Излучательная и безызлучательная рекомбинация в активных слоях мощных лазерных диодов InGaAs/GaAs/AlGaAs

© В.В. Кабанов⁺, Е.В. Лебедок⁺, Г.И. Рябцев⁺, А.С. Смаль⁺, М.А. Щемелев⁺, Д.А. Винокуров^{*}, С.О. Слипченко^{*}, З.Н. Соколова^{*}, И.С. Тарасов^{*}

(Получена в Редакцию 28 марта 2012 г. Принята к печати 2 апреля 2012 г.)

Для лазеров на основе асимметричной гетероструктуры InGaAs/GaAs с расширенным волноводом в предпороговой области определены скорости рекомбинации, обусловленные излучательными и безызлучательными процессами, а также рекомбинации, индуцируемой усиленной люминесценцией. Показано, что значение квантового выхода люминесценции для исследованных лазерных образцов составляет не менее 91.5%.

1. Введение

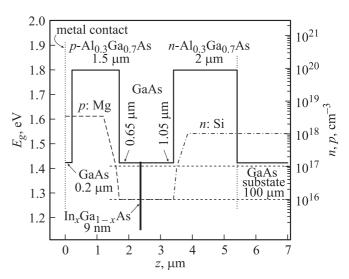
Лазеры на основе асимметричной гетероструктуры InGaAs/GaAs/AlGaAs с расширенным волноводом позволяют достигнуть мощностей порядка 16 Вт в непрерывном и 145 Вт в импульсном [1–4] режимах генерации. Для дальнейшего увеличения мощности наряду с традиционным подходом, связанным с уменьшением внутренних оптических потерь [1–5], важно более детально исследовать возможные каналы потерь энергии накачки, такие как безызлучательная рекомбинация, а также существенную в предпороговой области усиленную люминесценцию.

Целью настоящей статьи является изучение каналов потерь в лазерах InGaAs/GaAs/AlGaAs, связанных с безызлучательной рекомбинацией, а также исследование усиленной люминесценции.

2. Экспериментальные и расчетные спектры излучения лазера

В экспериментах проводились измерения порогового тока и спектров излучения, выходящего из передней грани лазеров с расширенным волноводом на основе двойной гетероструктуры InGaAs/GaAs/AlGaAs с одной напряженной квантовой ямой InGaAs, созданных в Физико-технической институте им. А.Ф. Иоффе РАН. В асимметричной гетероструктуре с широким волноводом общей толщиной 1.7 мкм активный слой был смещен на 0.2 мкм в направлении *р*-эмиттера. Параметры гетероструктуры и лазера приведены в табл. 1, 2 и на рис. 1.

Исследовались лазеры с длиной волны генерации $\lambda_{\rm las}=1060\,{\rm hm},$ пороговым током $I_{\rm th}=670\,{\rm mA}$ при температуре окружающей среды $T=295\,{\rm K}.$


На рис. 2 представлены спектры излучения, выходящего из передней грани лазеров в предпороговом режиме генерации при токе накачки от 100 до 670 мА.

Измеренные спектры излучения (в относительных единицах интенсивности), значение длины волны генерации и значение коэффициента полных внутренних оптических потерь, полученное из ватт-амперных характеристик лазера, позволяют определить скорость излучательной рекомбинации в абсолютных единицах [6,7].

Для лазеров с квантово-размерным активным слоем спектры интенсивности спонтанного излучения $W_{\rm sp}(h\nu)$ и усиления $g(h\nu)$ задаются выражениями [8,9]:

$$W_{\rm sp}(h\nu) = \frac{8\pi n^2 (h\nu)^3}{c^2 h^3} \left[1 - \exp\left(\frac{h\nu - \Delta F}{kT}\right) \right]^{-1} g(h\nu), (1)$$

где n — показатель преломления активного слоя, h — постоянная Планка, ν — частота излучения, c — ско-

Рис. 1. Энергетическая зонная диаграмма и профиль легирования слоев гетероструктуры исследуемого лазера. E_s — ширина запрещенной зоны; n, p — концентрации электронов, дырок, z — координата в направлении роста слоев.

⁺Институт физики им. Б.И. Степанова Национальной академии наук Беларуси, 220072 Минск, Беларусь

^{*}Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

[¶] E-mail: sergHPL@mail.ioffe.ru

Слой гетероструктуры	Состав слоя	Толщина слоя	Концентрация легирующей примеси, $10^{18} {\rm cm}^{-3}$
Контактный	GaAs	0.2 мкм	3.5
<i>p</i> -эмиттер	$Al_{0.3}Ga_{0.7}As:Mg$	1.5 мкм	3.5
Волноводный	GaAs	0.65 мкм	Не легирован
Активный	$In_xGa_{1-x}As$	9 нм	Не легирован
Волноводный	GaAs	1.05 мкм	Не легирован
<i>n</i> -эмиттер	Al _{0.3} Ga _{0.7} As:Si	2.0 мкм	1.0
Подложка	GaAs	100 мкм	1.0

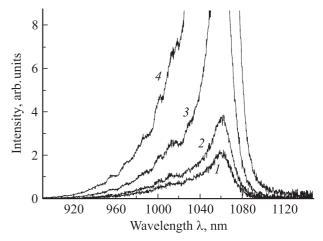
Таблица 1. Состав слоев гетероструктуры исследуемого лазера

Таблица 2. Параметры исследуемого лазера

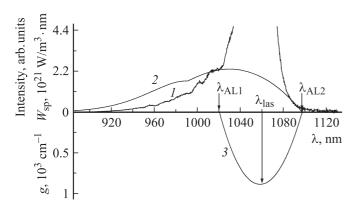
Параметр	Значение параметра
Длина резонатора L Ширина полоскового контакта w Толщина активного слоя d Коэффициент отражения заднего зеркала R_1 Коэффициент отражения переднего зеркала R_2 Показатель преломления в активном слое n Коэффициент внутренних оптических потерь ρ	2.8 мм 100 мкм 9 нм 95% 4% 3.89 0.5 см ⁻¹
Фактор оптического ограничения основной моды в активном слое Γ	0.0072

рость света в вакууме, $\Delta F = F_e - F_h$ — разность квазиуровней Ферми для электронов (F_e) и дырок (F_h) , определяемая из уравнения квазинейтральности, $g(h\nu)$ спектральный коэффициент усиления в квантовой яме активной области, рассчитываемый в рамках спектральной модели без выполнения правил отбора по волновому вектору,

$$g(hv) = \frac{32e^{2}a_{0}^{2}\pi^{2}m_{e}m_{h}kT|\mathbf{M}|^{2}}{\varepsilon_{0}m_{0}^{2}h^{3}cndhv}$$


$$\times \sum_{i} H(hv - (E_{g} + E_{ci} + E_{hi}))$$

$$\times \ln\left\{\frac{1 + \exp\left[(F_{e} - E_{g} - E_{ci})/kT\right]}{1 + \exp\left[(hv + F_{h} - E_{g} - E_{ci})/kT\right]}\right\}$$


$$\times \frac{1 + \exp\left[(-E_{hi} - F_{h})/kT\right]}{1 + \exp\left[(hv - E_{hi} - F_{e})/kT\right]} \exp\left(\frac{hv - \Delta F}{kT}\right), (2)$$

 $a_0=1.7\cdot 10^{-9}\,\mathrm{m}$ — боровский радиус, $m_e,\ m_h$ — эффективные массы электронов в зоне проводимости и тяжелых дырок в валентной зоне [10], m_0 — масса свободного электрона, e — заряд электрона, ε_0 — электрическая постоянная, d — толщина активного слоя, E_g — ширина запрещенной зоны, $E_{ci},\ E_{hi}$ — уровни энергии для электронов в зоне проводимости и тяжелых дырок в валентной зоне, H — функция Хевисайда. Все параметры относятся к активному слою. Спектр усиления рассчитывается в приближении параболических зон. В силу относительно малых значений пороговой концен-

трации неравновесных носителей $n_{\rm th}=2.5\cdot 10^{18}\,{\rm cm}^{-3}$ для исследуемых лазеров концентрационные изменения плотности состояний и дисперсионных соотношений не учитывались [11]. $|\mathbf{M}|^2$ — квадрат матричного элемента межзонных оптических переходов, усредненный по поляризациям и направлениям распространения излучения. В настоящей работе $|\mathbf{M}|^2$ рассматривался как подгоночный параметр при определении абсолютного значения g(hv). Величина $|\mathbf{M}|^2$ зависит от энергии кванта [11]. Нами установлено, что для исследованных образцов лазеров InGaAs/GaAs/AlGaAs $|\mathbf{M}|^2=2.1\cdot 10^{-49}\,{\rm kr}^2\cdot {\rm m}^2/c^2.$

Рис. 2. Спектры излучения, выходящего из переднего зеркала лазера при токах инжекции, мА: $I=100,\ 2=250,\ 3=400,\ 4=670.$

Рис. 3. Экспериментальный спектр излучения, выходящего из передней грани лазера (I), расчетные спектры спонтанного излучения $W_{\rm sp}$ (2) и усиления g (3) при пороговом токе накачки 670 мА.

Расчет спектров люминесценции и усиления по формулам (1) и (2) затруднителен из-за отсутствия надежных экспериментральных данных для ширины запрещенной зоны и, как следствие, положения уровней энергии в напряженной квантовой яме InGaAs исследованных лазерных образцов. Однако на основании формул (1) и (2) можно построить ряд спектров люминесценции и коэффициента усиления в относительных единицах, варьируя (в разумных пределах) значение ширины запрещенной зоны InGaAs. Наиболее близкой к действительному значению E_g будет та величина, при которой положение максимума коэффициента усиления приходится на длину волны генерации λ_{las} (рис. 3). На пороге генерации модальное усиление $\Gamma g(\lambda_{\rm las})$ равно полным потерям в лазере k_{tot} , т. е. $\Gamma g(\lambda_{\text{las}}) = k_{\text{tot}}$, где Γ — фактор оптического ограничения. Полные потери складываются из внутренних оптических потерь ρ и потерь на выход: $k_{
m tot} =
ho + (1/2L) \ln{(1/R_1R_2)}$, где L — длина резонатора лазера, R_1 и R_2 — коэффициенты отражения зеркал. Спектры люминесценции и коэффициента усиления в относительных единицах можно представить, используя (1) и (2), в абсолютных единицах. (Для максимума коэффициента усиления устанавливается значение, равное полным потерям для излучения с учетом фактора оптического ограничения k_{tot}/Γ . Это позволяет перенормировать весь спектр коэффициента усиления. Спектр люминесценции в абсолютных единицах рассчитываем согласно (1) исходя из полученного спектра усиления в абсолютных единицах).

Спектр спонтанной люминесценции в абсолютных единицах позволяет рассчитать скорость излучательной рекомбинации R_{sp} :

$$R_{\rm sp} = \int_{h\nu_{\rm s}}^{h\nu_2} \frac{W_{\rm sp}(h\nu)}{h\nu} d(h\nu), \tag{3}$$

где v_1 и v_2 — граничные частоты спектра спонтанного излучения.

Спектр излучения, выходящего из передней грани лазера (кривая 1, относительные единицы), а также расчетные спектры спонтанного излучения (кривая 2, единицы $Bт/м^3 \cdot нм$) и усиления (кривая 3, единицы cm^{-1}) при пороговом токе 670 мА представлены на рис. 3. Диапазон длин волн от λ_{AL1} до λ_{AL2} (спектральная область положительных значений коэффициента усиления) (см. кривую 3) — это область усиленной люминесценции. Как известно [12], "избыточное" излучение в предпороговой области токов накачки обусловлено усиленной люминесценцией, которая возникает в области частот, где усиление g(hv) положительно, но меньше полных потерь в лазере, т.е. $0 < g(h\nu) < k_{\text{tot}}$. Таким образом, из рис. 3 следует, что в спектре излучения лазера наблюдается полоса усиленной люминесценции. Для расчета средней по объему спектральной плотности потока усиленной люминесценции $S_{\rm AL}(h\nu)$ можно воспользоваться соотношением [13]

$$S_{\rm AL}(h\nu) = \frac{W_{\rm sp}(h\nu)}{k_{\rm AL} - \Gamma g(h\nu)},\tag{4}$$

где $k_{\rm AL}$ — коэффициент потерь усиленной люминесценции. Коэффициент потерь $k_{\rm AL}$ определяет усредненные по телесному углу и спектру излучения потери для потока усиленной люминесценции [14–17]. В работах [14–17] показано, что для величины коэффициента потерь усиленной люминесценции выполняется неравенство $\rho < k_{\rm AL} < k_{\rm tot}$.

Скорость рекомбинации, индуцированной усиленной люминесценцией, равна

$$R_{\rm AL} = \int \frac{\Gamma g(h\nu) S_{\rm AL}(h\nu)}{h\nu} d(h\nu). \tag{5}$$

В соотношении (5) интегрирование ведется по области спектра, в пределах которой коэффициент усиления положителен.

Из выражения (4) следует, что в некоторой области частот (вблизи максимума усиления) знаменитель может принимать достаточно малые значения. Согласно (5), это приводит к значительному увеличению скорости и, следовательно, интенсивности усиленной люминесценции в этой области частот.

В работе [14] получена следующая зависимость коэффициента потерь $k_{\rm AL}$ от площади активного слоя S_{pn} :

$$k_{\rm AL} = \frac{\Delta}{\sqrt{S_{pn}}},\tag{6}$$

где Δ — коэффициент пропорциональности. Используя данные работ [14–17], для исследованных лазерных образцов можно получить $\Delta=0.2$.

3. Результат и обсуждение

В соответствии с представленным выше подходом была рассчитана скорость излучательной ре-

комбинации: $R_{\rm sp}=1.3\cdot 10^{27}\,{\rm cm^{-3}\cdot c^{-1}}$. Подставляя данное значение $R_{\rm sp}$ и пороговую концентрацию носителей $n_{\rm th}=2.5\cdot 10^{18}\,{\rm cm^{-3}}$ в выражение для скорости спонтанной рекомбинации $R_{\rm sp}=Bn_{\rm th}^2$, получаем значение коэффициента спонтанной рекомбинации $B=2.1\cdot 10^{-10}\,{\rm cm^3\cdot c^{-1}}$, что близко к величинам коэффициента B для GaAs [18,19] и InGaAs [20].

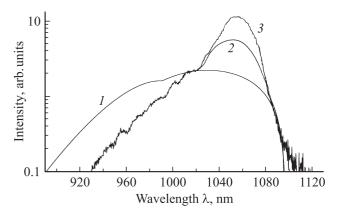
Скорость рекомбинации, индуцируемой усиленной люминесценцией, рассчитанная с помощью формул (4)–(6), на порядок меньше скорости спонтанной рекомбинации $R_{\rm sp}$ и составляет $R_{\rm AL}$ = $1.0\cdot 10^{26}$ см⁻³·с⁻¹, хотя формулы (4) и (5) по сравнению с формулой (3) содержат малый знаменатель. Это связано с тем, что в формуле (5) в отличие от формулы (3) интегрирование идет не по всему спектру спонтанного излучения, а в границах полосы усиления.

Значения скоростей $R_{\rm sp}$ и $R_{\rm AL}$ на пороге генерации позволяют определить скорость рекомбинации Q, обусловленной безызлучательными переходами [6],

$$\sigma j_{\rm th} = ed(R_{\rm sp} + Q + R_{\rm AL}),\tag{7}$$

где $j_{\rm th}$ — плотность порогового тока инжекции, σ — параметр, учитывающий растекание тока.

Пороговая плотность тока инжекции j_{th} для исследованных образцов находилась из экспериментально измеренной величины порогового тока I_{th} . При определении скорости безызлучательной рекомбинации учитывался эффект растекания тока в слоях гетероструктуры лазерных диодов [12]. Для исследованных лазеров эффект растекания носителей тока в пассивные области лазера приводит к уменьшению плотности тока инжекции под полосковым контактом на 8%, т. е. $\sigma = 0.92$ (считается, что растекание тока происходит в вытравленном слое эмиттера толщиной $0.2\,\mathrm{mkm}$ и с сопротивлением $1.0\cdot10^{-1}\,\mathrm{Om}\cdot\mathrm{cm}$).


Подставляя значения скоростей $R_{\rm sp}$ и $R_{\rm AL}$ в соотношение (7), получаем для скорости безызлучательной рекомбинации значение $Q=1.2\cdot 10^{26}~{\rm cm}^{-3}\cdot {\rm c}^{-1}$. Если предположить, что основным безызлучательным процессом явлется оже-рекомбинация, то с помощью соотношения $Q=Cn_{\rm th}^3$ для коэффициента оже-рекомбинации C получаем значение $7.6\cdot 10^{-30}~{\rm cm}^6\cdot {\rm c}^{-1}$, которое вполне согласуется с данными для GaAs [18,21] и InGaAs [20].

Значения скоростей излучательной и безызлучательной рекомбинации определяют величину внутреннего квантового выхода люминесценции η [7]:

$$\eta = \frac{R_{\rm sp}}{R_{\rm sp} + Q}.\tag{8}$$

В исследованных образцах лазерных диодов квантовый выход люминесценции равен 91.5%.

На рис. 4 приведены рассчитанные на основании формул (1), (2) и (4) спектры спонтанного излучения (кривая I), усиленной люминесценции (кривая 2) и экспериментально зарегистрированный спектр излучения, выходящего из передней грани резонатора лазера

Рис. 4. Расчетные спектры спонтанного излучения (1) и усиленной люминесценции (2), экспериментально зарегистрированный спектр излучения, выходящего из передней грани резонатора лазера, (3) при пороговом токе накачки $670 \,\mathrm{MA}$.

(кривая 3) при пороговом токе накачке 670 мА. Расчетные спектры спонтанного излучения и усиленной люминесценции проинтегрированы по объему активной области. Как следует из рис. 4, в области частот, где усиление g(hv) положительно, интенсивность усиленной люминесценции больше интенсивности спонтанного излучения. Это говорит о высоком качестве исследованной лазерной гетероструктуры, в которой реальное отношение усиления к суммарным потерям больше, чем это учитывалось при расчетах. При этом величина скорости безызлучательной рекомбинации, определяемая из соотношения (7), должна быть меньше полученной величины $Q = 1.2 \cdot 10^{26} \,\mathrm{cm}^{-3} \cdot \mathrm{c}^{-1}$, что приведет к увеличению внутреннего квантового выхода люминесценции. Таким образом, приведенное значение $\eta = 91.5\%$ можно рассматривать как нижнюю границу внутреннего квантового выхода люминесценции для исследованных лазеров.

4. Заключение

Для лазеров на основе асимметричной гетероструктуры InGaAs/GaAs/AlGaAs с расширенным волноводом определены скорости рекомбинации, обусловленные излучательными и безызлучательными процессами, а также усиленной люминесценцией.

Показано, что значение квантового выхода люминесценции для исследованных образцов лазеров составляет не менее 91.5%. Для более точного определения скоростей рекомбинации, включая рекомбинацию, индуцируемую усиленной люминесценцией, необходимо специальное изготовление образцов гетероструктур с малыми размерами и матированными гранями.

Следует отметить, что при оценке каналов потерь энергии возбуждения лазеров необходимо учитывать, что с ростом тока инжекции выше порогового наряду с потоком усиленной люминесценции вклад в потери

энергии накачки могут давать устойчивые замкнутые моды [22].

Список литературы

- С.О. Слипченко, Д.А. Винокуров, Н.А. Пихтин, З.Н. Соколова, А.Л. Станкевич, И.С. Тарасов, Ж.И. Алфёров. ФТП, 38, 1477 (2004).
- [2] С.О. Слипченко, З.Н. Соколова, Н.А. Пихтин, К.С. Борщев, Д.А. Винокуров, И.С. Тарасов. ФТП, 40, 1017 (2006).
- [3] I.S. Tarasov, N.A. Pikhtin, S.O. Slipchenko, Z.N. Sokolova, D.A. Vinokurov, K.S. Borschev, V.A. Kapitonov, M.A. Khomylev, A.Yu. Leshko, A.V. Lyutetskiy, A.L. Stankevich. Spectrochimica Acta pt A, 66, 819 (2007).
- [4] И.С. Тарасов. Квант. электроника, 40, 661 (2010).
- [5] D.A. Livshits, I.V. Kochnev, V.M. Lantratov, N.N. Ledentsov, T.A. Nalyot, I.S. Tarasov, Zh.I. Alferov. Electron. Lett., 36, 1848 (2000).
- [6] Л.И. Буров, Е.В. Лебедок, В.К. Кононенко, А.Г. Рябцев, Г.И. Рябцев. Журн. прикл. спектроскопии, 74, 790 (2007).
- [7] В.В. Кабанов, Е.В. Лебедок, А.Г. Рябцев, Г.И. Рябцев, М.А. Щемелев, В.В. Шерстнев, А.П. Астахова, Ю.П. Яковлев. ФТП, 43, 522 (2009).
- [8] P.T. Landsberg, M.S. Abrahams, M. Osinski. IEEE J. Quant. Electron., 21, 24 (1985).
- [9] А.А. Афоненко, В.К. Кононенко, И.С. Манак, В.А. Шевцов. ФТП, **31**, 1087 (1997).
- [10] M.P. Krijn. Semicond. Sci. Technol., 6, 27 (1991).
- [11] L.A. Coldren, S.W. Corzine. *Diode lasers and photonic integrated circuits* (N.Y., John Wiley & Sons Inc., 1995).
- [12] X. Кейси, М. Паниш. *Лазеры на гетероструктурах* (М., Мир, 1981) т. 2. [Пер. с англ.: Н.С. Casey, М.В. Panish. *Heterostructure Lasers* (N.Y., Academic Press, 1978) pt B].
- [13] В.П. Грибковский. Теория поглощения и испускания света в полупроводниках (Минск, Наука и техника, 1975).
- [14] В.К. Кононенко, В.П. Грибковский. ФТП, 5, 1875 (1971).
- [15] Л.И. Буров, И.Н. Варакса, С.В. Войтиков, М.И. Крамар, А.Г. Рябцев, Г.И. Рябцев. Квант. электроника, 32, 260 (2002).
- [16] Г.И. Рябцев, А.С. Смаль. Журн. прикл. спектроскопии, **70**, 490 (2002).
- [17] G.I. Ryabtsev, T.V. Bezyazychnaya, M.V. Bogdanovich, V.V. Parastchuk, A.I. Yenzhyieuski, L.I. Burov, A.S. Gorbatsevich, A.G. Ryabtsev, M.A. Shchemelev, V.V. Bezotosnyi, K.A. Shore, S. Banerjee. Appl. Phys. B, 90, 471 (2008).
- [18] G.R. Hadley, J.P. Hohimer, A. Owyoung. IEEE J. Quant. Electron., 24, 2138 (1988).
- [19] З.Н. Соколова, В.Б. Халфин. ФТП, 23, 1806 (1989).
- [20] L.V.T. Nguyen, P.C.R. Gurnev. IEEE J. Select. Topics Quant. Electron., 1, 494 (1995).
- [21] Б.Л. Гельмонт, З.Н. Соколова. ФТП, 16, 1670 (1982).
- [22] С.О. Слипченко, А.А. Подоскин, Н.А. Пихтин, З.Н. Соколова, А.Ю. Лешко, И.С. Тарасов. ФТП, **45**, 672 (2011).

Редактор Л.В. Шаронова

Radiative and nonradiative recombination in active layers of powerful InGaAs/GaAs/AlGaAs laser diodes

V.V. Kabanov⁺, Y.V. Lebiadok⁺, G.I. Ryabtsev⁺, A.S. Smal⁺, M.A. Shchemelev⁺, D.A. Vinokurov^{*}, S.O. Slipchenko^{*}, Z.N. Sokolova^{*}, I.S. Tarasov^{*}

*B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus *Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract The rates of recombination caused by radiative and nonradiative processes as well as the rate of recombination induced by amplified luminescence were obtained for diode lasers based on asymmetric InGaAs/GaAs/AlGaAs heterostructure with ultra wide waveguide near threshold. It was ascertained that the value of quantum yield of luminescence for the investigated lasers is more than 91.5%.