Влияние γ -облучения на электрофизические свойства термообработанных монокристаллов $\mathsf{Tb}_x\mathsf{Sn}_{1-x}\mathsf{Se}$

© Дж.И. Гусейнов [¶], Т.А. Джафаров

Азербайджанский государственный педагогический университет, Az-1000 Баку, Азербайджан

(Получена 4 августа 2011 г. Принята к печати 16 августа 2011 г.)

Исследовано влияние γ -облучения на электрофизические свойства термообработанных монокристаллов Tb_{0.01}Sn_{0.99}Se и Tb_{0.05}Sn_{0.95}Se. Обнаружено, что после облучения γ -лучами с энергией 1.25 MэB концентрация носителей заряда уменьшается на 17 и 6.3% соответственно в интервале температур $T=77-200\,\mathrm{K}$. Предполагается, что при облучении γ -квантами примеси тербия располагаются между узлами кристаллической решетки и дополнительно возникают дефекты по Френкелю.

1. Введение

В последние десятилетия большой интерес у исследователей вызывают полупроводниковые термоэлектрические материалы типа $A^{IV}B^{VI}$ с внедрением редкоземельных элементов (РЗЭ) для получения высокотемпературных термоэлектрических преобразователей [1,2].

Исследования возможностей применения редкоземельных элементов при легировании термоэлектрических материалов для получения высокоэффективных термоэлектрических преобразователей дают возможность расширить рабочие диапазоны в сторону высоких температур [3,4]. Все преобразователи, особенно работающие при высоких температурах, подвергаются воздействию окружающей среды: влажность, радиация, давление и т.п. Показано, что физические параметры материалов с участием РЗЭ менее подвержены внешним воздействиям, чем другие группы полупроводниковых материалов [3,5,6]. Природа химического взаимодействия РЗЭ с разными халькогенидами не одинакова, однако их сульфиды и селениды имеют высокую механическую прочность и стабильность [7]. Обнаружено, что у-облучение влияет на электронные свойства полупроводниковых материалов благодаря появлению точечных дефектов [8].

В зависимости от поглощенной дозы γ -квантов механизм электропроводности и теплопроводности всех полупроводниковых материалов заметно изменяется [8–11]. С этой точки зрения представляется интересным исследовать электрофизические свойства термообработанных монокристаллов $\mathrm{Tb}_x\mathrm{Sn}_{1-x}\mathrm{Se}$ (x=0.01, 0.05), а также влияние на них γ -облучения.

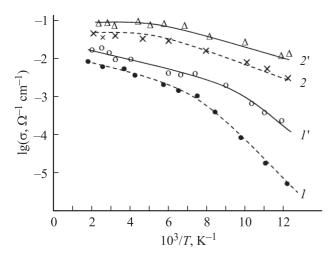
2. Методика эксперимента

Как известно, исходный моноселенид олова SnSe обладает p-типом проводимости за счет нарушения стехиометрии состава, а также высокой концентрации ($\sim 10^{17}\,{\rm cm}^{-3}$) антиструктурных дефектов [11]. Тербий, как примесь, вводили в SnSe, частично заме-

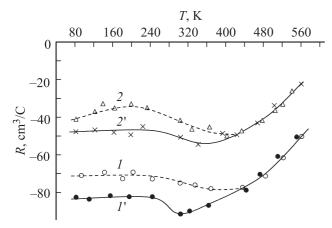
щая олово в $Tb_x Sn_{1-x} Se$. Были получены следующие составы: образец 1 — $Tb_{0.01}Sn_{0.99}Se$, образец 2 — Tb_{0.05}Sn_{0.95}Se. Соединения были синтезированы ампульным методом из шихты Sn+Tb+Se при температуре 980-1000°C в течение 6ч, а затем выращивались методом направленной кристаллизации по методу Бриджмена-Стокбаргера [12]. Были измерены их сопротивления, затем проведен отжиг в течение 3 ч при 760°C. Далее, температура уменьшалась до 480°C, при этой температуре в течение 48 ч был проведен дополнительный отжиг [12], после отжига также было измерено сопротивление (см. таблицу). Образец 1 до отжига имел р-тип проводимости; после отжига оба образца обладают *n*-типом проводимости. При комнатной температуре концентрации носителей заряда в термообработанных образцах имеют значения: образец 1 — $n = 8.3 \cdot 10^{16}$ и 2 $n = 1.5 \cdot 10^{17} \, \text{cm}^{-3}$ соответственно. Для исходного SnSe после отжига удельное сопротивление ho изменяется незначительно, а в образцах 1 и 2 после отжига ρ увеличилось на ~ 6 и 8% соответственно (см. таблицу).

Измерения эффекта Холла и электропроводности исходных и легированных тербием образцов в интервале $77-550\,\mathrm{K}$ проводились по стандартной компенсационной методике в постоянном электрическом и электромагнитном полях [12]. Образцы облучали γ -квантами с энергией квантов $1.25\,\mathrm{M}$ эВ ($^{60}\mathrm{Co}$) дозами $D=0.6\,\mathrm{Гр/c}$. (В эксперименте показаны наиболее реагирующие дозы γ -облучения). Через день после облучения измерялись электропроводность σ и коэффициент Холла R_H образцов в интервале температур $77-550\,\mathrm{K}$. По зависимостям $\sigma(T),\,R_\mathrm{H}(T)$ определены концентрации и подвижности носителей заряда.

3. Результаты и обсуждение


На рис. 1 показаны температурные зависимости электропроводности σ исходных и облученных образцов. Температурные зависимости электропроводности σ до и после облучения для обоих кристаллов качественно имеют одинаковый ход (хотя в облученном образце значение σ стало меньше в низкотемпературной области при $T=77-300\,\mathrm{K}$). Энергия активации носителей

[¶] E-mail: cih 58@mail.ru


	До термообработки				После термообработки				После облучения				
Составы	Тип прово- димости	ρ, Οм · см	Концентрация n , cm^{-3}	Подвижность μ , $cm^2/B \cdot c$	прово-	ρ, Οм · см	<i>n</i> , см ⁻³	μ , $cm^2/B \cdot c$	Тип прово- димости	ρ, Οм · см	<i>n</i> , см ⁻³	μ , $cm^2/B \cdot c$	Δ <i>E</i> , эB
SnSe	p	0.056	$7.2 \cdot 10^{17}$	156	p	0.062	$7.0 \cdot 10^{17}$	144	p		$6.8 \cdot 10^{17}$		0.47
$Tb_{0.01}Sn_{0.99}Se$	p	159	$6 \cdot 10^{15}$	6.5	n	169	$8.3 \cdot 10^{16}$	0.4	n	124	$6.9 \cdot 10^{16}$	1	0.029
$Tb_{0.05}Sn_{0.95}Se$	n	22	$9.8 \cdot 10^{16}$	3.0	n	23.8	$1.5\cdot 10^{17}$	2	n	13.08	$1.4 \cdot 10^{17}$	4	0.031

Примечание. $T = 300 \, \text{K}$.

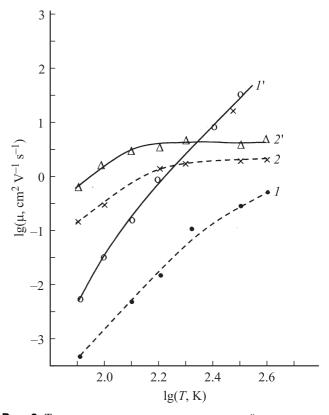

заряда для образцов 1 и 2 на донорные уровни примесей составляла $\Delta E_1 \approx 0.02$ эВ (после облучения — $\Delta E_1' \approx 0.03$ эВ), т.е. порядок значения энергии активации носителей заряда в зависимости от примесного уровня почти не изменяется до и после облучения для обоих образцов. На рис. 2 представлены температурные зависимости коэффициента Холла. Из рисунка видно,

Рис. 1. Температурные зависимости электропроводности: I, I' — $Tb_{0.01}Sn_{0.99}Se$, 2, 2' — $Tb_{0.05}Sn_{0.95}Se$. Штриховые линии I, 2 — до облучения.

Рис. 2. Температурные зависимости коэффициента Холла: 1, 1' — $\mathrm{Tb_{0.01}Sn_{0.99}Se}$, 2, 2' — $\mathrm{Tb_{0.05}Sn_{0.95}Se}$. Штриховые линии 1, 2 — до облучения.

Рис. 3. Температурные зависимости холловской подвижности: I, I' — $Tb_{0.01}Sn_{0.99}Se, 2, 2'$ — $Tb_{0.05}Sn_{0.95}Se$. Штриховые линии I, 2 — до облучения.

что после облучения в обоих образцах коэффициент Холла заметно увеличился. Это особенно характерно для образца 1 в интервале температур 77—200 К. При 80 К в образце 1 до облучения концентрация носителей заряда была $n\approx 8.3\cdot 10^{16}$, а после облучениея стала $n\approx 6.9\cdot 10^{16}\,\mathrm{cm^{-3}}$, т.е. концентрация уменьшилась на 17%, а в образце 2 на 6.3% (рис. 2). Это означает, что состав $\mathrm{Tb_{0.05}Sn_{0.95}Se}$ относительно устойчив до этих поглощенных доз γ -квантов. Это, по-видимому, связано с тем, что атомы тербия, располагающиеся между узлами кристаллической решетки и вакансии при облучении γ -квантами восстанавливают более устойчивое состояние с появлением дефектов по Френкелю, в результате чего уменьшается примесная концентрация

носителей. В обоих образцах при температурах выше $T \ge 400 \, {\rm K}$ электропроводность заметно увеличивается с тостом T, а энергия активации носителей заряда одинакова ($\Delta E = 0.45$ эВ, на рисунке не показано). Но остается спорным вопрос о том, связаны ли электроактивные центры, возникающие после термической обработки, со структурными дефектами кристалла или же они обусловлены атомами быстро диффундирующих примесей, проникающих в кристалл в ходе отжига (см. таблицу). По-видимому, влияние термической обработки на электрические свойства монокристаллов Tb_{0.01}Sn_{0.99}Se и $Tb_{0.05}Sn_{0.95}Se$ связано с созданием дополнительных уровней в запрещенной зоне и взаимодействием с близлежащими акцепторными центрами, после чего они переходят в наиболее устойчивые локализованные состояния.

На рис. 3 представлены температурные зависимости холловской подвижности носителей заряда. Из рисунка видно, что в образце 1 подвижность носителей заряда до облучения с ростом температур увеличивается по закону $\mu \propto T^{1.5}$, а после облучения — $\mu \propto T^{2.0}$ в исследованном интервале температур. Это означает, что основным механизмом рассеяния носителей заряда является рассеяние на заряженных примесных центрах, после облучения рассеяние усиливается. В образце 2, где содержание тербия больше, до и после облучения зависимости $\mu(T)$ одинаковы и изменяются по закону $\mu \propto T^{0.8}$, что соответствует рассеянию на слабо заряженных примесных центрах. С повышением температуры их влияние ослабевает и нейтральные примеси начинают играть основную роль с усилением френкелевских дефектов.

Из полученных экспериментальных данных следует, что концентрация электронов уменьшается под влиянием γ -облучения, но с увеличением содержания тербия в составе эти изменения концентрации электронов ослабевают за счет усиления френкелевских дефектов. При низких температурах $80-200\,\mathrm{K}$ рассеяние носителей заряда в основном происходит на слабо ионизованных центрах, а с повышением температуры до $300\,\mathrm{K}$ превалирующую роль начинают играть нейтральные примеси.

Список литературы

- [1] Г.Г. Гаджиев. В сб.: Актуальные вопросы физики и химии редкоземельных полупроводников (Махачкала, 1988) с. 24.
- [2] К.П. Белов. Магнитотепловые явления в редкоземельных магнетиках (М., Наука, 1990) с. 96.
- [3] Физические свойства халькогенидов редкоземельных элементов, под ред. В.П. Жузе (Л., Наука, 1973).
- [4] Г.Г. Алексеева, М.В. Ведерников, Е.А. Гуриева, П.П. Константинов, Л.В. Прокофьева, Ю.П. Равич. ФТП, **32** (7), 806 (1998).
- [5] В.Ю. Ирхин, Ю.П. Ирхин. Электронная структура, физические свойства и корреляционные эффекты в dи f-металлах и их соединениях (М., Наука, 2011).

- [6] В.Я. Шевченко, В.Ф. Дворякин и др. В сб.: *Кристаллохи-мические проблемы материаловедения пролупроводни-ков* (М., Наука, 1975).
- [7] Конфигурационная модель вещества, под ред Г.Б. Самсонова, И.Ф. Прядко, Л.Ф. Прядко (Киев, Наук. думка, 1975).
- [8] В.С. Вавилов, Н.П. Кокелидзе, Л.С. Смирнов. Действие излучений на полупроводники (М., Наука, 1988).
- [9] Д.И. Гусейнов, М.И. Мургузов, Ш.С. Исмаилов. Изв. РАН. Неорг. матер., **44** (5), 542 (2008).
- [10] Х.А. Адгезалова, М.И. Мургузов, О.М. Гасанов, Ш.С. Исмаилов. Изв. РАН. Неорг. матер., **47** (1), 21 (2011).
- [11] И. Касумоглу, Т.Г. Керимова, И.А. Мамедова. ФТП, 45 (1), 32 (2011).
- [12] Е.И. Ярембаш, А.А. Елисеев. Халькогениды редкоземельных элементов (М., Наука, 1975).

Редактор Т.А. Полянская

Effect of γ -radiation on electrophysical properties of $\mathsf{Tb}_x\mathsf{Sn}_{1-x}\mathsf{Se}$ heat-treated single crystals

J.I. Huseynov, T.A. Jafarov

Azerbaijan State Pedagogical University, Az-1000 Baku, Azerbaijan

Abstract The effect of γ -radiation on electrophysical properties of Tb_{0.01}Sn_{0.99}Se and Tb_{0.05}Sn_{0.95}Se heat-treated single crystals were researched. It was found that after γ -rays radiation with the power of 1.25 MeV the concentration of charge carriers decreased on 17 and 6.3% respectively in the temperature range of T=77-200 K. It is assumed that during γ -quanta radiation the terbium impurities are placed between lattice sites — vacancies in a more stable state restoring by Frenkel defect.