19

Высокотемпературная теплоемкость метабората меди CuB₂O₄

© В.М. Денисов¹, Л.Т. Денисова¹, Л.А. Иртюго¹, Н.В. Волков^{2,3}, Г.С. Патрин^{2,3}, Л.Г. Чумилина¹

¹ Институт цветных металлов и материаловедения Сибирского федерального университета,

Красноярск, Россия

² Институт физики им. Л.В. Киренского СО РАН,

Красноярск, Россия

³ Институт инженерной физики и радиоэлектроники Сибирского федерального университета,

Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 14 марта 2012 г.)

Получены данные по теплоемкости метабората меди CuB₂O₄ в широком интервале температур. Установлена корреляция между составом системы CuO-B₂O₃ и удельной теплоемкостью оксидных соединений.

1. Введение

Интерес к изучению свойств метабората меди CuB_2O_4 и материалов на его основе не ослабевает после обнаружения их низкотемпературного магнетизма [1–6]. Сведения о равновесной диаграмме состояния системы B_2O_3 —СиО приведены в работе [7]. Она характеризуется наличием двух конгруэнтно плавящихся соединений CuB_2O_4 и $Cu_3B_2O_6$. Более подробные сведения об их свойствах получены для метабората меди CuB_2O_4 : изучены магнитные свойства [1–3], электромеханические свойства и анизотропия распространения акустических волн [4], кристаллическая структура [8].

В то же время о таких свойствах кристалла CuB_2O_4 как теплоемкость и термодинамические потенциалы сведений практически нет. Имеются лишь данные по теплоемкости CuB_2O_4 при температурах 2–40 K [3]. Целью настоящей работы является измерение высоко-температурной теплоемкости и расчета по этим данным термодинамических свойств CuB_2O_4 .

2. Эксперимент

Монокристаллы метабората меди выращивали из раствора—расплава, содержащего CuO, B_2O_3 и Li₂CO₃ (25, 60 и 15 mol% соответственно). Все использованные реактивы были квалификации ОСЧ. Методика выращивания монокристаллов подобна описанной в работах [2,3]. Кристаллы CuB₂O₄ отделяли от растворителя кипячением в 20%-ном водном растворе азотной кислоты. Они были яркого сине-фиолетового цвета с максимальными размерами $1 \times 1 \times 0$, 5 ст.

Измерение теплоемкости C_p проводили в платиновых тиглях на приборе STA 449 C Jupiter (NETZSCH) аналогично [9,10].

3. Результаты и их обсуждение

Температурная зависимость теплоемкости кристаллов CuB₂O₄ показана на рис. 1. Из рисунка видно, что в изу-

ченном интервале температур значения C_p закономерно увеличиваются, а на зависимости $C_p(T)$ отсутствуют различного рода особенности. Полученные значения C_p в зависимости от температуры могут быть описаны следующим соотношением (в единицах $J \cdot mol^{-1} \cdot K^{-1}$):

$$C_p = a + b \cdot 10^{-3}T - c \cdot 10^5 T^{-2}$$

= 103.97 + 79.80 \cdot 10^{-3}T - 30.64 \cdot 10^5 T^{-2}. (1)

На основании соотношения (1) рассчитаны термодинамические функции (изменение энтальпии $H_T^0 - H_{298}^0$ и энтропии $S_T^0 - S_{298}^0$). Для этого использованы известные уравнения, связывающие теплоемкость C_p с функциями энтальпии и энтропии

$$H_T - H_0 = \int C_p(T) dT,$$
(2)

$$S_T - S_0 = \int \frac{C_p(T)}{T} dT.$$
 (3)

Полученные результаты приведены в таблице.

Рис. 1. Влияние температуры на теплоемкость CuB₂O₄.

Τ,	C_p ,	$H_T^0 - H_{298}^0,$	$S_T^0 - S_{298}^0$,
Κ	$J \cdot mol^{-1} \cdot K^{-1}$	$kJ \cdot mol^{-1}$	$J \cdot mol^{-1} \cdot K^{-1}$
298	93.25		
300	93.87	0.424	0.626
340	104.60	6.706	13.06
380	113.07	12.96	25.17
420	120.12	19.17	36.85
460	126.20	25.36	48.05
500	131.61	31.59	58.81
540	136.55	37.86	69.12
580	141.15	44.20	79.04
620	145.48	50.61	88.60
660	149.60	57.11	97.82
700	153.58	63.71	106.7
740	157.43	70.40	115.3
780	161.18	77.20	123.8
820	164.85	84.10	131.9
860	168.46	91.12	139.9
900	172.01	98.24	147.6
940	175.51	105.5	155.1
980	178.98	112.8	162.5
1020	182.42	120.3	169.8
1050	184.98	126.0	175.1

Сглаженные значения молярной теплоемкости и термодинамические функции CuB₂O₄

Можно отметить, что при температурах выше 930 К теплоемкость C_p превышает классический предел Дюлонга-Пти 3*Rs*, где *R* — универсальная газовая постоянная, *s* — число атомов в формульной единице CuB₂O₄ (*s* = 7).

Ранее была установлена корреляция между составом оксидов, образующихся в системах на основе оксидов свинца и висмута, и их стандартной теплоемкостью: GeO₂-PbO [11], Bi₂O₃-B₂O₃ [12], Bi₂O₃-GeO₃, Bi₂O₃-SiO₂ [13], Bi₂O₃-Fe₂O₃ [14]. Мож-

Рис. 2. Зависимость стандартной теплоемкости от состава системы CuO-B₂O₄: *1* — [15], *2* — наши данные, *3* — оценочные значения.

но допустить, что подобная корреляция наблюдается и для системы CuO-B₂O₃ (рис. 2). Это позволяет, несмотря на малое количество экспериментальных точек, оценить неизвестные данные по теплоемкости других оксидных соединений системы CuO-B₂O₃ с меньшей погрешностью, чем аддитивным методом Неймана–Копа [16]. Например, в последнем случае для CuB₂O₄ $C_p = 0.717 \,\text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, тогда как эксперимент дает 0.626 J · mol⁻¹ · K^{-1} .

Из рис. 2 следует, что оценочные значения для $Cu_3B_2O_6$ и CuB_8O_{13} равны 0.56 и $0.77\,J\cdot mol^{-1}\cdot K^{-1}$ соответственно.

Сравнить полученные значения C_p для CuB₂O₄ с другими данными не представлялось возможным, поскольку таких сведений в литературе нет (как указано выше, есть данные только при очень низких температурах [3]). В то же время величина нормализованной молярной теплоемкости, рассчитанная по соотношению $C_p^* = C_p^0/s$, для CuB₂O₄ равна 13.32 J · mol⁻¹ · K⁻¹, что заметно ниже, чем для других оксидных соединений (J · mol⁻¹ · K⁻¹): 17.6 (Li₂Ge₇O₁₅), 17.9 (NaLiGe₄O₉), 21.0 (Pb₅(Ge_{1-x}Si_x)₃O₁₁) [17]; 24.70 (Pb₃GeO₅), 21.33 (Pb₅Ge₃O₁₁), 21.29 (PbGeO₃) и 18.80 (PbGe₃O₇) [11]. Не исключено, что это связано с эффектом атомных масс [17].

4. Заключение

Исследована температурная зависимость теплоемкости (298–1050 K) оксидного соединения CuB₂O₄. Показано, что для системы CuO–B₂O₃ между составом оксидов и их удельной теплоемкостью имеется корреляция.

Список литературы

- Г.А. Петраковский, К.А. Саблина, Д.А. Великанов, А.М. Воротынов, Н.В. Волков, А.Ф. Бовина. ФТТ 41, 7, 1267 (1999).
- [2] Г.А. Петраковский, К.А. Саблина, Д.А. Великанов, А.М. Воротынов, Н.В. Волков, А.Ф. Бовина. Кристаллография 45, 5, 926 (2000).
- [3] Л.В. Удод, К.А. Саблина, А.И. Панкрац, А.М. Воротынов, Д.А. Великанов, Г.А. Петраковский, А.Ф. Бовина. Неорган. материалы **39**, *11*, 1356 (2003).
- [4] К.С. Александров, Б.П. Сорокин, Д.А. Глушков, Л.Н. Безматерных, С.И. Бурков, С.В. Белущенко. ФТТ 45, 1, 42 (2003).
- [5] S. Pan, J.P. Smit, M.R. Marvel, C.L. Stern, B. Watkins, K.R. Poeppelmeier. Mater. Res. Bull. 41, 916 (2006).
- [6] N. Anantharamulu, B.V. Kumar, V.R. Devi, T. Sarojini, Ch. Anjaneyulu, M. Vithal. Bull. Mater. Sci. 32, 4, 421 (2009).
- [7] Н.С. Шустер, Х.Л.К. Зейналова, М.И. Заргарова. ЖНХ 34, 1, 266 (1990).
- [8] M. Martienez-Ripoll, S. Martinez-Carrera, S. Garcia-Blanko. Acta Crystallogr. 27, 677 (1991).
- [9] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 7, 1274 (2010).

- [10] В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова, В.В. Иванов. ТВТ **48**, *5*, 790 (2010).
- [11] В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова. ФТТ 53, 4, 642 (2011).
- [12] Л.А. Иртюго, В.М. Денисов, В.П. Жереб, Л.Т. Денисова. Журн. СФУ. Химия 4, 4, 344 (2011).
- [13] В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова. ФТТ 53, 10, 2069 (2011).
- [14] В.М. Денисов, Н.В. Волков, Л.А. Иртюго, Г.С. Патрин, Л.Т. Денисова. ФТТ **54**, *6*, 1234 (2012).
- [15] Физико-химические свойства окислов. Справочник / Под ред. Г.В. Самсонова. Металлургия, М. (1978) 472 с.
- [16] Г.К. Моисеев, Н.А. Ватолин, Л.А. Маршук, Н.И. Ильиных. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ. УрО РАН, Екатеринбург (1977) 228 с.
- [17] А.А. Буш, Е.А. Попова. ФТТ 46, 5, 875 (2004).