13

Текстура поверхности и перколяционные эффекты в микропористых ориентированных пленках полиолефинов

© Д.В. Новиков¹, И.С. Курындин², V. Bukošek³, Г.К. Ельяшевич²

1 Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича,

Санкт-Петербург, Россия

² Институт высокомолекулярных соединений РАН,

Санкт-Петербург, Россия

³ University of Ljubljana, Faculty for Natural Sciences and Engineering,

Ljubljana, Slovenia

E-mail: dvnovikov65@mail.ru, elya@hq.macro.ru

(Поступила в Редакцию 10 апреля 2012 г.)

Методом растровой электронной микроскопии проведен анализ структуры поверхности микропористых пленок полипропилена и полиэтилена, полученных экструзией расплава полимеров с последующими стадиями отжига, одноосной вытяжки и термофиксации образцов. Показано, что перколяции по порам соответствует аксиальная текстура поверхности, канальная структура которой описывается моделью фрактального кластера. Переход от открытых пор (каналов) к замкнутым порам приводит к формированию областей поверхности с биаксиальной текстурой. Рост плотности кластера твердой фазы сопровождается образованием однородной биаксиальной текстуры с периодом чередования плотности в двух взаимно перпендикулярных направлениях, одно из которых совпадает с направлением вытяжки пленок.

Работа выполнена при поддержке РФФИ (грант № 10-03-00421-а) и проекта совместных исследований Российской академии наук и Университета г. Любляна (Словения) BI-RU/12-13-032.

1. Введение

В работах [1-3] разработан и обоснован способ получения микропористых пленок полиэтилена (РЕ) в результате экструзии расплава полимера с последующими стадиями отжига, одноосной вытяжки и термофиксации образцов. Такие пленки представляют особый интерес для физики твердого тела. Во-первых, в микропористых пленках реализуются перколяционные эффекты за счет образования сквозных каналов, обеспечивающих протекание по порам [1,2]. Во-вторых, пленки имеют ориентированную структуру, приводящую к анизотропии их макроскопических свойств. Как было показано в [3], на стадиях экструзии и отжига в пленках формируются кристаллические ламели, связанные проходными цепями и располагающиеся перпендикулярно направлению ориентации расплава при его течении через фильеру. В процессе последующей вытяжки пленок ламели разделяются на стопки субмикронного размера [4], между которыми возникают поры.

Впервые связь между перколяционными эффектами и ориентационным порядком в микропористых пленках РЕ установлена в работе [4]. С применением растровой электронной микроскопии (SEM) было показано, что при прочих фиксированных параметрах многостадийного процесса получения образцов степень пористости пленок регулируется значением кратности фильерной вытяжки λ_f расплава. При увеличении параметра λ_f на поверхности микропористых пленок РЕ был обнаружен переход от замкнутых пор к открытым порам (каналам). Было установлено, что перколяционный переход сопровождается появлением ориентационного порядка (периодичности чередования плотности) в направлении вытяжки пленок на масштабе $R < \xi$, где ξ — корреляционный радиус флуктуаций плотности. Трансформация структуры поверхности микропористых пленок РЕ с ростом параметра λ_f завершается формированием периодической решетки стопок ламелей или суперрешетки ориентированных ламелей [4].

Отметим, что в работе [4] детально не изучалась текстура поверхности микропористых пленок РЕ как при варьировании масштаба R относительно величины ξ , так и при изменении степени пористости Ω_p В свою очередь известно [3,4], что от параметра Ω_p зависит относительная объемная доля каждого из двух типов структурных элементов, формирующих рельеф поверхности пленок: стопок ламелей и соединяющих их "мостиков" (тяжей). Поскольку размеры этих структурных образований существенно различаются, а направления их пространственной ориентации перпендикулярны друг другу, следует ожидать, что текстура поверхности микропористых пленок должна трансформироваться при варьировании параметров R и Ω_p .

В настоящей работе методом SEM проведен сравнительный анализ структуры поверхности микропористых пленок PE и полипропилена (PP) при изменении параметра λ_f и фиксированных параметрах процесса получения образцов на стадиях отжига, одноосной вытяжки и термофиксации. Получены индикатрисы пространственного распределения плотности при изменении масштаба изучения ламеллярной структуры полимеров относительно величины ξ . Цель работы — установление корреляций текстуры поверхности, ориентационного порядка

2177

и степени пористости Ω_p пленок при варьировании отклонения от порога протекания по порам.

2. Объекты и методы исследования

Для получения пористых пленок использовался образец линейного РЕ с молекулярной массой $M_w = 170\,000$ $(M_w/M_n = 4-5)$ и температурой плавления $T_m = 405$ К, а также образец изотактического PP ($M_w = 380\,000$, $M_w/M_n = 4-5, T_m = 445 \text{ K}$). Формирование пленок на стадии экструзии осуществлялось из расплава полимеров с применением плоскощелевой фильеры. Кристаллизация расплава происходила на воздухе. Степень ориентации расплава определялась кратностью фильерной вытяжки λ_f [1]. Экструдированные пленки подвергались отжигу в термостате в течение 30 min при 402 К для РЕ и при 443 К для РР. Одноосное растяжение образцов на стадии порообразования проводилось при комнатной температуре со скоростью 400% в минуту. Степень растяжения составляла 200%. Термофиксация микропористых пленок проводилась при 383 К в течение 30 min.

Электронно-микроскопические изображения поверхности пористых пленок были получены на сканирующем электронном микроскопе LEO 1550 FE SEM (Zeiss, Германия).

Компьютерная обработка изображений SEM (рис. 1) проводилась с использованием кластерной двухфазной модели (твердая фаза и поры) [4] на квадратной решетке, для которой $r/\xi \approx 0.1$, где r — расстояние между узлами. Доля двумерного пространства, занимаемая кластерами твердой фазы (Ω_s) и кластерами пор (Ω_p), рассчитывалась как отношение числа помеченных (относящихся к одной из двух фаз) узлов решетки к общему числу узлов.

Корреляционный радиус ξ флуктуаций плотности на поверхности пленок определялся с использованием зависимости $\rho_s(R)$ для безразмерной (рассчитанной относительно плотности узлов опорной квадратной решетки) средней плотности узлов опорной квадратной решетки) средней плотности ρ_s кластера твердой фазы в окружности радиуса R с центром в помеченном узле решетки. Величине ξ соответствует абсцисса точки излома зависимости $\rho_s(R)$, построенной в двойных логарифмических координатах [5]. Такое построение позволяет определить фрактальную размерность D изображения кластера твердой фазы на масштабах $R < \xi$ и $R > \xi$, поскольку для фрактального кластера справедлив степенной закон: $\rho_s(R) \sim R^{D-2}$ [6].

Индикатрисы плотности распределения кластера твердой фазы на поверхности пленок получались с использованием зависимости средней относительной плотности ρ помеченных узлов решетки (за вычетом фонового вклада решетки) в прямоугольнике площадью 2rl от угла его ориентации θ . Величина l одной из сторон прямоугольника задавалась равной ξ и 2ξ , тем самым определялся тип текстуры поверхности на масштабах $R < \xi$ и $R > \xi$.

Пространственное распределение кластеров фаз описывалось с помощью радиальной функции распределения g(R), которая рассчитывалась по методике [4].

── ── 200 nm

── 100 nm

Рис. 1. SEM изображения поверхности микропористых пленок PP. Кратность фильерной вытяжки $\lambda_f = 39$ (*a*), 63 (*b*), 78 (*c*).

	Твердая фаза						Поры				
λ_f	Ω_s	ξ,	D(±0.03)		L_{\parallel} ,	L_{\perp} ,	Ω_p	<i>d</i> ,	D	$L_{\parallel},$	$L_{\perp},$
	(± 0.03)	nm	$R < \xi$	$R > \xi$	nm	nm	(±0.03)	nm	(± 0.03) R < d	nm	nm
39	0.66	39	1.8	2	_	_	0.34	32	1.35	-	_
63	0.53	140	1.8* 1.8 1.76*	1.92	240	-	0.47	130	1.7	-	260
78	0.71	66	1.87 1.85*	2	108	110	0.29	56	1.4	110	110

Структурные параметры микропористых пленок РР

Примечание. Значения D на масштабе $R < \xi$ рассчитаны с помощью функций g(R) и зависимостей $\rho_s(R)$ (помечены звездочкой).

3. Результаты и их обсуждение

Электронные микрофотографии (рис. 1) свидетельствуют о том, что степень пористости Ω_p поверхности микропористых пленок PP экстремально изменяется с ростом кратности фильерной вытяжки λ_f на стадии экструзии расплава полимера.

Данные таблицы подтверждают, что в двумерном отображении пористая структура пленок трансформируется при увеличении параметра λ_f . С ростом параметра λ_f происходит переход от замкнутых пор ($\Omega_p < 0.45$) к канальной структуре ($\Omega_p > 0.45$), а затем наблюдается обратный переход. Отметим, что критическое значение $\Omega^* = 0.45 \pm 0.03$ соответствует порогу протекания [7] и может быть соотнесено с некоторым критическим значением λ_f^* [2]. В свою очередь доля Ω_s твердой фазы на поверхности микропористых пленок РР при варьировании параметра λ_f соответствует бесконечному кластеру частиц, поскольку $\Omega_s > 0.45$ (см. таблицу).

Согласно [4], в отличие от РР степень пористости Ω_p пленок РЕ монотонно возрастает при увеличении параметра λ_f . Этот рост сопровождается необратимым переходом от замкнутых пор к открытым порам (каналам).

Общим для микропористых пленок исследованных образцов полиолефинов является то, что перколяционные эффекты связаны с формированием фрактальной структуры поверхности. Фрактальный кластер твердой фазы возникает вблизи порога протекания по порам.

Построенные в двойных логарифмических координатах зависимости $\rho_s(R)$ для решеточной плотности кластеров твердой фазы на поверхности пленок РЕ и РР можно представить двумя прямолинейными отрезками (рис. 2). Эти отрезки по оси масштабов *R* разделены значением $R = \xi$. Отличный от нуля угловой коэффициент прямой при $R < \xi$ свидетельствует о фрактальной структуре частиц (стопок ламелей), формирующих кластер твердой фазы (см. таблицу).

Для пленок с закрытыми порами распределение плотности кластера частиц в двумерном пространстве однородно на масштабе $R > \xi$, и его фрактальная размерность D равна 2 (кривая I на рис. 2, a, c и таблица). Возникновение протекания по порам трансформирует топологию кластера частиц, в результате чего он становится фрактальным с хаусдорфовой размерностью $D = 1.92 \pm 0.03$, рассчитанной по наклону прямой на участке $R > \xi$ (рис. 2, *b* и таблица). Это значение *D*

Рис. 2. Зависимости решеточной плотности ρ_s кластера твердой фазы от масштаба R в двойных логарифмических координатах. 1 — пленка PP, 2 — пленка PE. a — PP ($\lambda_f = 39$), PE ($\lambda_f = 24$); b — PP ($\lambda_f = 63$), PE ($\lambda_f = 42$); c — PP ($\lambda_f = 78$), PE ($\lambda_f = 69$).

Рис. 3. Индикатрисы средней плотности ρ пространственного распределения кластера твердой фазы в прямоугольнике со стороной $l = \xi$ (1,3) и $l = 2\xi$ (2,4). 1,2 — образцы РЕ, 3,4 — РР. a — РР ($\lambda_f = 39$), РЕ ($\lambda_f = 24$); b — РР ($\lambda_f = 63$), РЕ ($\lambda_f = 42$); c — РР ($\lambda_f = 78$), РЕ ($\lambda_f = 69$). Ось вытяжки пленок (ось s) соответствует оси ординат ($\theta = 0$).

практически одинаково для пленок РЕ и РР вблизи порога протекания по порам и близко к величине *D* для внутреннего перколяционного кластера [6].

Отметим, что в микропористых пленках РЕ с ростом параметра λ_f формируется периодическая решетка стопок ламелей. При этом степень пористости поверхности ($\Omega_p = 0.57$ при $\lambda_f = 69$) существенно превышает критическое значение Ω^* [4], однако пространственное распределение плотности кластера твердой фазы является однородным и соответствует D = 2 (рис. 2, *c*, кривая 2).

Переход от закрытых пор к канальной структуре изменяет тип текстуры поверхности микропористых пленок полиолефинов, что выражается в трансформации индикатрис плотности ρ пространственного распределения кластера твердой фазы (рис. 3).

Кластеру с закрытыми порами в области $\lambda_f < \lambda_f^*$ соответствует текстура, характер которой зависит от масштаба (рис. 3, *a*). В этом случае на масштабе корреляционного радиуса ξ поверхность пленок имеет биаксиальную (плоскостную) текстуру. Максимумы локальной плотности ρ (рис. 3, *a*, кривые 1 и 3) соответствуют двум взаимно перпендикулярным направлениям, одно из которых близко к направлению вытяжки пленок (оси s). Угол разориентации одного из максимумов относительно оси s составляет 5-10 deg. Аналогичная разориентация ламелей в экструдированных и отожженных пленках РЕ была обнаружена методом малоуглового рассеяния рентгеновских лучей в работе [3]. Отметим, что для пленки РЕ в отличие от РР максимум ρ вдоль оси s менее выражен по сравнению с максимумом в перпендикулярном направлении (рис. 3, а, кривая 1). На масштабе $R > \xi$ текстура поверхности пленок является аксиальной с периодом чередования плотности 180 deg (рис. 3, a, кривые 2 и 4). Также сохраняется незначительная разориентация одного из экстремумов функций $\rho(\theta)$ относительно оси s. При этом принципиальное отличие микропористых пленок РЕ и РР друг от друга состоит в том, что в направлении оси s для PP наблюдается максимум локальной плотности, а для РЕ — минимум.

Канальной структуре поверхности микропористых пленок полиолефинов вблизи порога протекания по порам соответствует аксиальная текстура поверхности, которая остается неизменной при увеличении масштаба (относительно величины ξ). В этом случае также наблюдаются отмеченные выше особенности функций $\rho(\theta)$ для пленок РЕ и РР (рис. 3, *b*, кривые 1, 2 и 3, 4 соответственно).

С ростом параметра λ_f в области $\lambda_f > \lambda_f^*$ в микропористых пленках РЕ сохраняется однородная аксиальная текстура поверхности, а на поверхности пленок РР формируется однородная биаксиальная текстура, причем один из экстремумов функций $\rho(\theta)$ четко соответствует направлению оси s (рис. 3, *c*, кривые *1*, *2* и *3*, *4* соответственно). Отметим, что, согласно [3], при увеличении параметра λ_f происходит упорядочение ламелей относительно оси ориентации расплава РЕ при его течении через фильеру.

Рис. 4. Усредненные по направлениям радиальные функции g(R) распределения плотности кластеров фаз на поверхности пленок РР. *I* — твердая фаза, *2* — поры. Кратность фильерной вытяжки $\lambda_f = 39$ (*a*), 63 (*b*), 78 (*c*).

Трансформация текстуры поверхности микропористых пленок полиолефинов при вариации параметра λ_f обусловлена изменением относительного вклада стопок ламелей и соединяющих их тяжей в пространственное распределение плотности кластера твердой фазы. На масштабе корреляционного радиуса ξ в направлении оси s плотность ρ в пленках PP больше в 1.5–3 раза (в зависимости от величины Ω_p) по сравнению с пленками PE (рис. 3). Также различаются значения прочности и модуля упругости образцов.

Усредненные по направлениям радиальные функции g(R) распределения кластеров фаз (рис. 4) в микропористых пленках РР имеют вид, типичный для структурно-неоднородных систем [7]. На начальном участке функции g(R) уменьшаются с ростом R по закону $g(R) \sim R^{D-2}$ [4]. Значения D на масштабе $R < \xi$, рассчитанные для кластеров твердой фазы как с помощью функции g(R), так и с помощью зависимости $\rho_s(R)$,

Рис. 5. Радиальные функции g(R) распределения плотности кластеров фаз на поверхности пленок РР вдоль направления вытяжки образцов (оси s). 1 — твердая фаза, 2 — поры. Кратность фильерной вытяжки $\lambda_f = 39$ (a), 63 (b), 78 (c).

в пределах погрешности совпадают (см. таблицу). Для кластеров пор уменьшение функций g(R) с ростом R ограничено масштабом R = d (см. таблицу), при этом величину d следует рассматривать в качестве среднего диаметра поры и средней ширины канала для замкнутых и открытых пор соответственно [4]. При переходе от замкнутых пор к каналам величина D возрастает, так же как и для пленок РЕ [4].

Функции g(R) кластеров фаз, рассчитанные вдоль направления вытяжки пленок PP, показывают (рис. 5), что перколяция по порам обусловливает возникновение периода L_{\parallel} чередования плотности кластера твердой фазы вдоль оси s (рис. 5, *b*, кривая *I*). Величина периода $L_{\parallel} \approx 250$ nm превышает значение корреляционного радиуса $\xi \approx 140$ nm (см. таблицу) в отличие от пленок РЕ, для которых в этом случае $L_{\parallel} < \xi$ [4]. По этой причине канальная структура микропористых пленок РР сформирована отдельными блоками, представляющими собой суперпозицию стопок ламелей и связывающих их тяжей. Перколяция по порам в двумерном отображении осуществляется благодаря частичному разрыву тяжей. В пленках РЕ относительный статистический вес неразорванных тяжей меньше, чем в пленках РР (вследствие меньшего значения молекулярной массы полимера), и поэтому можно говорить лишь о периодическом чередовании стопок ламелей. Блочный характер канальной структуры пленок РР подтверждается при анализе функций g(R), рассчитанных поперек направления оси s (рис. 6). В этом направлении наблюдается периодическое чередование пор с периодом L_{\perp} (рис. 6, *b*, кривая 2), близким по значению к периоду L_{\parallel} чередова-

Рис. 6. Радиальные функции g(R) распределения плотности кластеров фаз на поверхности пленок РР поперек направления вытяжки образцов. 1 — твердая фаза, 2 — поры. Кратность фильерной вытяжки $\lambda_f = 39$ (*a*), 63 (*b*), 78 (*c*).

2181

ния плотности кластера твердой фазы в противоположном направлении.

Особый интерес вызывает упорядочение ламелей при увеличении параметра λ_f . На поверхности микропористых пленок РЕ при этом возникает периодическая решетка стопок ламелей [4]. В свою очередь на поверхности пленок РР с ростом параметра λ_f происходит образование решетки особого типа, в которой периоды чередования плотности кластера твердой фазы и чередования пор L_{\parallel} и L_{\perp} практически совпадают и составляют ~ 110 nm (рис. 5, *c*, рис. 6, *c* и таблица). Такая решетка имеет блочную структуру и, как следствие, обусловливает биаксиальную (плоскостную) текстуру поверхности.

4. Заключение

Таким образом, общим свойством микропористых пленок полиолефинов является зависимость фрактальных свойств и текстуры поверхности от степени пористости Ω_p . С ростом параметра Ω_p происходит переход от биаксиальной (плоскостной) текстуры к аксиальной. Биаксиальная текстура поверхности обусловлена характером порообразования, определяемым жесткоэластическими свойствами ламеллярной структуры экструдированных пленок. Вблизи порога Ω_p^* протекания по порам возникает аксиальная текстура поверхности пленок, формирующаяся за счет изменения относительных вкладов ориентированных стопок ламелей и связывающих их тяжей в пространственное распределение плотности кластера твердой фазы. При этом структура поверхности становится фрактальной с величиной D, близкой к размерности внутреннего перколяционного кластера.

Список литературы

- Г.К. Ельяшевич, Е.Ю. Розова, Е.А. Карпов. Микропористая полиэтиленовая пленка и способ ее получения. Патент РФ № 2140936. Приоритет от 15.04.97.
- [2] Г.К. Ельяшевич, А.Г. Козлов, Е.Ю. Розова. Высокомолекуляр. соединения А 40, 956 (1998).
- [3] M. Raab, J. Scudla, A.G. Kozlov, V.K. Lavrentyev, G.K. Elyashevich. J. Appl. Polym. Sci. 80, 214 (2001).
- [4] Д.В. Новиков, В.К. Лаврентьев, Г.К. Ельяшевич, V. Bukošek. ФТТ 54, 1783 (2012).
- [5] Д.В. Новиков, А.Н. Красовский. ФТТ 53, 2242 (2011).
- [6] Е. Федер. Фракталы / Пер. с англ. Ю.А. Данилова, А.М. Шукурова. Мир, М. (1991). 254 с. [J. Feder. Fractals. Plenum Press, N.Y.–London (1988). 260 p.].
- [7] Дж. Займан. Модели беспорядка. Мир, М. (1982). С. 286.
 [J.M. Ziman. Models of Disorder. Cambridge Univ. Press, London (1979). 480 p.].