О термической устойчивости графона

© А.И. Подливаев, Л.А. Опенов¶

Национальный исследовательский ядерный университет «МИФИ», 115409 Москва, Россия

(Получена 2 декабря 2010 г. Принята к печати 22 декабря 2010 г.)

Методом молекулярной динамики исследована термоактивированная миграция атомов водорода в графоне — магнитном полупроводнике, представляющем собой монослой графена, покрытый с одной стороны водородом. Непосредственно определена температурная зависимость характерного времени разупорядочения графона из-за перескоков атомов водорода на соседние атомы углерода. Найдена энергия активации этого процесса: $E_a = (0.05 \pm 0.01)$ эВ. Малая величина E_a указывает на крайне низкую термическую устойчивость графона, что является серьезным препятствием для его практического использования в наноэлектронике.

1. Введение

Графен (graphene) [1] — гексагональный монослой из атомов углерода — представляет интерес как для фундаментальной физики (дираковские фермионы в твердом теле), так и для практических приложений (наноэлектроника [2]). В настоящее время внимание привлекают к себе и различные производные графена, такие, например, как графан (graphane) СН — полностью насыщенный с обеих сторон водородом монослой графена [3,4], диаман — двухслойный графен с адсорбированными на его внешних поверхностях атомами водорода [5] и др.

Недавно в работе [6] было теоретически предсказано существование еще одного углеводорода на основе графена — графона (graphone) С₂Н, представляющего собой монослой графена, на котором атомы водорода адсорбированы только с одной стороны (а не с двух, как у графана). Согласно расчетам [6], выполненным в рамках теории функционала плотности (DFT) с использованием обобщенного градиентного приближения, графон, подобно графану, является диэлектриком, но с гораздо меньшей шириной запрещенной зоны, $E_g \approx 0.5 \, \mathrm{sB}$ (в графане $E_g \approx 5 \, \text{эВ}$ [7]). Интересно, что, в отличие от немагнитных графена и графана, графон, согласно теории [6], обладает магнитными свойствами: локальные магнитные моменты негидрогенизированных атомов углерода упорядочиваются ферромагнитным образом при температуре Кюри $T_{\rm C} \approx 300-400$ К. Это сулит графону широкие перспективы использования в различных наноэлектронных (например, спинтронных) устройствах.

Круг возможных применений графона в значительной мере зависит от степени его термической устойчивости. Действительно, термоактивированные перескоки атомов водорода между соседними атомами углерода могут привести к существенному искажению структуры графона и, как следствие, к неконтролируемому изменению его магнитных характеристик (в том числе к их неоднородности по образцу или даже полной утрате). В работе [6] устойчивость графона при температуре T = 300 К показана методом молекулярной динамики в рамках DFT. Однако время "компьютерного эксперимента", в

течение которого графон сохранял свою структуру, при этом составило всего лишь 3 пс — явно недостаточно для того, чтобы делать окончательные выводы о его устойчивости.

Как известно, использование первопринципных (ab initio) методов при моделировании динамических процессов требует очень больших затрат компьютерных ресурсов и поэтому позволяет изучить эволюцию системы из ~ 100 атомов (кластера или сверхъячейки с периодическими граничными условиями) в течение весьма непродолжительного (недостаточного для набора необходимой статистики) времени ~ 10 пс. Цель настоящей работы заключается в моделировании термоактивированной миграции водорода в графоне методом молекулярной динамики с использованием модели сильной связи [8], которая представляет собой разумный компромисс между более строгими подходами ab initio и чрезмерно упрощенными классическими потенциалами межатомного взаимодействия. Эта модель хорошо описывает как небольшие углеводородные кластеры [9-13], так и макроскопические системы [8], позволяя в комбинации с методом молекулярной динамики довести время моделирования до 1 нс-1 мкс [9-14]. Ранее она была успешно использована для изучения термической десорбции водорода из графана [13] и эффекта спонтанной регенерации границы раздела графен/графан при ее разупорядоченности [14], а также для расчета зависимости ширины диэлектрической щели нанолент из графана от их ширины [15]. Мы покажем, что процессы перескока атомов водорода между соседними атомами углерода в графоне характеризуются чрезвычайно низкой энергией активации (почти на 2 порядка меньшей энергии активации десорбции водорода), в результате чего даже при температуре жидкого азота характерное время разупорядочения структуры графона не превышает 1 нс.

2. Методы расчета

Для моделирования термоактивированной миграции водорода в графоне методом молекулярной динамики мы использовали кластер C₅₄H₆₀, представляющий собой фрагмент графена, пассивированный по краям водоро-

[¶] E-mail: LAOpenov@mephi.ru

Рис. 1. Кластер С₅₄Н₆₀ — фрагмент графона.

дом (число пассивирующих периферийных атомов водорода равно 48) и включающий, кроме того, 12 "внутренних" атомов водорода, адсорбированных на нем с одной стороны и формирующих фрагмент собственно графона (рис. 1). Пассивирование требуется для того, чтобы насытить "болтающиеся" связи sp- и sp^2 -гибридизованных граничных атомов углерода и тем самым, во-первых, ослабить эффекты конечных размеров и, во-вторых, исключить (или свести к минимуму) перескок водорода с центральных атомов углерода на крайние.

В начальный момент времени каждому атому сообщались случайные скорости и смещения (так, чтобы импульс и момент импульса кластера как целого были равны нулю). Далее вычислялись действующие на атомы силы, и классические уравнения движения решались численно с шагом по времени $t_0 = 2.72 \cdot 10^{-16}$ с. Полная энергия системы в процессе моделирования оставалась неизменной (микроканонический ансамбль [16,17]), так что роль температуры играла так называемая "динамическая температура", являющаяся мерой энергии относительного движения атомов и вычислявшаяся по формуле [17,18] $\langle E_{\rm kin} \rangle = \frac{1}{2} k_{\rm B} T (3n-6)$, где $\langle E_{\rm kin} \rangle$ усредненная по времени кинетическая энергия системы, k_в — постоянная Больцмана, n = 114 — число атомов в кластере (поправки на конечные размеры теплового резарвуара [19,20] не учитывались из-за большого числа атомов n > 100).

Для расчета сил межатомного взаимодействия на каждом шаге молекулярной динамики была использована модифицированная по сравнению с работой [21] неортогональная модель сильной связи [8], которая в явном виде включает квантово-механический ("зонный") вклад электронной подсистемы в полную энергию. При этом учитывались все валентные электроны системы: по одному от каждого атома водорода (1*S*) и по четыре от каждого атома углерода (2*S* и 2*P*).

Для расчета высоты U энергетического барьера, препятствующего миграции водорода по графону, мы исследовали гиперповерхность потенциальной энергии системы E_{pot} как функцию координат составляющих ее атомов. Стационарные точки E_{pot} (локальные минимумы и седловые конфигурации) определялись соответственно методом структурной релаксации и путем поиска в нормальных координатах [22,23].

3. Результаты

Проанализировав атомные конфигурации, возникающие в процессе моделирования динамики графона, мы непосредственно нашли время миграции водорода τ при 66 различных наборах начальных атомных скоростей и смещений, соответствующих температурам $T = 50 - 400 \, {\rm K}$. Величина τ определялась как время, прошедшее с момента начала моделирования до перескока одного из 12 непассивирующих атомов водорода (рис. 1) на соседний атом углерода. В результате такого перескока одна ковалентная связь С-Н разрывается, а другая формируется. Процесс "переключения" связей происходит за время ~ 10 фс. Обратного перескока мигрировавшего атома мы ни разу не наблюдали, т.е. миграция водорода в графоне (в отличие от графана [14]) представляет собой необратимый процесс. Физическая причина такой необратимости заключается в том, что миграция приводит к понижению энергии, т.е. графон представляет собой метастабильную (отвечающую не глобальному, а локальному минимуму энергии) конфигурацию, и атомам водорода энергетически выгоднее образовывать связи с соседними атомами углерода, принадлежащими разным подрешеткам графена. Далее мы вернемся к этому вопросу.

На рис. 2 представлена расчетная зависимость логарифма τ от обратной температуры. Видно, что она достаточно хорошо аппроксимируется прямой линией, что говорит о применимости к описанию миграции водорода стандартной формулы Аррениуса,

$$\tau^{-1}(T) = A \exp\left(-\frac{E_a}{k_{\rm B}T}\right),\tag{1}$$

где A — не зависящий (или слабо зависящий) от температуры частотный множитель, E_a — энергия активации процесса миграции, которая определяется по углу наклона прямой на рис. 2. При понижении температуры от 400 до 50 К время миграции τ экспоненциально возрастает на 4 порядка величины, от ~ 0.1 пс до ~ 1 нс. Статистический анализ результатов "компьютерного эксперимента" дает $E_a = (0.05 \pm 0.01)$ эВ и $A = 10^{(13.5\pm0.1)}$ с⁻¹. Обращает на себя внимание очень малая величина E_a , которая оказывается примерно в 50 раз меньше энергии активации процесса десорбции водорода из графана [13]. Физически это связано с тем, что для десорбции требуется разрыв прочной ковалентной связи С–Н, тогда как

Рис. 2. Зависимость логарифма времени миграции τ одного атома водорода в кластере $C_{54}H_{60}$ от обратной температуры *T*. Точки — результаты расчета; сплошная линия — линейная аппроксимация с использованием метода наименьших квадратов.

Рис. 3. Зависимость потенциальной энергии E_{pot} сверхъячейки $C_{200}H_{100}$ с периодическими граничными условиями от координаты реакции при миграции атома водорода на длину связи С-С. За начало отсчета принята энергия исходной (до миграции) атомной конфигурации. В качестве оси координаты реакции выбрана прямая, проходящая через два атома углерода, между которыми происходит миграция атома водорода. *I* — исходная конфигурация графона; *2* — седловая точка, определяющая энергетический барьер для процесса миграции; *3* — конфигурация после миграции.

при миграции эта связь лишь "переключается" с одного атома углерода на другой.

Поскольку энергия активации миграции определяется высотой U препятствующего миграции энергетического барьера, мы рассчитали величину U в графоне, используя сверхъячейку С₂₀₀Н₁₀₀ из 100 элементарных ячеек С2Н с периодическими граничными условиями. Зависимость потенциальной энергии системы от координаты реакции представлена на рис. 3. Видно, что барьер для миграции атома водорода очень низкий, $U = 0.058 \, \mathrm{sB}$ в соответствии с малой энергией активации (как правило, $U \approx E_a$ [10]). В координатном пространстве этот барьер расположен ближе к атому углерода, связь С-Н с которым при миграции разрывается, чем к атому, с которым формируется новая связь С-Н. Подчеркнем, что результатом миграции является резкое (на 1.46 эВ) уменьшение энергии, и поэтому барьер для обратного перескока атома водорода оказывается очень большим. Это и является причиной необратимости процесса миграции, о которой шла речь выше.

4. Обсуждение результатов

Согласно нашим расчетам, при $T = 300 \, \text{K}$ время миграции атомов водорода в графоне составляет $\tau = 0.1 - 1\,\mathrm{nc}$ (довольно большой разброс значений τ при фиксированной температуре объясняется тем, что процесс миграции является вероятностным по своей природе, и поэтому величина т может существенно различаться для разных наборов начальных скоростей и смещений атомов, даже если они соответствуют одной и той же температуре). На первый взгляд это противоречит результатам работы [6], авторы которой (опять же методом молекулярной динамики) показали, что при $T = 300 \,\mathrm{K}$ графон сохраняет свою структуру в течение 3 пс. Заметим, однако, что в работе [6] приведены данные только одного "компьютерного эксперимента" при одной температуре, а этого недостаточно для однозначного вывода о термической устойчивости (в том числе по причине отмеченного выше вероятностного характера процесса миграции). Мы же, напротив, выполнили детальный анализ динамики графона в очень широком диапазоне температур, набрав при этом достаточно большую статистику и определив температурную зависимость времени миграции. Еще одним фактором, который мог существенно повлиять на полученные в работе [6] результаты, является слишком малый размер системы, для которой проводилось моделирование (С₈H₄).

Заметим, что найденные нами значения энергии активации процесса миграции водорода, $E_a =$ = (0.05 ± 0.01) эВ, и высоты препятствующего миграции энергетического барьера, U = 0.058 эВ, прекрасно согласуются с величиной U = 0.06 эВ, рассчитанной для графона в [24] из первых принципов. Наше значение величины понижения энергии графона при миграции одного атома водорода на длину связи C–C (1.46 эВ) также практически совпадает с полученным в [23] значением (1.44 эВ).

На наш взгляд, чрезвычайно низкая термическая устойчивость графона делает этот наноуглеродный материал мало перспективным для практического использования в электронных приборах. Действительно, согласно оценке с использованием формулы (1) и найденных нами значений входящих в эту формулу параметров А и Е_a, характерное время разупорядочения структуры графона становится макроскопическим (> 10¹⁰ c) лишь при охлаждении графона до $T \approx 10$ К. При более высоких температурах (рис. 1) атомная конфигурация графона вследствие миграции водорода очень быстро нарушается (даже при $T = 77 \,\mathrm{K}$ время миграции не превышает 1 нс), что должно приводить к неоднородности электронных и магнитных характеристик по образцу. Нельзя также исключать возможность фазового расслоения графона на обогащенные и обедненные водородом области. Этот вопрос требует отдельного исследования.

5. Заключение

Мы полагаем, что графон (в отличие от графена и графана) не пригоден для использования в наноэлектронике по причине его низкой устойчивости даже при температуре жидкого азота. Альтернативой графону как наноуглеродному магнитному полупроводнику может оказаться фторированный графон [24], в котором водород заменен фтором.

Авторы признательны М.М. Маслову за помощь в работе и обсуждение результатов.

Работа выполнена в рамках реализации проектов РФФИ (№ 09-02-00701-а), АВЦП "Развитие научного потенциала высшей школы" (№ 2.1.1/10026), ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009–2013 годы (государственный контракт № 416) и ФЦП "Развитие инфраструктуры наноигнустрии в Российской Федерации на 2008–2011 годы" (государственный контракт № 16.647.11.2008).

Список литературы

- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science, **306** (5696), 666 (2004).
- [2] A.K. Geim, K.S. Novoselov. Nature Mater., 6 (3), 183 (2007).
- [3] J.O. Sofo, A.S. Chaudhari, G.D. Barber. Phys. Rev. B, 75 (15), 153 401 (2007).
- [4] D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov. Science, 323 (5914), 610 (2009).
- [5] Л.А. Чернозатонский, П.Б. Сорокин, А.Г. Квашнин, Д.Г. Квашнин. Письма ЖЭТФ, 90 (2), 144 (2009).
- [6] J. Zhou, Q. Wang, Q. Sun, X.C. Chen, Y. Kawazoe, P. Jena. Nano Lett., 9 (11), 3867 (2009).

- [7] S. Lebegue, M. Klintenberg, O. Eriksson, M.I. Katsnelson. Phys. Rev. B, **79** (24), 245 117 (2009),
- [8] M.M. Maslov, A.I. Podlivaev, L.A. Openov. Phys. Lett. A, 373 (18–19), 1653 (2009).
- [9] Л.А. Опенов, А.И. Подливаев. ФТТ, 50 (6), 1146 (2008).
- [10] М.М. Маслов, Д.А. Лобанов, А.И. Подливаев, Л.А. Опенов. ФТТ, 51 (3), 609 (2009).
- [11] М.М. Маслов. Хим. физика, 28 (4), 43 (2009).
- [12] М.М. Маслов. Хим. физика, 29 (2), 92 (2010).
- [13] Л.А. Опенов, А.И. Подливаев. Письма ЖТФ, 36 (1), 69 (2010).
- [14] Л.А. Опенов, А.И. Подливаев. Письма ЖЭТФ, 90 (6), 505 (2009).
- [15] Л.А. Опенов, А.И. Подливаев. ФТП, 45 (5), 644 (2011).
- [16] E.M. Pearson, T. Halicioglu, W.A. Tiller. Phys. Rev. A, 32 (5), 3030 (1985).
- [17] Л.А. Опенов, А.И. Подливаев. Письма ЖЭТФ, 84 (2), 73 (2006).
- [18] C. Xu, G.E. Scuseria. Phys. Rev. Lett., 72 (5), 669 (1994).
- [19] J.V. Andersen, E. Bonderup, K. Hansen. J. Chem. Phys., 114 (15), 6518 (2001).
- [20] Л.А. Опенов, Д.А. Лобанов, А.И. Подливаев. ФТТ, 52 (1), 187 (2010).
- [21] J. Zhao, J.P. Lu. Phys. Lett. A, **319** (5–6), 523 (2003).
- [22] V.F. Elesin, A.I. Podlivaev, L.A. Openov. Phys. Low-Dim. Structur., 11/12, 91 (2000).
- [23] А.И. Подливаев, Л.А. Опенов. ФТТ, 48 (11), 2104 (2006).
- [24] D.W. Boukhvalov. Physica E, 43, 199 (2010).

Редактор Л.В. Шаронова

On the thermal stability of graphone

A.I. Podlivaev, L.A. Openov

National Research Nuclear University «MEPhI», 115409 Moscow, Russia

Abstract Making use of molecular dynamics technique, we study the thermaly activated migration of hydrogen atoms in graphone — a magnetic semiconductor representing itself as a graphene monolayer covered with hydrogen on one side. We directly determine the temperature dependence of a characteristic time for graphone disordering due to hopping of hydrogen atoms to nearest carbon atoms. The activation energy of this process is found to be $E_a = (0.05 \pm 0.01)$ eV. The small value of E_a points to an extremely low thermal stability of graphone, this being a severe obstacle for its practical use in nanoelectronics.