медных электродов. Расчетная зависимость $t_d = f(E_{\rm cr})$ построена по соотношению (4) и физическим постоянным, приведенным в таблице.

Разность абсцисс расчетной $t_d = f(E_{\rm cr})$ и экспериментальной $t_d = f(E_0)$ кривых при $t_d = {\rm const}$ определяет величину коэффициента усиления поля

$$\lg\beta = \lg E_{\rm cr} - \lg E_0,\tag{9}$$

достигаемую в результате реализации оптимальных режимов кондиционирования.

Как следует из графиков, с ростом напряженности электрического поля имеет место сближение кривых

Рис. 3. Зависимости времени запаздывания пробоя от напряженности электрического поля, инициирующего пробой, для меньших электродов. I — экспериментальная $t_d = f(E_0)$, 2 — расчетная $t_d = f(E_{cr})$; экспериментальные результаты: $\circ - [13], \lhd - [14], \Box - [15], * - [16], \bullet - [17].$

 $t_d = f(E_0)$ и $t_d = f(E_{cr})$, которые сходятся при некотором критическом значении

$$E_0 = E_{\rm cr} = 1.32 \cdot 10^{10} \,\rm V/m, \tag{10}$$

по достижении которого напряженности на вершине и у основания микровыступа оказываются равными, а коэффициент усиления поля принимает минимальное значение $\beta = 1$, соответствующее идеально гладкой поверхности.

Сопоставляя при $t_d = \text{const}$ экспериментальную и расчетную кривые, можно построить зависимости коэффициента усиления поля $\beta = f(E_0)$ и $\beta = f(t_p)$ от параметров кондиционирующего воздействия. Кривые $\beta = f(E_0)$ и $\beta = f(t_p)$, приведенные на рис. 4, характеризуют изменение коэффициента усиления β в результате реализации оптимальных режимов кондиционирования импульсами $t_p = t_d$ при разных значениях макронапряженности E_0 .

Коэффициент усиления поля β , получаемый в результате кондиционирования импульсами $t_p = t_d$, аппроксимируется степенной зависимостью [18]

$$\beta = 1.28 \cdot 10^9 E_0^{-0.9}. \tag{11}$$

Согласно (11), реализация оптимальных режимов кондиционирования позволяет получать поверхности катода с заданным значением коэффициента β , величина которого определяется лишь макронапряженностью E_0 электрического поля, инициирующего пробой.

Оптимальные режимы кондиционирования позволяют при соответствующем регулировании амплитуды и длительности высоковольтных импульсов изменять коэффициент усиления поля β до 3 порядков величины. Это можно использовать для формирования микрорельефа с заданным значением β.

Изменение характера зависимости $\beta = f(t_p)$, приведенной на рис. 4, b, при $t_d > 10^{-7}$ s, очевидно, связано с влиянием охлаждения эмиттера теплопроводностью. Из данной кривой следует, что для повышения электрической прочности вакуумной изоляции целесообразно использовать импульсы напряжения длительностью $t_p < 10^{-7}$ s, причем по мере уменьшения длительности эффективность процесса кондиционирования возрастает.

Коэффициент усиления поля β , представляющий отношение напряженностей на вершине и у основания микровыступа, определяется только его геометрическими параметрами и не зависит от материала электродов. Отсюда следует, что выражения (10) и (11), полученные для медных электродов, должны быть справедливы и для других материалов. С целью проверки этого предположения выполнены расчеты для электродов из алюминия, хрома, железа, никеля, молибдена и вольфрама. При построении экспериментальных зависимостей использованы результаты работ [5,6,13–17,19,20].

Рис. 4. Зависимости коэффициента усиления поля от параметров кондиционирующего воздействия при $t_p \approx t_d$. $a - \beta = f(E_0)$; $b - \beta = f(t_p)$. Экспериментальные результаты: $\circ - [13], \lhd - [14], \Box - [15], * - [16], \bullet - [17].$

Рис. 5. Коэффициент усиления поля после кондиционирования импульсами $t_p = t_d$ как функция макронапряженности электрического поля, инициирующего пробой: \Diamond — Al [13–16], • — Cr [19], • — Fe [6,18], * — Ni [17], \triangleright — Cu [13–17], \lhd — Mo [15,16], * — W [6,17].

Значения коэффициента усиления поля β , определенные из экспериментов по времени запаздывания вакуумного пробоя для электродов из алюминия, хрома, железа, никеля, меди, молибдена и вольфрама, соответствующие оптимальному режиму кондиционирования высокольтными импульсами $t_p \approx t_d$, приведены в виде одного графика на рис. 5.

Экспериментальные результаты, полученные на электродах из различных материалов, удовлетворяют единой зависимости $\beta = f(E_0)$. Из данной зависимости следует, что величина коэффициента усиления поля β , характеризующего состояние поверхности катода, обработанной высоковольтными импульсами длительностью $t_p = t_d$, не зависит от материала электродов и определяется лишь макронапряженностью E_0 электрического поля, инициирующего пробой.

При выполнении критерия оптимальности (7) рост макронапряженности E_0 приводит к уменьшению коэффициента усиления β , что соответствует улучшению качества обработки поверхности катода. Кондиционирование электродов при $E_0 = E_{\rm cr}$ и длительности $t_p = t_d$ обладает эффектом полировки катодной поверхности.

Из выражений для времени запаздывания на косоугольной волне напряжения (5) и прямоугольном импульсе с конечным фронтом (6) с учетом соотношения (8) получаем аналитические выражения для оценки коэффициента усиления поля β из экспериментов по времени запаздывания пробоя соответственно с использованием косоугольной волны напряжения

$$\beta = 1.32 \cdot 10^{10} \varphi^{3/2} E_0^{-1} \frac{t_d}{t_{d2}} \tag{12}$$

и прямоугольного импульса с конечным фронтом

$$\beta = 1.32 \cdot 10^{10} \varphi^{3/2} E_0^{-1} \left(1 + \frac{t_d - t_{d1}}{t_f} \right).$$
(13)

Из соотношений (12), (13) следует, что коэффициент усиления поля β может быть определен из сопоставления при $E_0 =$ const времен запаздывания пробоя на импульсах напряжения разной формы. Экспериментальная проверка на медных электродах показала, что при $E_0 = 4.2 \cdot 10^7$ V/m время запаздывания на прямоугольном импульсе составило $t_d = 28$ ns и $t_{d2} = 0.5$ ns на косоугольной волне. Значение коэффициента β , определенное с помощью соотношения (12), оказалось равным 162, что соответствует кондиционированию электродов импульсами $t_p = t_d$ при $E_0 = 4.2 \cdot 10^7$ V/m и удовлетворяет зависимости $\beta = f(E_0)$, приведенной на рис. 5.

2. Работа выхода. Реализация оптимальных режимов кондиционирования сопровождается формированием поверхности катода с известным значением коэффициента усиления поля β , что может быть использовано для оценки работы выхода катода. Решая (12) и (13) относительно φ , получаем соотношения

$$\varphi = 0.21 E_0^{1/15} (t_{d2}/t_d)^{2/3}, \qquad (14)$$

$$\varphi = 0.21 E_0^{1/15} \left(t_f / \left(t_d - t_{d1} + t_f \right) \right)^{2/3}, \tag{15}$$

позволяющие при $E_0 = \text{const}$ оценивать работу выхода катода из экспериментов по времени запаздывания пробоя на импульсах напряжения разной формы.

Экспериментальная проверка выполнена на косоугольном и прямоугольном импульсах для электродов из алюминия и меди. Для электродов из алюминия время запаздывания пробоя для $E_0 = 1.9 \cdot 10^7$ V/m составило на косоугольной волне $t_{d2} = 1.3 \cdot 10^{-5}$ s, тогда как на прямоугольном импульсе оно было на порядок меньше $t_{d2} = 7.4 \cdot 10^{-7}$ s. По выражению (14) и результатам измерений времени запаздывания было оценено значение работы выхода катода из алюминия $\varphi_{Al} = 4.4$ eV. Измерения для электродов из меди дали $\varphi_{Cu} = 4.7$ eV. Полученные оценки работы выхода удовлетворительно соответствуют значениям φ , приведенным в таблице.

Электрическая прочность

Кондиционирование импульсами $t_p = t_d$ формирует микрорельеф поверхности катода, характеризуемый определенным значением коэффициента усиления поля β (11), что позволяет представить время запаздывания как функцию макронапряженности E_0 электрического поля на импульсах разной формы: прямоугольный импульс с бесконечно коротким фронтом

$$t_{d} = 1.57 \cdot 10^{-25} \frac{a\rho c}{\kappa_{0}} \varphi^{2} \exp\{-21.6\varphi^{-1/2}\}$$
$$\times \frac{\exp\{10.3\varphi^{3/2}E_{0}^{-0.1}\}}{E_{0}^{0.4}}, \tag{16}$$

Рис. 6. Расчетные зависимости времени запаздывания от напряженности электрического поля, инициирующего пробой, для алюминия. $I - t_d = f(E_0)$; $2 - t_d = f(E_c)$. Экспериментальные результаты: $\circ - [13], \diamond - [15], * - [16].$

косоугольная волна

$$t_{d2} = 10.3 \, \frac{\varphi^{3/2}}{E_0^{0.1}} \, t_d, \tag{17}$$

прямоугольный импульс с конечным фронтом

$$t_{d1} = t_d + t_f (1 - 0.097 \varphi^{-3/2} E_0^{0.1}).$$
(18)

Выражения (16)–(18) позволяют по значениям физических параметров материала катода рассчитывать время запаздывания, соответствующее реализации оптимальных режимов кондиционирования высоковольтными импульсами $t_p = t_d$ как функцию макронапряженности E_0 электрического поля.

Зависимости времени запаздывания $t_d = f(E_0)$ от макро- и $t_d = f(E_{cr})$ от микронапряженности для алюминия, рассчитанные по физическим постоянным, приведенным в таблице, и соотношениям (4) и (16), представлены на рис. 6. Расчетные кривые удовлетворительно соответствуют экспериментальным результатам [13,15,16].

С целью выяснения возможности применения джоулева механизма инициирования пробоя для оценки импульсной электрической прочности вакуумных промежутков с напыленными электродами выполнены эксперименты с ускоряющим промежутком микроканальная пластина–катодолюминесцентный экран.

С помощью аналитических выражений (4) и (16) с учетом физических постоянных для хрома (см. таблицу) рассчитаны и построены зависимости времени запаздывания пробоя $t_d = f(E_0)$ от макро- и $t_d = f(E_{cr})$ от микронапряженности электрического поля. Экспериментальные результаты по времени запаздывания пробоя, полученные в системе напыленных электродов микроканальная пластина-катодолюминесцентный экран, удовлетворительно соответствуют расчетной кривой $t_d = f(E_0)$ [20]. Из экспериментальных результатов по времени запаздывания пробоя вакуумных промежутков как с цельнометаллическими, так и с напыленными электродами следует, что коэффициент усиления β напряженности электрического поля, получаемый в результате реализации оптимальных режимов кондиционирования, не зависит от материала и характера электродов и определяется величиной макронапряженности электричекого поля, инициирующего пробой (11).

Заключение

Экспериментальное исследование запаздывания пробоя в вакууме дает информацию не только об импульсной электрической прочности вакуумной изоляции, но и об эмиссионных параметрах поверхности катода. Обработка электродов вакуумного промежутка высоковольтными импульсами, длительность которых равна времени запаздывания пробоя, соответствует реализации оптимального режима кондиционирования, обеспечивающего максимальное сглаживание поверхности катода и соответствующий ему максимум импульсной электрической прочности вакуумной изоляции. Регулируя мощность кондиционирующих импульсов в оптимальном режиме, можно получать поверхности катода с заданным значением коэффициента усиления поля β и соответственно вакуумные промежутки с заданной импульсной электрической прочностью. Реализация оптимальных режимов кондиционирования, формируя поверхность катода, позволяет оценивать величины как коэффициента усиления поля на ее микронеоднородностях, так и работы выхода.

Список литературы

- Емельянов А.А. Импульсное электрическое кондиционирование электродов в вакууме. Усть-Каменогорск: 1999. 184 с.
- [2] Литвинов Е.А., Месяц Г.А., Шубин А.Ф. // Изв. вузов. Физика. 1970. № 4. С. 149–151.
- [3] Емельянов А.А., Кассиров Г.М., Смирнов Г.В. // Изв. вузов. Физика. 1976. № 4. С. 142–145.
- [4] Емельянов А.А., Кассиров Г.М. // Изв. вузов. Физика. 1976.
 № 9. С. 105–110.
- [5] Карцев Г.К., Месяц Г.А., Проскуровский Д.И. и др. // Докл. АН СССР. 1970. Т. 192. № 2. С. 309–312.
- [6] Олендзская Н.Ф., Сальман М.А. // ЖТФ. 1970. Т. 40. Вып. 2. С. 333–337.
- [7] Физический энциклопедический словарь / Под ред.
 Б.А Введенского, Б.М. Вул. М., 1966. Т. 5. 576 с.
- [8] Физический энциклопедический словарь / Под ред. А.М. Прохорова. М., 1983. 928 с.
- [9] Богородицкий Н.П., Пасынков В.В., Тареев Б.М. Электротехнические материалы. Л., 1977. 352 с.
- [10] Jutner B., Puchkarov V.F., Rohrbeck W. Nanosecond Field Emission. Production and Destruction of Field Emitting Micro-tips by Cathode Flares. Berlin, 1975. 80 p.
- [11] Mesyats G.A., Proskourovsky D.I., Yankelevitch E.B. // Proc. VII ISDEIV. Novosibirsk, 1976. P. 230–233.

- [12] Месяц Г.А., Проскуровский Д.И., Янкелевич Е.Б. и др. // Д. АН СССС. 1976. Т. 227. № 6. С. 1335–1337.
- [13] Кассиров Г.М. // ЖТФ. 1966. Т. 36. Вып. 10. С. 1883-1885.
- [14] Каляцкий И.И., Кассиров Г.М., Смирнов Г.В. и др. // ЖТФ. 1975. Т. 45. Вып. 7. С. 1547–1550.
- [15] Месяц Г.А., Бугаев С.П., Проскуровский Д.И. и др. // РиЭ. 1969. Т. 14. № 12. С. 2222–2230.
- [16] Вавилов С.П., Месяц Г.А. // Изв. вузов. Физика. 1970. № 8. С. 90–94.
- [17] Juttner B., Rohrbeck W., Wolff H. // Proc. IX ICPIG. Bucharest, 1969. P. 140.
- [18] Емельянов А.А. // ПТЭ. 1997. № 5. С. 68–71.
- [19] Chalmers I.D., Phukan B.D. // Vacuum. 1982. Vol. 32. N 3. P. 145–150.
- [20] Емельянов А.А. // ПТЭ. 1998. № 6. С. 90–91.