06 Механизмы диэлектрической поляризации перовскитной керамики релаксорных сегнетоэлектриков $(1 - x)(NaBi)_{1/2}TiO_3 - xBi(ZnTi)_{1/2}O_3$ (x < 0.2)

© Н.М. Олехнович, Ю.В. Радюш, А.В. Пушкарев

НЦП НАН Белоруссии по материаловедению, Минск, Белоруссия E-mail: olekhnov@ifttp.bas-net.by

(Поступила в Редакцию 19 марта 2012 г.)

Представлены результаты исследования диэлектрических свойств керамики релаксорных сегнетоэлектриков $(1 - x)(\text{NaBi})_{1/2}\text{TiO}_3 - x\text{Bi}(\text{ZnTi})_{1/2}\text{O}_3$ (x < 0.2) по импеданс-спектрам, измеренным в диапазоне частот $25-10^6$ Hz при температурах 100-1000 K. Установлено, что температурная зависимость действительной части диэлектрической проницаемости характеризуется максимумом при температуре T'_m (590–610 K). Показано, что в области температур проявления релаксорного состояния ($T < T'_m$) диэлектрическая проницаемость ε определяется суммой вкладов матрицы и дипольных кластеров. Температурная зависимость величины вкладов кластеров, определяемой кинетикой их образования и замерзания, характеризуется кривой с максимумом. В области $T > T'_m$ выявлено два механизма поляризации. Один из них обусловлен тепловым прыжковым движением зарядов, второй дает отклик индуктивного типа (система с отрицательный вклад в мнимую часть. С использованием эквивалентной схемы, включающей элемент постоянной фазы индуктивного типа, проведен количественный анализ экспериментальных данных.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (грант № Т11-052).

1. Введение

Твердые растворы (TP) на основе (NaBi)_{1/2}TiO₃ (NBT) привлекают внимание исследователей в связи с поиском новых сегнетоэлектрических материалов, не содержащих экологически вредного оксида свинца. Данное соединение при комнатной температуре имеет ромбоэдрически искаженную перовскитную структуру (пространственная группа R3c) [1] и испытывает последовательность температурных фазовых переходов с изменением характера дипольного упорядочения [2]. Если у ТР на основе NBT в качестве второго компонента выступают соединения BiTiO₃, PbTiO₃, PbZrO₃ и др., для них наблюдается морфотропная фазовая граница, вблизи которой диэлектрическая проницаемость и пьезоэлектрические коэффициенты достигают высоких значений (см. обзор [3] и ссылки в нем). В сложных оксидных системах со структурой перовскита, содержащих более одного типа катионов в октаэдрических или кубооктаэдрических позициях, может проявляться состояние релаксорного сегнетоэлектрика [4]. Такое состояние наблюдается в системах NBT-BaTiO₃ [5], NBT-PbZrO₃ [6], NBT-LaMg_{1/2}Ti_{1/2}O₃ [7] и др. В [8] показано, что в системе (1 - x)NBT-xBi $(ZnTi)_{1/2}O_3$ образуются ТР на основе NBT с ограниченной растворимостью второго компонента (x < 0.2). Перовскитная фаза последнего получается только при высоких давлениях и температурах [9]. Соединение $Bi(ZnTi)_{1/2}O_3$ (BZT) имеет тетрагонально искаженную перовскитную структуру. ТР системы NBT-BZT характеризуется высоким максимумом диэлектрической проницаемости, в области 590-620 К при малой дисперсии и малой величине диэлектрических потерь (tg $\delta \sim 0.005$). При температурах ниже температуры максимума диэлектрической проницаемости T'_m система переходит в релаксорное состояние, проявляющееся в особенностях характера температурной зависимости мнимой ε'' и действительной ε' составляющих диэлектрической проницаемости. На кривых $\varepsilon''(T)$ наблюдается максимум, положение и величина которого зависят от частоты. На кривых $\varepsilon'(T)$ в указанной области температур проявляется горб.

В настоящей работе приводятся результаты исследования характеристик составляющих диэлектрической поляризации перовскитной керамики (1 - x)NBT-xBZT (x < 0.2) по данным температурной импеданс-спектроскопии в области низких и высоких температур.

2. Методика эксперимента

Керамика ТР (1 - x)NBT-xBZT (x < 0.2) синтезировалась из порошков исходных оксидов Bi₂O₃, ZnO, TiO₂ и карбоната Na₂CO₃ по обычной керамической технологии. Условия синтеза приведены в [8].

Характеристики диэлектрического отклика керамики ТР определялись по параметрам комплексного импеданса Z^* , измеряемым для образцов-конденсаторов с серебряными электродами с использованием измерителя иммитанса E7-20. Частота измерительного поля в 1 V изменялась ступенчато от 25 до 10^6 Hz. При каждой заданной температуре в интервале от 100 до 1000 K в автоматическом режиме измерялись модуль Z и угол фазового сдвига φ комплексного импеданса исследуемого конденсатора. По измеренным значениям Z и φ определялись действительная и мнимая составляющие диэлектрической проницаемости и удельной электропроводности

$$\varepsilon^* = \varepsilon'(\omega) - j\varepsilon''(\omega) = \frac{l}{j\varepsilon_0 \omega s Z^*},\tag{1}$$

$$\sigma^* = \sigma'(\omega) - j\sigma''(\omega) = \frac{l}{sZ^*},$$
(2)

где $\omega = 2\pi f$, ε_0 — электрическая постоянная, *s* и *l* — площадь и толщина плоского конденсатора соответственно, $j = \sqrt{-1}$.

По диаграмме $\sigma' - (\sigma'' - \varepsilon_0 \varepsilon_\infty \omega)$ (ε_∞ — значение диэлектрической проницаемости при высоких частотах) в области низких частот определялась величина удельной электропроводности керамики на постоянном токе σ_{dc} при различных температурах. Величина ε_∞ находилась из диаграммы Коул–Коула $\varepsilon'' - \varepsilon'$ или из диаграммы электрического модуля M'' - M'.

В результате анализировались частотные зависимости $\varepsilon' - \varepsilon_{\infty}$ и $\varepsilon''_{ac} = \varepsilon'' - \sigma_{dc}/\varepsilon_0 \omega$ и диаграммы Коул-Коула $\varepsilon''_{ac} - (\varepsilon' - \varepsilon_{\infty})$ на комплексной плоскости при различных температурах.

3. Результаты и их анализ

Результаты исследования показали, что удельная электропроводность керамики на постоянном токе экспоненциально возрастает с температурой: $\sigma_{\rm dc} = \sigma_{\rm dc0} \exp(-\Delta E_{\rm dc}/kT)$. Величина энергии активации носителей заряда $\Delta E_{\rm dc}$ скачкообразно возрастает при переходе в область температур выше T'_m . В высокотемпературной области она слабо зависит от состава и равна примерно 1.8 eV. При $T < T'_m$ величина $-\Delta E_{\rm dc}$ лежит в области 0.65–0.75 eV. Оцененная величина $\sigma_{\rm dc}$ при комнатной температуре для исследованной керамики не превышает порядка 10^{-11} S/m.

Результаты исследования диэлектрической проницаемости показали, что керамика (1-x)NBT-*x*BZT разных составов имеет общий характер частотнотемпературных зависимостей $\varepsilon' - \varepsilon_{\infty}$ и ε''_{ac} . Далее приводятся данные для состава x = 0.1.

3.1. Характеристики релаксации диэлектрической поляризации в области температур релаксорного состояния. В области температур $T < T'_m$, в которой проявляется релаксорное состояние, диэлектрический отклик исследуемой керамики, как следует из характера частотной зависимости ε''_{ac} и вида диаграмм $\varepsilon''_{ac} - (\varepsilon' - \varepsilon_{\infty})$ (рис. 1, *a*), определяется двумя составляющими. Одна составляющая связана с диэлектрической поляризацией дипольных кластеров,

Рис. 1. Диаграммы $\varepsilon_{ac}'' - (\varepsilon' - \varepsilon_{\infty})$ (*a*) и $\varepsilon_c'' - \varepsilon_c'$ (*b*) на комплексной плоскости при $T < T'_m$.

вторая является вкладом самой матрицы (сегнетоэлектрических доменов). Очевидно, дипольные кластеры вносят вклад в большей мере в области высоких частот, на что указывает факт увеличения высоты максимума на кривой $\varepsilon''_{\rm ac}(T)$ с увеличением частоты [8]. В области низких частот диэлектрическая поляризация в большей мере определяется вкладом матрицы.

Для описания частотной зависимости диэлектрической проницаемости систем с широким спектром времен релаксации диэлектрической поляризации используется хорошо известное выражение Коул–Коула [10]

$$\varepsilon^* = \varepsilon_{\infty} + \frac{\Delta\varepsilon}{1 + (j\omega\tau)^{1-\alpha}} = \varepsilon_{\infty} + \frac{\Delta\varepsilon \left(1 + \sin\frac{\pi}{2}\,\alpha(\omega\tau)^{1-\alpha} - j\cos\frac{\pi}{2}\,\alpha(\omega\tau)^{1-\alpha}\right)}{1 + 2\sin\frac{\pi}{2}\,\alpha(\omega\tau)^{1-\alpha} + (\omega\tau)^{2(1-\alpha)}}, \quad (3)$$

где τ — среднее время релаксации, α — параметр, определяющий ширину спектра времен релаксации. Выражение (3) следует из анализа эквивалентной схемы, которая включает последовательно соединенные элемент постоянной фазы (СРЕ) и конденсатор *C*. Адмиттанс для СРЕ записывают в виде $Y = A^{-1}(j\omega)^{\alpha}$.

Для описания диэлектрического отклика исследованной керамики использовалась эквивалентная схема, представленная на вставке к рис. 1, *а*. Индекс *с* относится к дипольным кластерам, индекс *d* — к матрице. Из анализа кривых частотной зависимости ε''_{ac} и вида диаграммы $\varepsilon''_{ac} - (\varepsilon' - \varepsilon_{\infty})$ (рис. 1, *a*) следует, что среднее время релаксации диэлектрической поляризации матрицы велико ($\omega \tau_d \gg 1$), а среднее время релаксации дипольных кластеров мало ($\omega \tau_c \ll 1$). В таком приближении на основе (3) выражение для составляющих диэлектрической проницаемости керамики записывается

Рис. 2. Температурная зависимость параметров α_d , α_c , $\Delta \varepsilon_c$ в области $T < T'_m$.

в виде

$$\varepsilon' - \varepsilon_{\infty} = \frac{\Delta \varepsilon_d \sin \frac{\pi}{2} \alpha_d}{(\omega \tau)^{1 - \alpha_d}} + \Delta \varepsilon_c \left(1 - \sin \frac{\pi}{2} \alpha_c (\omega \tau_c)^{1 - \alpha_c} \right),$$
$$\varepsilon_{\rm ac}'' = \frac{\Delta \varepsilon_d \cos \frac{\pi}{2} \alpha_d}{(\omega \tau)^{1 - \alpha_d}} + \Delta \varepsilon_c \cos \frac{\pi}{2} \alpha_c (\omega \tau_c)^{1 - \alpha_c}.$$
 (4)

В результате анализа экспериментальных данных на основе (4) вариационным методом определены параметры α_d , α_c , $\Delta \varepsilon_c$ и выделен вклад в диэлектрический отклик от полярных кластеров.

На рис. 1, *b* представлена диаграмма Коул-Коула для составляющих диэлектрической проницаемости кластеров $\varepsilon_c'' - \varepsilon_c'$ при различных температурах. Видно, что величины ε_c'' и ε_c' в исследованной области частот измерительного поля линейно связаны между собой. Тангенс угла наклона прямых, равный $\operatorname{ctg}(\pi/2(1-\alpha_c))$, несколько уменьшается с увеличением температуры. При экстраполяции данных прямых до их пересечения с осью абсцисс на ней отсекаются отрезки, соответствующие величине $\Delta \varepsilon_c$ для каждой выбранной температуры. На рис. 2 представлены температурные зависимости параметров $\Delta \varepsilon_c$, α_c и α_d . Температурная зависимость $\Delta \varepsilon_c$, как видно из рисунка, характеризуется кривой с максимумом, который наблюдается в области 370 К. Возрастание величины $\Delta \varepsilon_c$ при понижении температуры в области, лежащей выше 370 К, очевидно, связано с увеличением числа дипольных кластеров и, возможно, их размеров. Уменьшение данной величины в области T < 370 К обусловлено процессом замерзания кластеров, который протекает в сравнительно широком температурном интервале. Отметим, что температура замерзания кластеров T_f , определенная из соотношения Фогеля–Фулчера [11] по температурному смещению частоты максимума $\varepsilon''_{\rm ac}(T)$, равна примерно 290 К. Факт медленного уменьшения $\Delta \varepsilon_c$ с температурой позволяет заключить, что температура T_f , определяемая на основе указанного соотношения, является некоторой интегральной характеристикой процесса. Величина параметра α_c при уменьшении температуры до 370 К возрастает, а при T < 370 К сохраняется практически постоянной. Оцененная величина τ_c составляет порядка 10^{-8} s.

3.2. Характеристики релаксации диэлектрической поляризации в области высоких температур. В области высоких температур ($T > T'_m$) частотные зависимости действительной ($\varepsilon' - \varepsilon_{\infty}$) и мнимой ($\varepsilon''_{\rm ac}$) составляющих диэлектрической проницаемости исследуемой керамики характеризуются рядом особенностей (рис. 3). На кривых зависимости lg($\varepsilon' - \varepsilon_{\infty}$) от lg ω в области некоторой частоты ω_b наблюдается перегиб. Частота, при которой имеет место данный перегиб, с увеличением температуры закономерно смещается в сторону более высоких частот. В области.

Рис. 3. Частотная зависимость действительной $(\varepsilon' - \varepsilon_{\infty})$ и мнимой $\varepsilon''_{\rm ac}$ составляющих диэлектрической проницаемости при $T > T'_m$.

Рис. 4. Диаграммы $\varepsilon_{ac}'' - (\varepsilon' - \varepsilon_{\infty}), \quad \varepsilon_{h}'' - \varepsilon_{h}', \quad \varepsilon_{L}'' - \varepsilon_{L}'$ и $(\varepsilon_{h}' - \varepsilon_{L}'') - (\varepsilon_{h}' - \varepsilon_{L}')$ при T = 849 К. Темные точки эксперимент, светлые — расчет по формулам (5), (9).

сти $\omega > \omega_b \, \lg(\varepsilon' - \varepsilon_\infty)$ линейно убывает с увеличением $\lg \omega$. При $\omega < \omega_b$ наблюдается отклонение величины $\lg(\varepsilon' - \varepsilon_\infty)$ в сторону уменьшения относительно значений, определяемых по экстраполированной прямой, которая описывает линейную зависимость $\lg(\varepsilon' - \varepsilon_\infty)$ при высоких частотах. Зависимость $\lg \varepsilon''_{ac}$ от $\lg \omega$ в области $\omega > \omega_b$ также имеет линейный характер. При переходе в область $\omega < \omega_b$ наклон кривых увеличивается, т.е. имеет место возрастание ε''_{ac} относительно значений, получаемых из экстраполированной прямой, описывающей поведение ε''_{ac} в высокочастотной области.

Указанные особенности поведения частотных зависимостей $\varepsilon' - \varepsilon_{\infty}$ и ε''_{ac} отражаются на виде диаграммы Коул–Коула $\varepsilon''_{ac} - \varepsilon' - \varepsilon_{\infty}$ (рис. 4). Как видно из данного рисунка, зависимость ε''_{ac} от $\varepsilon' - \varepsilon_{\infty}$ характеризуется кривой с возрастающим тангенсом угла наклона на участке, соответствующем низкочастотной области. На участке, отвечающем высокочастотной области, зависимость имеет линейный характер.

Характер частотных зависимостей $\varepsilon' - \varepsilon_{\infty}$ и ε''_{ac} свидетельствует о том, что диэлектрический отклик исследуемой керамики определяется двумя составляющими: $\varepsilon^* - \varepsilon_{\infty} = \varepsilon_L^* + \varepsilon_b^*$. Вклад ε_L^* в большей мере проявляется в низкочастотной области ($\omega < \omega_b$). Характер поведения диэлектрического отклика в области высоких частот ($\omega > \omega_b$) в основном определяется ε_h^* . Вклад ε_h является существенным во всей области частот. В этом приближении можно разделить вклады ε_L^* и ε_h^* и оценить их.

Наблюдаемый характер зависимости $\lg \varepsilon''_{ac}$ от $\lg \omega$ (рис. 3) при $\omega > \omega_b$ указывает на то, что для данной составляющей поляризации выполняется условие $\omega \tau_b \gg 1$. Тогда на основе (3) можно записать

$$\varepsilon_{h}^{\prime} = \frac{\Delta \varepsilon_{h} \sin \frac{\pi}{2} \alpha_{h}}{(\omega \tau_{h})^{1-\alpha_{h}}}, \quad \varepsilon_{h}^{\prime \prime} = \frac{\Delta \varepsilon_{h} \cos \frac{\pi}{2} \alpha_{h}}{(\omega \tau_{h})^{1-\alpha_{h}}}.$$
 (5)

Из анализа частотной зависимости $\varepsilon^* - \varepsilon_{\infty}$ и $\varepsilon_{ac}^{\prime\prime}$ при $\omega > \omega_b$ определены параметр α_h и величина $\Delta \varepsilon_h / (\tau_h \cdot 1)^{1-\alpha_h}$ (в дальнейшем используется обозначение $\Delta \varepsilon_h / \tau_h^{1-\alpha_h}$). Как видно из рис. 5, параметр α_h плавно уменьшается с температурой. Величина $\Delta \varepsilon_h / \tau_h^{1-\alpha_h}$ при изменении температуры от 730 до 1000 К возрастает практически на три порядка. Было установлено, что при наблюдаемом виде температурной зависимости параметра α_h и в предположении, что τ_h с температурой изменяется в соответствии с соотношением Аррениуса $\tau = \tau_0 \exp(\Delta E_\tau / kT)$, температурная зависимость $\tau_h^{1-\alpha_h}$ также имеет экспоненциальный характер

$$\tau_h^{1-\alpha_h} = \tau_0^{1-\alpha_{\rm ef}} \exp\left(\Delta E_\tau \left(1-\alpha_{\rm ef}\right)/kT\right),\tag{6}$$

где $\alpha_{\rm ef} = 0.538$.

В общем случае можно считать, что составляющая ε_h^* определяется суммой двух вкладов. Один из них обусловлен поляризацией диполей матрицы, второй — поляризацией, связанной с тепловым прыжковым движением зарядов. Оценка показала, что возможная величина вклада дипольной системы матрицы много меньше найденной величины $\Delta \varepsilon_h / \tau_h^{1-\alpha_h}$. В связи с этим при дальнейшем анализе считалось, что составляющая ε_h^* в исследуемом интервале температур в основном определяется поляризацией, связанной с прыжковым движением зарядов. Известно, что при данном типе поляризации величина $\Delta \varepsilon_h$ пропорциональна числу прыжков N и обратно пропорциональна температуре.

Рис. 6. Зависимость $\Delta \varepsilon_h T / \tau_h^{1-\alpha_h}$ от температуры в координатах Аррениуса.

Число прыжков экспоненциально растет с температурой: $N = N_0 \exp(-\Delta E_h/kT)$. Наблюдаемый линейный характер зависимости $\ln(\Delta \varepsilon_h T/\tau_h^{1-\alpha_h})$ от обратной температуры (рис. 6) означает, что величина $\Delta \varepsilon_h T$, пропорциональная N и $\tau_h^{\alpha_h-1}$ (6), возрастает с температурой по экспоненциальному закону. Следовательно, по тангенсу угла наклона $\ln(\Delta \varepsilon_h T/\tau_h^{1-\alpha_h})$ от обратной температуры (рис. 6) можно определить сумму $\Delta E_h + \Delta E_\tau (1 - \alpha_{ef})$. Затем в предположении, что энергия активации прыжкового движения зарядов ΔE_h и энергия их релаксации ΔE_τ близки, можно оценить ΔE_h . Оказалось, что она равна примерно 1 eV. Найденная величина ΔE_h намного меньше величины энергии активации носителей заряда постоянного тока ($\Delta E_{dc} = 1.8 \text{ eV}$).

Определив величины α_h и $\tau_h^{1-\alpha_h}$, с учетом (5) можно найти составляющие диэлектрической поляризации ε_L^*

$$\varepsilon_L' = \varepsilon' - \varepsilon_{\infty} - \frac{\Delta \varepsilon_h \sin \frac{\pi}{2} \alpha_h}{(\omega \tau_h)^{1 - \alpha_h}}, \quad \varepsilon_L'' = \varepsilon_{\rm ac}'' - \frac{\Delta \varepsilon_h \cos \frac{\pi}{2} \alpha_h}{(\omega \tau_h)^{1 - \alpha_h}}.$$
(7)

Оказалось, что ε'_L при всех температурах имеет отрицательный знак, а $\varepsilon''_L > 0$. При переходе в область частот $\omega > \omega_b$ величины ε'_L и ε''_L стремятся к нулю.

Отрицательная составляющая емкости ($\varepsilon'_L < 0$) исследуемой керамики, проявляющей полупроводниковые свойства, очевидно, связана с инерционно-релаксационным характером электропроводности на переменном токе. Для выяснения природы механизмов такой поляризации требуются дополнительные исследования. Следует отметить, что отрицательная емкость наблюдается для разных полупроводниковых материалов и структур (см., например, работу [12] и ссылки в ней). Для описания подобных систем используют эквивалентные схемы, содержащие катушку индуктивности или конденсатор отрицательной емкости [10]. Судя по характеру частотной зависимости ε''_L диэлектрический отклик такой системы связан с релаксационным диссипативным процессом. Для его описания введем элемент постоянной фазы индукционного типа (CPE_L). Адмиттанс данного элемента представим в виде

$$X_L = A_L^{-1} (-j\omega)^{\alpha_L} \ (0 < \alpha_L < 1)$$
 (8)

и рассмотрим эквивалентную схему, состоящую из CPE_L и последовательно с ним соединенного конденсатора C_L (см. вставку на рис. 4).

Комплексная диэлектрическая проницаемость системы, описываемая предложенной схемой, выражается соотношениями

$$\varepsilon_L' = \frac{\Delta \varepsilon_L \left(1 - (\omega \tau_L)^{1 - \alpha_L} \sin \frac{\pi}{2} \alpha \right)_L \right)}{1 - 2(\omega \tau_L)^{1 - \alpha_L} \sin \frac{\pi}{2} \alpha_L + (\omega \tau_L)^{2(1 - \alpha_L)}},$$
$$\varepsilon_L'' = \frac{\Delta \varepsilon_L (\omega \tau_L)^{1 - \alpha_L} \cos \frac{\pi}{2} \alpha_L}{1 - 2(\omega \tau_L)^{1 - \alpha_L} \sin \frac{\pi}{2} \alpha_L + (\omega \tau_L)^{2(1 - \alpha_L)}}$$
(9)

или в комплексной форме

$$\varepsilon_L^* = \frac{\Delta \varepsilon_L}{1 - (-j\omega\tau_L)^{1 - \alpha_L}},\tag{10}$$

где $\Delta \varepsilon_L = C_L/C_0$, C_0 — емкость вакуумного конденсатора тех же размеров, что и для конденсатора C_L , $\tau_L = (A_L C_L)^{1/(1-\alpha_L)}$ — среднее время релаксации системы.

Рис. 7. Температурная зависимость параметров $\Delta \varepsilon_L$ и τ_L .

Как видно из (9), при $(\omega \tau_L)^{1-\alpha_L} \sin(\pi \alpha_L/2) > 1$ величина ε'_L становится отрицательной. Величина ε''_L при этом остается положительной при всех частотах.

С помощью соотношений (9) можно количественно описать частотные зависимости $\varepsilon'_L(\omega)$ и $\varepsilon''_L(\omega)$, полученные на основе экспериментальных данных (7), а также соответствующие им диаграммы Коул–Коула. В результате проведенного анализа были определены параметры α'_L , $\Delta \varepsilon_L$ и τ_L при различных температурах (рис. 5, 7).

Полученные данные показывают, что процесс релаксации системы, ответственной за данную *L*-составляющую поляризации, является медленным. Например, найденное время релаксации τ_L при 770 К на два порядка больше периода колебаний измерительного электрического поля при 25 Hz. С увеличением температуры τ_L уменьшается в соответствии с соотношением Аррениуса $\tau_L = \tau_{L0} \exp(\Delta E_L/kT)$ при $\Delta E_L \approx 0.8$ eV. Выявленное возрастание параметра α_L с температурой (рис. 5) свидетельствует об увеличении протяженности спектра времен релаксации системы. Температурная зависимость параметра $\Delta \varepsilon_L$ характеризуется кривой с широким максимумом.

По найденным параметрам на основе соотношений (5) и (9) были рассчитаны диаграммы Коул–Коула для *h*и *L*-составляющих диэлектрической проницаемости, а также для их сумм $(\varepsilon''_h + \varepsilon''_L) - (\varepsilon'_h + \varepsilon'_L)$. Рассчитанные диаграммы $(\varepsilon''_h + \varepsilon''_L) - (\varepsilon'_h + \varepsilon'_L)$ хорошо согласуются с экспериментальными данными $\varepsilon''_{ac} - (\varepsilon' - \varepsilon_{\infty})$ при всех исследованных температурах (рис. 4).

4. Заключение

На основе проведенных исследований импедансспектров выявлены закономерности повеления характеристик диэлектрического отклика релаксорных сегнетоэлектриков $(1 - x)(\text{NaBi})_{1/2}\text{TiO}_3 - x\text{Bi}(\text{ZnTi})_{1/2}\text{O}_3$ (x < 0.2) в области температур, лежащих ниже и выше температуры максимума ε'. Анализ частотной зависимости мнимой составляющей диэлектрической проницаемости и диаграммы Коул–Коула $\varepsilon_{\rm ac}^{\prime\prime}-(\varepsilon^\prime-\varepsilon_\infty)$ в области температур $T < T'_m$, в которой проявляется релаксорное состояние, показал, что диэлектрическая поляризация в этой области определяется двумя составляющими. Одна связана с дипольными кластерами, вторая — с матрицей. Время релаксации поляризации дипольных кластеров τ_c мало, и для использованного диапазона частот $(25-10^6 \text{ Hz})$ выполняется условие $\omega \tau_c \ll 1$. При этом условии релаксорное состояние системы определяется проявлением максимума на кривой $\varepsilon''(T)$, который с увеличением частоты смещается в сторону более высоких температур, причем максимальное значение ε'' возрастает. Температурная зависимость величины вклада поляризации дипольных кластеров характеризуется кривой с максимумом. Уменьшение этого вклада с понижением температуры ниже температуры максимума

обусловлено процессом замерзания кластеров, который растянут по температуре больше чем на 200 К.

Проведенный анализ частотных зависимостей $\varepsilon' - \varepsilon_{\infty}$ и $\varepsilon''_{\rm ac}$ при $T > T'_m$ показал, что диэлектрическая проницаемость в этой области определяется суммой двух составляющих: ε_h^* и ε_L^* . Составляющая ε_h^* обусловлена в основном поляризацией, связанной с тепловым прыжковым движением зарядов. Установлено, что для второй составляющей $\varepsilon_L^* = \varepsilon_L' - j\varepsilon_L''$ действительная часть ε_L' отрицательна. Для выяснения механизма поляризации, определяющего такое поведение ε_L' , требуются дополнительные исследования. Рассмотрение эквивалентной схемы, содержащей введенный элемент постоянной фазы индуктивного типа (CPE_L), позволяет получить выражение, которое адекватно описывает наблюдаемые частотные зависимости составляющих диэлектрической проницаемости.

Список литературы

- [1] Г.А. Смоленский, В.А. Исупов, А.И. Аграновская, Н.Н. Крайник. ФТТ **2**, 2982 (1960).
- [2] G.O. Jones, P.A. Thomas. Acta Cryst. B 58, 168 (2002).
- [3] V.A. Isupov. Ferroelectrics **315**, 123 (2005).
- [4] G.A. Samara. J. Phys.: Cond. Matter 15, R367 (2003).
- [5] J. Suchanicz, J. Kusz, H. Bohm, H. Duda, J.P. Mercurio, K. Konieczny. J. Eur. Ceram. Soc. 23, 1559 (2003).
- [6] P. Marchet, E. Boucher, V. Dorcet, J.P. Mercurio. J. Eur. Ceram. Soc. 26, 3037 (2006).
- [7] A.N. Salak, N.P. Vyshatko, A.L. Kholkin, V.M. Ferreira, N.M. Olekhnovich, Yu.V. Radyush, A.V. Pushkarev. Mater. Sci. Forum 514–516, 250 (2006).
- [8] Yu.V. Radyush, N.M. Olekhnovich. Proc. of the Int. Sci. Conf. "Actual problems of solid state physics". Minsk, Belarus (2011). Vol. 1. P. 85.
- [9] M.R. Suchomel, A.W. Fogg, M. Allix, H. Niu, J.B. Claridge, M.J. Rosseinsky. Chem. Mater. 18, 4987 (2006).
- [10] E. Barsoukov, J.R. Macdonald. Impedance spectroscopy: theory, experiment, and applications. John Willey & Sons, N.Y. (2005). 616 p.
- [11] D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig. J. Appl. Phys. 68, 2916 (1990).
- [12] Н.А. Поклонский, С.В. Шпаковский, Н.И. Горбачук, С.Б. Ластовский. ФТП **40**, 824 (2006).