01;08 Отражение и преломление акустических волн на границе диэлектрик—магнитоакустический материал

© М.М. Карпук,¹ Д.А. Костюк,² Ю.А. Кузавко,³ В.Г. Шавров³

¹ Politechnica Kostalinska,
 75-620 Koszalin, Poland
 ² Брестский государственный технический университет,
 224017 Брест, Белоруссия
 ³ Институт радиотехники и электроники РАН,
 103907 Москва, Россия

(Поступило в Редакцию 3 сентября 2002 г. В окончательной редакции 29 января 2003 г.)

Рассмотрено отражение и преломление продольных и поперечных акустических волн на плоской границе диэлектрика и антиферромагнетика с анизотропией типа "легкая плоскость", находящегося в области ориентационного фазового перехода по магнитному полю. Показана возможность эффективного управления с помощью поля углами преломления, а также всеми четырьмя коэффициентами преобразования волн. Оговорены условия возникновения критических углов полного внутреннего отражения и влияния на их значения магнитного поля. Проанализирована возможность излучения в окрестности фазового перехода скользящей волны в объем материала.

При прохождении монохроматической плоской упругой волны с определенной поляризацией через границу раздела двух твердых сред в общем случае возникают три волны по каждую сторону от границы. Наиболее простым является случай двух изотропных сред, поскольку в этом случае волна порождает не более двух волн в каждой из сред, а их поляризации являются чисто продольными или чисто поперечными. В данной работе рассмотрим отражение упругих волн на границе диэлектрик-антиферромагнетик. Для простоты считаем диэлектрик и магнитный кристалл изотропными по упругим и магнитоупругим (МУ) свойствам. Отметим, что в магнитоупорядоченных кристаллах при подходе к точке ориентационного фазового перехода (ОФП) магнитоупругое взаимодействие эффективно возрастает, обусловливая изменение спектра длинноволновых поперечных акустических колебаний от линейного до квадратичного в самой точке ОФП [1]. При этом даже для изотропного по упругим и МУ свойствам магнетика вблизи ОФП возникает анизотропия динамических упругих модулей, влекущая за собой уменьшение скорости продольного звука и особенно скорости поперечного звука.

Ранее [2] рассматривалось отражение магнитоакустических волн (MAB) от свободной поверхности полубесконечного кристалла антиферромагнетика с анизотропией типа "легкая плоскость" (АФЛП), находящегося вблизи ОФП по магнитному полю **H**, приложенному в базисной *xy*-плоскости кристалла (**H** || **y**, точка ОФП определяется условием H = 0). Вышеуказанный магнетик с сильным смягчением скорости звука вблизи ОФП, равно как и другие магнетики с таким свойством, в дальнейшем будем называть магнитоакустическими материалами (MAM). Здесь поверхность МАМ граничит не с вакуумом, а с полубесконечным пространством

диэлектрика, поэтому следует ожидать новых особенностей в распространении акустических волн в такой слоистой структуре.

Приведем выражение для упругой части свободной энергии оговоренного выше антиферромагнетика [1]

$$F_{2y} = \frac{1}{2}\lambda_2 u_{2,ii}^2 + \mu_2 u_{2,ik}^2 - 2\mu_2 \xi u_{2,xy}^2, \qquad (1)$$

где λ_2 , μ_2 — коэффициенты Ламэ для МАМ; $u_{2,ik}$ — тензор упругих деформаций; $\xi = \varepsilon_{me}^2 / \varepsilon_{1k}^2$ — параметр МУ связи; $\varepsilon_{me} = g \sqrt{2H_E H_{me}}$ — МУ щель в спектре спиновых волн; g — гиромагнитное отношение; $\varepsilon_{1k} = \sqrt{\Theta_N^2 (ak)^2 + \varepsilon_M^2 + \varepsilon_{me}^2}$ — энергия низкочастотных магнонов; $\varepsilon_M = g \sqrt{H(H + H_D)}$ — магнитная часть щели, обращающаяся в нуль в точке ОФП (H = 0); H_E , H_D , H_{me} — соответственно эффективные поля обмена, Дзялошинского и магнитострикции; Θ_N — температура Нееля; **k** — волновой вектор; a — параметр решетки.

Для описания упругих свойств диэлектрика достаточно двух первых слагаемых в выражении (1).

материальных Приведем значения констант для составных веществ слоистой структуры кварц-гематит: кварц — $s_{1l} = 5000$ m/s, $s_{1t} = 3800$ m/s, $\rho_1 = 2650 \text{ kg/m}^3;$ гематит — $s_{2l} = 6760 \text{ m/s},$ $s_{2t} = 4200 \text{ m/s},$ $\rho_2 = 5290 \text{ kg/m}^3,$ $H_E = 9.2 \cdot 10^6 \text{ Oe},$ $H_D = 2.2 \cdot 10^4$ Oe, $H_{me} = 0.63$ Oe. Исходя из этих данных оценим МУ часть щели $\omega_{me} = \varepsilon_{me}/\hbar = 34 \, \mathrm{GHz}$, т.е. в области частот $\omega \ll \omega_{me}$, реально возбуждаемых ультразвуковыми излучателями, справедливо приближение, когда динамика спиновой системы в явном виде не рассматривается, а ее влияние на акустическую систему можно свести к соответствующей перенормировке упругих динамических модулей или, что то же самое, к перенормировке скоростей продольного \tilde{s}_{2l} и поперечного \tilde{s}_{2t} звука в МАМ.

Рис. 1. Геометрическое построение волновых векторов для волн падающей продольной, отраженных продольной и поперечной и преломленных продольной и поперечной МАВ на границе кварц-гематит. *H* = 100 (сплошная кривая); 2000 Ос (штриховая).

Используя выражения для свободной энергии диэлектрика и МАМ, нетрудно получить волновые уравнения для механических смещений, при решении которых в виде плоских гармонических незатухающих волн получаются следующие выражения для скоростей поперечной и продольной МАВ [3]:

$$\tilde{s}_{2t} = \sqrt{\frac{\mu_2}{\rho_2} \left(1 - \xi \cos^2 2\alpha\right)},$$
 (2)

$$\tilde{s}_{2l} = \sqrt{\frac{\lambda_2 + 2\mu_2}{\rho_2} (1 - n\xi \sin^2 2\alpha)},$$
 (3)

где угол α отсчитывается от отрицательного направления оси у против часовой стрелки; $s_{2t} = \sqrt{\mu_2/\rho_2}$, $s_{2l} = \sqrt{\lambda_2 + 2\mu_2/\rho_2}$ — соответственно скорости поперечного и продольного звука вдали от ОФП; $n = \mu_2/\lambda_2 + 2\mu_2 = s_{2t}^2/s_{2l}^2$.

Пусть из диэлектрика (y > 0) на границу с МАМ (y < 0) падает продольная акустическая волна под углом α к нормали границы (y = 0). Она порождает две отраженные — продольную и поперечную волны —

и две преломленные — продольную и поперечную МАВ. На рис. 1 построены поверхности обратных скоростей, позволяющие графически определить направления распространения отраженных и прошедших волн и их скорости. Упругие смещения u_i в случае плоских гармонических волн можно представить в виде (рис. 1)

$$\begin{pmatrix} u_{1l,x}^{I} \\ u_{1l,y}^{I} \end{pmatrix} = u_{1l0}^{I} \begin{pmatrix} \sin \alpha \\ -\cos \alpha \end{pmatrix} \\ \times \exp\left[i(k_{1l}^{I}x\sin \alpha - k_{1l}^{I}y\cos \alpha - \omega_{1l}^{I}t)\right], \quad (4)$$

$$\begin{pmatrix} u_{1t,x}^{R} \\ u_{1t,y}^{R} \end{pmatrix} = u_{1t\,0}^{R} \begin{pmatrix} -\cos\beta \\ \sin\beta \end{pmatrix} \\ \times \exp\left[i(k_{1t}^{R}x\sin\beta + k_{1t}^{R}y\cos\beta - \omega_{1t}^{R}t)\right], \quad (6)$$

Журнал технической физики, 2003, том 73, вып. 7

$$\begin{pmatrix} u_{2l,x}^{T} \\ u_{2l,y}^{T} \end{pmatrix} = u_{2l0}^{T} \begin{pmatrix} \sin \gamma \\ -\cos \gamma \end{pmatrix} \times \exp\left[i(k_{2l}^{T}x\sin\gamma - k_{2l}^{T}y\cos\gamma - \omega_{2l}^{T}t)\right], \quad (7)$$
$$\begin{pmatrix} u_{2t,x}^{T} \\ u_{2t,x}^{T} \end{pmatrix} = u_{2t0}^{T} \begin{pmatrix} \cos \delta \\ \sin \delta \end{pmatrix}$$

$$\times \exp[i(k_{2t}^T x \sin \delta - k_{2t}^T y \cos \delta - \omega_{2t}^T t)], \quad (8)$$

где u_0 и ω — амплитуда и частота волн.

Граничные условия, представляющие собой непрерывность нормальных компонент тензора механических напряжений T_{iy} и упругих деформаций u_i , в данном случае запишутся [4]

$$T_{1l,iy}^{l} + T_{1l,iy}^{R} + T_{1t,iy}^{R} = T_{2t,iy}^{T} + T_{2l,iy}^{T},$$
(9)

$$u_{1l,i}^{I} + u_{1l,i}^{R} + u_{1l,i}^{R} = u_{2t,i}^{T} + u_{2l,i}^{T}.$$
 (10)

Здесь индексы *I*, *R*, *T* соответствуют падающей (продольной), отраженным и прошедшим волнам; i = x, y. Из граничных условий (9), (10) после подстановки в них выражений (4)–(8) и $T_{ij} = \partial F/\partial u_{ij}$ — тензора напряжений следует, что в любой момент времени t $\omega_{1l}^I = \omega_{1l}^R = \omega_{2t}^R = \omega_{2l}^T = \omega$ и в любой точке плоскости y = 0 $k_{1l,x}^I = k_{1l,x}^R = k_{2t,x}^R = k_{2l,x}^T = k_x$. Из вышесказанного следует, что направления распространения волн определяются соотношениями

$$\frac{\sin\alpha}{s_{1l}} = \frac{\sin\beta}{s_{1t}} = \frac{\sin\gamma}{\tilde{s}_{2l}(\gamma)} = \frac{\sin\delta}{\tilde{s}_{2t}(\delta)},\tag{11}$$

а также могут быть найдены на основании этого выражения графически, исходя из геометрического построения поверхностей обратных фазовых скоростей всех волн, как это показано на рис. 1.

Из уравнений (11) с учетом (2), (3) находим выражения для углов преобразования волн

$$\sin^2\beta = a\,\sin^2\alpha,\tag{12}$$

(13)

$$\sin^2 \gamma = \frac{4\xi n \sin^2 \alpha + b - \sqrt{\left(4\xi n \sin^2 \alpha + b\right)^2 - 16\xi n \sin^4 \alpha}}{8\xi n \sin^2 \alpha}$$

$$\sin^2 \delta =$$

$$\frac{4\xi c \sin^2 \alpha - 1 + \sqrt{\left(4\xi c \sin^2 \alpha - 1\right)^2 - 16\xi (1 - \xi)c^2 \sin^4 \alpha}}{8\xi c \sin^2 \alpha},$$
(14)

где

$$a = \frac{s_{1t}^2}{s_{1l}^2}, \quad b = \frac{s_{1l}^2}{s_{2l}^2}, \quad c = \frac{s_{1l}^2}{s_{2t}^2}.$$

Согласно (13), (14) на рис. 2, 3 соответственно представлены зависимости углов преломления γ и δ от угла падения α при различной степени близости МАМ к точке его ОФП. Из рисунков видно,

7* Журнал технической физики, 2003, том 73, вып. 7

Рис. 2. Зависимость угла преломления γ поперечной МАВ от угла падения α продольной волны. *H*, Oe: *1* — 100, *2* — 500, *3* — 2000.

Рис. 3. Зависимость угла преломления δ продольной МАВ от угла падения α продольной волны, 1-3 — то же, что и на рис. 2.

что изменением внешнего магнитного поля **Н** можно добиться значительного управления углами преломления для возникающих в МАМ продольной и поперечной МАВ.

Из уравнений (9), (10) после подстановки выражений (4)–(8) можно определить коэффициент отражения падающей продольной волны $R_{ll} = u_{1l0}^R/u_{1l0}^I$, коэффициент преобразования ее при отражении в поперечную волну $R_{tt} = u_{1t0}^R/u_{1l0}^I$, а также коэффициент прохождения ее в МАМ $T_{ll} = u_{2l0}^T/u_{1l0}^I$ и коэффициент преобразования ее при преломлении в поперечную МАВ $T_{lt} = u_{2t0}^T/u_{1l0}^I$. Все эти четыре параметра можно определить методом Гаусса из системы линейных уравнений,

соответствующих граничным условиям (9), (10)

$$\begin{cases} \mu_{1}s_{1l}^{-1}\sin 2\alpha R_{ll} - \mu_{1}s_{1t}^{-1}\cos 2\beta R_{lt} \\ + \mu_{2}(1-\xi)\tilde{s}_{2l}^{-1}(\gamma)\sin 2\gamma T_{ll} \\ + \mu_{2}(1-\xi)\tilde{s}_{2t}^{-1}(\delta)\cos 2\delta T_{lt} = \mu_{1}s_{1l}^{-1}\sin 2\alpha, \\ (\lambda_{1}+2\mu_{1}\cos^{2}\alpha)s_{1l}^{-1}R_{ll} + \mu_{1}s_{1t}^{-1}\sin 2\beta R_{lt} \\ - (\lambda_{2}+2\mu_{2}\cos^{2}\gamma)\tilde{s}_{2l}^{-1}(\gamma)T_{ll} + \mu_{2}\tilde{s}_{2t}^{-1}(\delta)\sin 2\delta T_{lt} \\ = -(\lambda_{1}+2\mu_{1}\cos^{2}\alpha)s_{1l}^{-1}, \\ \sin \alpha R_{ll} - \cos \beta R_{lt} - \sin \gamma T_{ll} - \cos \delta T_{lt} = -\sin \alpha, \\ \cos \alpha R_{ll} + \sin \beta R_{lt} + \cos \gamma T_{ll} - \sin \delta T_{lt} = \cos \alpha. \end{cases}$$
(15)

Из-за громоздкости решения (15) для R_{ll} , R_{ll} , T_{ll} и T_{lt} приводить не будем. Предварительно отметим, что при нормальном ($\alpha = 0$) и скользящем ($\alpha = 90^{\circ}$) падении волны преобразование типов волн не происходит.

Численно система (15) решалась для конкретных слоистых структур. В частности, на рис. 4–7 приведены результаты расчетов для структуры кварц–гематит при различной степени близости последнего к точке ОФП.

Анализ (13), (14) показывает, что могут существовать два критических угла падения $\alpha_{l.1cr}$ и $\alpha_{l.2cr}$, начиная

Рис. 4. Зависимость модуля $|R_{ll}|$ и фазы $\varphi_{R_{ll}}$ коэффициента отражения R_{ll} продольной волны на границе кварц–гематит от угла падения α . 1-3 — то же, что и на рис. 2.

Рис. 5. Зависимость модуля $|R_{lt}|$ и фазы $\varphi_{R_{lt}}$ коэффициента преобразования R_{lt} продольной волны в поперечную волну на границе кварц–гематит от угла падения α . 1-3 — то же, что и на рис. 2.

с которых при $\alpha > \alpha_{l,1cr} = \arcsin b^{1/2}$ продольная МАВ начинает распространяться вдоль границы раздела сред, а затем при $\alpha > \alpha_{l,2cr} = \arcsin [c/(1-\xi)]^{1/2}$ аналогично ведет себя поперечная МАВ. Тем самым пороговое значение угла полного внутреннего отражения волны от границы с МАМ становится управляемым внешним магнитным полем.

При $\alpha > \alpha_{l,1cr}$ продольная МАВ, распространяясь вдоль границы, является неоднородной: ее скорость \tilde{s}'_{2l} и глубина проникновения Λ_{2i} ($u_{2l} \sim e^{y/\Lambda_{2l}}$) в МАМ начинают зависеть от угла падения α следующим образом:

$$\tilde{s}_{2l}' = \frac{s_{1l}}{\sin \alpha},\tag{16}$$

$$\Lambda_{2l} = \frac{s_{1l} s_{2l}}{\omega \sqrt{s_{2l}^2 \sin^2 \alpha - s_{1l}^2}}.$$
 (17)

При $\alpha > \alpha_{l,2 \text{ cr}}$ поперечная МАВ, распространяясь вдоль границы, также становится неоднородной, при этом \tilde{s}'_{2l} определяется аналогично \tilde{s}'_{2l}

$$\tilde{s}_{2t}' = \frac{s_{1t}}{\sin \alpha},\tag{18}$$

а глубина проникновения

$$\Lambda_{2t} = \frac{s_{1l} s_{2t} \sqrt{1 - \xi \cos^2 2\alpha}}{\omega \sqrt{s_{2l}^2 \sin^2 \alpha - s_{1l}^2}}.$$
 (19)

Анализ выражений (13), (14) показывает, что из-за сильной деформации поверхностей обратных скоростей звука в МАМ пороговым образом при некотором $\xi > \xi^*$ возникает еще один интересный эффект — излучение скользящей волны в объем. Критический угол $\alpha_{l, \mathrm{cr}}^*$ при этом определяется соотношением

$$\alpha_{l,\mathrm{cr}}^* = \arcsin\sqrt{\frac{b}{4\chi(1-\chi)}},\tag{20}$$

где $\chi = (\xi n)^{1/2}$ и зависит от близости МАМ к точке его ОФП.

При $\xi^* = [2 - b - 2(1 - b)^{1/2}]/(4n)$ получаем $\alpha_{l,cr}^* = 90^\circ$, а при дальнейшем возрастании параметра МУ связи ξ критический угол $\alpha_{l,cr}^*$ уменьшается. При $\alpha = \alpha_{l,cr}^*$ в (13) выражение под квадратным корнем зануляется и при $\alpha > \alpha_{l,cr}^*$ становится отрицательным. Формально получаем, что sin γ становится комплексным, а это физически означает уход скользящей волны от границы в

Рис. 6. Зависимость модуля $|T_{ll}|$ и фазы $\varphi_{T_{ll}}$ коэффициента прохождения T_{ll} продольной волны на границе кварц-гематит от угла падения α . 1-3 — то же, что и на рис. 2.

Рис. 7. Зависимость модуля $|T_{lt}|$ и фазы $\varphi_{T_{lt}}$ коэффициента преобразования T_{lt} продольной волны в поперечную МАВ на границе кварц–гематит от угла падения α . 1-3 — то же, что и на рис. 2.

объем диэлектрика с затуханием, возрастающим по мере удаления от границы. Отметим, что данное затухание является бездиссипативным (без поглощения энергии средой) и характеризует структуру возникшего нового колебательного процесса, который также остается сосредоточенным вблизи границы y = 0. Для структуры кварц–гематит $\beta_{t,lim} = 55^{\circ}$, $\alpha_{l,1 \text{ cr}}^* = 53^{\circ}$, $\alpha_{2,\text{cr}}^*$ отсутствует, $\xi^* = 0.1$; при $\xi = 1$ $\alpha_{l,\text{cr}}^* = 55^{\circ}$.

Перейдем теперь к исследованию падения из диэлектрика на границу с МАМ поперечной акустической волны. Порожденные отраженные и прошедшие волны описываются выражениями (5)–(8) с заменой $\alpha \to \beta$, $\beta \to \alpha, \ \delta \to \gamma, \ \gamma \to \beta$, а падающая волна представима в виде

$$\begin{pmatrix} u_{1t,x}^{l} \\ u_{1t,y}^{l} \end{pmatrix} = u_{1t0}^{l} \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} \\ \times \exp\left[i(k_{1t}^{l}x\sin\alpha - k_{1t}^{l}y\cos\alpha - \omega_{1t}^{l}t)\right].$$
(21)

Граничные условия (9), (10) справедливы с заменой $T_{1l,iy}^{I} \rightarrow T_{1t,iy}^{I}$ и $u_{1l,i}^{I} \rightarrow u_{1t,i}^{I}$. Аналогично выполненным ранее расчетам, находим, что направления распростра-

Журнал технической физики, 2003, том 73, вып. 7

нения волн определяются соотношениями

$$\frac{\sin\alpha}{s_{1t}} = \frac{\sin\beta}{s_{1l}} = \frac{\sin\gamma}{\tilde{s}_{2l}(\gamma)} = \frac{\sin\delta}{\tilde{s}_{2t}(\delta)},$$
(22)

а также могут быть найдены на основании этого выражения графически, исходя из геометрического построения поверхностей обратных фазовых скоростей всех волн, как это показано на рис. 1 (штрихпунктиром обозначен волновой вектор падающей поперечной волны).

Из уравнений (22) с учетом (2), (3) находим выражения для углов преобразвания волн

$$\sin^2\beta = \frac{\sin^2\alpha}{a},\tag{23}$$

$$\sin^2 \gamma = \frac{4\xi n \sin^2 \alpha + d - \sqrt{\left(4\xi n \sin^2 \alpha + e\right)^2 - 16\xi n \sin^4 \alpha}}{8\xi n \sin^2 \alpha},$$
(24)

$$\sin^2 \delta =$$

$$\frac{4\xi n \sin^2 \alpha - 1 + \sqrt{\left(4\xi n \sin^2 \alpha - 1\right)^2 - 16\xi (1 - \xi)e \sin^4 \alpha}}{8\xi n \sin^2 \alpha},$$
(25)

где

$$d = \frac{s_{1t}^2}{s_{1l}^2}, \qquad e = \frac{s_{1t}^2}{s_{2t}^2}.$$

Согласно (24), (25) на рис. 8, 9 соответственно представлены зависимости углов преломления γ и δ от угла падения α при различной степени близости МАМ к точке его ОФП. Из рисунков видно, что изменением внешнего магнитного поля **H** можно добиться значительного управления углами преломления, особенно для возникающей в МАМ поперечной волны, скорость которой в точке ОФП стремится к нулю.

Граничные условия для волн после подстановки в них (5)-(8), (21) представляют собой систему линейных

Рис. 8. Зависимость угла преломления γ поперечной МАВ от угла падения α поперечной волны. 1-3 — то же, что и на рис. 2.

Рис. 9. Зависимость угла преломления δ продольной волны от угла падения α поперечной МАВ. 1-3 — то же, что и на рис. 2.

уравнений

$$\begin{cases} \mu_{1}s_{1l}^{-1}\sin 2\beta R_{tl} - \mu_{1}s_{1t}^{-1}\cos 2\alpha R_{tt} \\ + \mu_{2}(1-\xi)\tilde{s}_{2l}^{-1}(\gamma)\sin 2\gamma T_{tl} \\ + \mu_{2}(1-\xi)\tilde{s}_{2t}^{-1}(\delta)\cos 2\delta T_{tt} = \mu_{1}s_{1t}^{-1}\sin 2\alpha, \\ (\lambda_{1}+2\mu_{1}\cos^{2}\beta)s_{1l}^{-1}R_{tl} + \mu_{1}s_{1t}^{-1}\sin 2\alpha R_{tt} \\ - (\lambda_{2}+2\mu_{2}\cos^{2}\gamma)\tilde{s}_{2l}^{-1}(\gamma)T_{tl} + \mu_{2}\tilde{s}_{2t}^{-1}(\delta)\sin 2\delta T_{tt} \\ = \mu_{1}s_{1t}^{-1}\sin 2\alpha, \\ \cos\beta R_{tl} + \sin\alpha R_{tt} + \cos\gamma T_{tl} - \sin\delta T_{tt} = -\sin\alpha, \\ \sin\beta R_{tl} - \cos\alpha R_{tt} - \sin\gamma T_{tl} - \cos\delta T_{tt} = -\cos\alpha, \quad (26) \end{cases}$$

где

$$R_{tl} = \frac{u_{1l0}^R}{u_{1t0}^l}, \quad R_{tt} = \frac{u_{1t0}^R}{u_{1t0}^l}, \quad T_{tl} = \frac{u_{2l0}^T}{u_{1t0}^l}, \quad T_{tt} = \frac{u_{2t0}^T}{u_{1t0}^l}$$

Из-за громоздкости решения (26) уравнения для R_{tl} , R_{tt} , T_{tl} и T_{tt} приводить не будем. На рис. 10–13 приведены результаты расчетов вышеуказанных коэффициентов для структуры кварц–гематит при различной степени близости последнего к точке ОФП.

Анализ (23)–(26) показывает, что могут существовать три критических угла падения $\alpha_{t,1cr}$, $\alpha_{t,2cr}$ и $\alpha_{t,3cr}$, начиная с которых при $\alpha > \alpha_{t,1cr}$ = arcsin $a^{1/2}$ продольная волна в диэлектрике начинает распространяться вдоль границы раздела сред, при $\alpha > \alpha_{t,2cr}$ = arcsin²{ $d^{1/2}$ } продольная МАВ становится скользящей, а затем при $\alpha > \alpha_{t,3cr}$ = arcsin² $c/(1-\xi)^{1/2}$ аналогично ведет себя поперечная МАВ. Тем самым пороговое значение угла полного внутреннего отражения волны от границы с МАМ становится управляемым внешним магнитным полем. При $\xi > \xi_{cr} = 1 - c$ процесс полного внутреннего отражения пороговое значение истраницы с отражения пороговое значение истраницы на с малогично в с ла становится управляемым внешним магнитным полем. При $\xi > \xi_{cr} = 1 - c$ процесс полного внутреннего отражения прекращается.

Рис. 10. Зависимость модуля $|R_{tt}|$ и фазы $\varphi_{R_{tt}}$ коэффициента отражения R_{tt} поперечной волны на границе кварц—гематит от угла падения α . 1-3 — то же, что и на рис. 2.

Рис. 12. Зависимость модуля $|T_{tl}|$ и фазы $\varphi_{T_{tl}}$ коэффициента преобразования T_{tl} поперечной волны в продольную МАВ на границе кварц–гематит от угла падения α . 1-3 — то же, что и на рис. 2.

Рис. 11. Зависимость модуля $|R_{il}|$ и фазы $\varphi_{R_{il}}$ коэффициента преобразования R_{il} поперечной волны в продольную волну на границе кварц-гематит от угла падения α . 1-3 — то же, что и на рис. 2.

Рис. 13. Зависимость модуля $|T_{tt}|$ и фазы $\varphi_{T_{tt}}$ коэффициента прохождения T_{tt} поперечной волны на границе кварц-гематит от угла падения α . 1-3 — то же, что и на рис. 2.

При $\alpha > \alpha_{l,1cr}$ продольная волна, распространяясь в диэлектрике вдоль границы, является неоднородной: ее скорость s'_{1l} и глубина проникновения Λ_{1l} ($u_{1l} \sim e^{y/\Lambda_{1l}}$) начинают зависеть от угла падения α следующим образом:

$$s'_{1l} = \frac{s'_{2l}}{\sin \alpha},$$
 (27)

$$\Lambda_{1l} = \frac{s_{1l} s_{1t}}{\omega \sqrt{s_{1l}^2 \sin^2 \alpha - s_{1t}^2}}.$$
 (28)

При $\alpha > \alpha_{t,2cr}$ продольная МАВ также становится неоднородной, при этом скорость s'_{2t} и глубина проникновения Λ_{2l} определяется выражениями (16), (17). При $\alpha > \alpha_{t,3cr}$ поперечная МАВ ведет себя аналогично, а ее скорость и глубина проникновения находятся согласно (18).

Дополнительный анализ выражений (24), (25) показывает, что из-за сильной деформации поверхностей обратных скоростей звука в МАМ пороговым образом при некотором $\xi > \xi^*$ возникает излучение скользящей волны в объем. Критический угол $\alpha_{t,cr}^*$ при этом определяется (20) с заменой $b \to e$. При $\xi^* = [2 - e - 2(1 - e)^{1/2}]/(4n)$ получаем $\alpha_{t,cr}^* = 90^\circ$, а при дальнейшем возрастании параметра МУ связи ξ критический угол $\alpha_{t,cr}^*$ уменьшается. Для структуры кварц–гематит $\alpha_{t,1}$ = 55°, $\alpha_{t,2cr} = 38^\circ$, при $\xi = 0$ $\alpha_{t,3cr} = 72^\circ$, достигая при $\xi = 0.18$ значения $\alpha_{t,3cr} = 90^\circ$, при $\xi^* \ge 0.31$ $\alpha_{t,cr} \le 90^\circ$, т.е. начинается излучение продольной МСВ в объем.

Таким образом, возникает существенная возможность управления с помощью магнитного поля коэффициентами отражения и преломления волн, а также их взаимным преобразованием. При этом вблизи ОФП возникает пороговым образом излучение скользящих волн в объем. В зависимости от соотношения упругих констант веществ структуры возможно управляемое полем полное внутреннее отражение волн от МАМ.

Авторы благодарны за частичную финансовую поддержку Российскому фонду фундаментальных исследований и Белорусскому республиканскому фонду фундаментальных исследований (грант № Ф02Р-076).

Список литературы

- [1] *Туров Е.А., Шавров В.Г. //* УФН. 1983. Т. 140. № 3. С. 429– 462.
- [2] Кузавко Ю.А., Шавров В.Г. // Акуст. журн. 1993. Т. 39. № 6. С. 1088–1092.
- [3] Kuzavko Yu., Roth H., Golovko V. // Proc. Workshop on Design Methodologies for Signal Processing. Zakopane (Poland), 1996. P. 131–135.
- [4] Дьелесан Э., Руайе Д. Упругие волны в твердых телах. М.: Наука, 1982. 424 с.