Эволюция оптических свойств при отжиге многослойной нанопериодической системы SiO_x/ZrO₂, содержащей нанокластеры кремния

© А.В. Ершов[¶], Д.И. Тетельбаум, И.А. Чугров, А.И. Машин, А.Н. Михайлов, А.В. Нежданов, А.А. Ершов, И.А. Карабанова

Нижегородский государственный университет им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия

(Получена 22 ноября 2010 г. Принята к печати 29 ноября 2010 г.)

Исследованы спектры фотолюминесценции, инфракрасного поглощения и комбинационного рассеяния света многослойных нанопериодических аморфных структур a-SiO_x/ZrO₂, полученных испарением в вакууме и затем отожженных при различных температурах 500–1100°C. Установлено, что эволюция оптических свойств по мере роста температуры отжига определяется трансформацией нанокластеров кремния, содержащихся в слоях SiO_x в последовательности: нефазовые включения — аморфные кластеры — нанокристаллы, при наличии ограничения размеров последних толщиной исходных слоев SiO_x и химических реакций с ZrO₂.

1. Введение

В настоящее время структуры с массивами квантовых точек кремния в матрице SiO₂ интенсивно исследуются, поскольку эти объекты открывают новые возможности дизайна, интеграции и эффективности функционирования кремниевых устройств нового поколения — светоизлучателей [1], планарных оптических усилителей [2], солнечных фотопреобразователей [3], элементов энергонезависимой памяти [4] и др.

Один из типов таких структур — многослойные системы "нанокристаллический кремний/оксид" (пс-Si/оксид), полученные путем высокотемпературного отжига (ВТО) аморфных многослойных нанопериодических структур (МНС) *a*-Si/оксид или *a*-SiO_x/оксид (с периодом до 10 нм) — аморфных аналогов кристаллических композиционных сверхрешеток [5,6]. Формирование наноструктур данного типа связано со структурно-фазовыми превращениями при ВТО: в кремнийсодержащих слоях МНС образуются нанокристаллы кремния (НК Si), причем их размер в направлении роста может лимитироваться толщиной этих слоев (см., например,[7,8]).

Многослойные системы nc-Si/оксид обладают гибкими возможностями управления свойствами, в частности люминесцентными. Во-первых, можно изменять спектр и интенсивность полос фотолюминесценции (ФЛ) путем вариации соответственно толщины кремнийсодержащих слоев (т. е. размеров НК) и полной толщины МНС (суммарной слоевой концентрации НК). Во-вторых, можно варьировать параметры энергетической диаграммы и характер движения носителей с помощью регулирования высоты и ширины барьеров для электронов и дырок, локализованных в НК (изменения вероятности термической или туннельной эмиссии носителей) путем выбора материала барьерного слоя (SiO₂, Al₂O₃, ZrO₂ и др.) и его толщины [9]. Выбор материала оксида позволяет также регулировать величину эффективной диэлектрической проницаемости (или показателя преломления) наноструктуры как активной среды.

В данной работе исследована возможность синтеза и регулирования параметров ансамблей НК Si в high-k оксидной матрице ZrO₂ (диэлектрическая постоянная k = 25 [9], показатель преломления $n \approx 2$ [10]) путем отжига МНС a-SiO_x/ZrO₂. Изучено влияние термообработки на спектры ФЛ, инфракрасного (ИК) поглощения и комбинационного рассеяния света (КРС). Рассматривается возможность управления длиной волны пика ФЛ путем задания средних размеров НК Si при вариации толщины исходных слоев SiO_x в MHC. (Для системы SiO_x/SiO₂ возможность такого управления показана в работе [7], но автоматрически не следует для структур с другими оксидами). В результате экспериментов установлено, что спектры ФЛ МНС, отожженных при температурах, которые недостаточны для формирования НК Si с типичными размерами более 2 нм (светящимися в области ~ 800 нм), обусловлены наличием других видов нанокластеров кремния — нефазовых включений и аморфных кластеров.

2. Методика экспериментов

Аморфные МНС SiO_x/ZrO₂ были осаждены на подложки из кремния *p*-типа (2000 Ом·см) и пластины *R*-лейкосапфира методом попеременного вакуумного испарения соответствующих исходных материалов из двух независимых источников [11,12]. При формировании МНС слои ZrO₂ осаждались электронно-лучевым испарением, а слои *a*-SiO_x — испарением SiO-пудры из танталового эффузионного источника. Давление остаточной атмосферы перед напылением составляло $2 \cdot 10^{-4}$ Па. Давление паров SiO и ZrO₂ в процессе напыления было примерно одинаковым и составляло $9 \cdot 10^{-4}$ Па. При осаждении слоев ZrO₂ для улучшения стехиометрии в паровую фазу добавлялся молекулярный кислород до суммарного давле-

[¶] E-mail: Ershov@phys.unn.ru

ния $2 \cdot 10^{-3}$ Па. Температура подложки поддерживалась равной $200 \pm 10^{\circ}$ С. Были сформированы две серии МНС *a*-SiO_x/ZrO₂, которые имели примерно одинаковые величины толщины барьерных слоев ZrO₂ (~ 2.1 нм), тогда как толщина слоев SiO_x была разной и составляла в первом случае 3.8 нм, а во втором 7.7 нм, общее число слоев 51 и 43 соответственно. Ниже для обозначения соответствующих периодических структур используются округленные значения толщины индивидуальных слоев: (4 нм)/(2 нм) и (8 нм)/(2 нм). Определение величин периодов МНС проводилось методом малоугловой рентгеновской дифракции с использованием линии Cu K_{α} ($\lambda = 0.154$ нм) [12]. Полные толщины МНС, определенные с помощью интерференционного микроскопа, составили 160 и 220 (±15) нм.

Образцы МНС разделялись на чипы, которые были отожжены в атмосфере азота в течение 2 ч. Каждый чип отжигался при своей температуре с шагом 100 (±10)°С в диапазоне 500−1100°С. Спектры ФЛ измерялись при возбуждении импульсным азотным (337 нм) и непрерывным аргоновым (488 нм) лазерами с использованием решеточного монохроматора SP-150 (Stanford Research Systems). В качестве фотоприемника при накачке азотным лазером (для диапазона ФЛ 400-650 нм) использовался ФЭУ R928, а при возбуждении аргоновым лазером (для диапазона ФЛ 650-900 нм) — ФЭУ-62. Интенсивность ФЛ для каждого диапазона нормировалась с учетом спектральной чувствительности измерительного комплекса, которая определялась с помощью эталонированной лампы накаливания и нагретого черного тела. Измерения спектров ФЛ всех исследуемых образцов проводились при одинаковых условиях возбуждения каждым из лазеров геометрии оптической схемы и регистрации сигнала. Это позволяет сравнивать интенсивности ФЛ разных образцов при накачке одним и тем же источником излучения. Для измерения спектров рамановского рассеяния при комнатной температуре в диапазоне 300-600 см⁻¹ со спектральным разрешением 0.7 см⁻¹ использовался сканирующий конфокальный спектрометр "NTEGRA Spectra (NT MDT)" с твердотельным лазером, излучающим на длине волны 473 нм. ИК спектры пропускания были измерены с помощью спектрометра FTIR "Varian 4100 Excalibur" в диапазоне 380–1500 см⁻¹.

3. Результаты

На рис. 1 приведены спектры ФЛ для МНС (8 нм)/(2 нм), подвергнутых отжигу в атмосфере азота. Спектры на рис. 1, *а* получены в диапазоне 400–650 нм при накачке N₂-лазером ($\lambda_{\text{exc}} = 337 \text{ нм}$), а на рис. 1, *b* — в диапазоне 650–900 нм при возбуждении Ar-лазером ($\lambda_{\text{exc}} = 448 \text{ нм}$). Спектры для МНС SiO_x/ZrO₂ (4 нм)/(2 нм) приведены на рис. 2. Поскольку условия возбуждения и регистрации люминесценции при использовании лазеров N₂ и Ar были разными, то

количественное сравнение интенсивностей ФЛ затруднено, но это не препятствует слежению за эволюцией полос эмиссии под действием термообработки.

Рис. 1. Спектр фотолюминесценции МНС (8 нм)/(2 нм) до отжига (1) и после отжигов при T, °С: 2 — 500, 3 — 600, 4 — 700, 5 — 800, 6 — 900, 7 — 1000, 8 — 1100 — при возбуждении азотным (*a*) и аргоновым (*b*) лазерами.

Физика и техника полупроводников, 2011, том 45, вып. 6

Спектры ФЛ обоих типов структур демонстрируют в целом идентичное влияние температуры отжига. В общем случае наблюдаются три основных полосы эмиссии — с пиками интенсивности при $\sim 550, \sim 600-700$ и ~ 725-825 нм. Неотожженные образцы (нанесенные при 200°C) дают широкую полосу ФЛ с максимумом на $\lambda = 550$ нм (рис. 1, *a* и 2, *a*) и относительно слабую Φ Л при ~ 650 нм, а Φ Л в области 725-825 нм практически не выражена (рис. 1, b и 2, b). Отжиг при 500°С увеличивает интенсивность полосы при ~ 550 нм (для МНС (8 нм)/(2 нм)) и ФЛ при ~ 600-700 нм. Полоса с пиком при ~ 600-700 нм становится выраженной в случае отжигов при 600 и 700°С (кривые 3 и 4 на рис. 1 и 2), тогда как интенсивность ФЛ при 550 нм ослабляется. Дальнейшее повышение температуры отжига демонстрирует смещение длинноволнового максимума последовательно к 700, 780, 800, 750 нм для МНС (8 нм)/(2 нм) (рис. 1, b) и к 675, 730, 750, 780 нм для МНС (4 нм)/(2 нм) (рис. 2, b).

Пик при 750-800 нм, присутствующий после отжига при 1000 и 1100 °C, несомненно, обусловлен ФЛ нанокристаллов кремния, как это имеет место согласно многочисленным литературным данным при отжиге одиночных слоев SiO_x (см., например, [13]), в системах nc-Si:SiO₂, сформированных ионной имплантацией [14], и в MHC a-Si/SiO₂ [15], SiO_x/SiO₂ [7] после ВТО при тех же температурах — 1000-1100°С. Обратим внимание, что для структур (8 нм)/(2 нм) после отжига при 1000°С максимум полосы ФЛ приходится на длину волны 800 нм (рис. 1, b), а для МНС (4 нм)/(2 нм) с более тонким слоем SiO_x пик соответствует меньшей длине волны — 750 нм (рис. 2, b): следовательно, уменьшение толщины слоев SiO_x в структурах приводит к "синему" смещению полосы. Это обстоятельство согласуется с квантово-размерным эффектом, при котором длина волны излучения уменьшается с уменьшением размеров нанокристаллов, т.е. в нашем случае имеет место ограничение среднего размера НК Si толщиной слоев SiO_x .

Отметим еще два важных факта. Во-первых, для структуры (8 нм)/(2 нм) (рис. 1, *b*) рост интенсивности данной полосы при повышении температуры отжига с 1000 до 1100°С сопровождается "синим" сдвигом. Во-вторых, для структуры (4 нм)/(2 нм) такое повышение температуры отжига вызывает уменьшение интенсивности полосы. Оба эти факта обсуждаются ниже.

Дополнительная информация о характере эволюции оптических свойств была получена путем измерения спектров ИК-пропускания. На рис. 3 представлены спектры неотожженного образца (8 нм)/(2 нм) и таких же образцов, отожженных при разных температурах. В области 400–1400 см⁻¹ выявляется ряд полос поглощения, обусловленных различными колебательными модами связей кремний-кислород и цирконий-кислород. Для неотожженного образца видны три пика поглощения — 435, 880 и 1021 см⁻¹. Последние два пика ранее наблюдались для системы SiO_x/SiO₂ [8]. Согласно [16], пик при

Физика и техника полупроводников, 2011, том 45, вып. 6

 880 см^{-1} в SiO_x связан с кольцами из атомов кремния, изолированных друг от друга атомами кислорода. (Подобные конфигурации названы в работе [17] нефазовы-

Рис. 2. Спектр фотолюминесценции многослойных нанопериодических структур (4 нм)/(2 нм) до отжига (*I*), и после отжигов при *T*, °C: 2 — 500, 3 — 600, 4 — 700, 5 — 800, 6 — 900, 7 — 1000, 8 — 1100 — при возбуждении азотным (*a*) и аргоновым (*b*) лазерами.

ми включениями). Этот пик усиливается после отжига при 500°C, а при более высоких температурах отжига он ослабевает и исчезает при температуре отжига 800°С. После отжига при 500°С появляется пик поглощения при 810 см⁻¹, соответствующий изгибным колебаниям групп Si-O-Si и наблюдавшийся для оксида SiO₂ [18]. Этот пик усиливается по мере роста температуры отжига и становится наиболее интенсивным после отжига при 1100°С. По мере роста температуры отжига происхолит некоторая трансформация полосы 1021 см⁻¹: ее пик смещается к более высокому значению волнового числа и расположен при 1080 см⁻¹ для наивысшей температуры отжига. Данная ИК полоса соответствует асимметричным колебаниям атомов в группе Si-O-Si [19]. Пик 435 см⁻¹, слабо выраженный для неотожженного образца, усиливается по мере отжига, смещаясь к 460 см^{-1} . Согласно [20], последний пик соответствует поперечным оптическим колебаниям качания групп Si-O-Si. Из рисунка видно также слабое усиление поглощения в области $1200 \,\mathrm{cm}^{-1}$, которое обусловлено продольной оптической (LO) компонентой асимметричных валентных колебаний групп Si-O-Si [21]. Отметим, что высокотемпературный отжиг при 1000 и 1100°С приводит к появлению слабой полосы поглощения при 570 см⁻¹, соответствующей моде колебаний растяжения групп O-Zr-O в моноклинном ZrO₂ [22,23].

Структурно-фазовые превращения МНС под действием отжига были исследованы методом комбинационного рассеяния света. На рис. 4 приведены типичные спектры КРС структур на сапфировой подложке. Отжиг закономерно модифицирует спектры, отражая образование нанокристаллов кремния, подобно тому, как это имеет место в системах a-Si/SiO₂ и SiO_x/SiO₂ при темпера-

Рис. 3. Влияние отжига на ИК-спектры пропускания многослойных нанопериодических структур SiO_x/ZrO_2 (8 нм)/(2 нм). Кривые соответствуют T, °C: $1 - 6e_3$ отжига, 2 - 500, 3 - 700, 4 - 800, 5 - 900, 6 - 1000, 7 - 1100.

Рис. 4. Влияние отжига на спектры комбинационного рассеяния света многослойных нанопериодических структур a-SiO_x/ZrO₂ (8 нм)/(2 нм) на сапфировой подложке. Температура отжига многослойных структур, °С: кривая 1 — без отжига; 2 - 700, 3 - 900, 4 - 1000, 5 - 1100.

турах отжига 1000 и 1100°С [24,25]. В случае отжига при температурах менее 1000°С имеется широкий пик рассеяния со слабым максимумом при 480 см⁻¹, а отжиг при 1000°С приводит к исчезновению этого пика и появлению узкого асимметричного пика с максимумом при 521 см⁻¹. Для массивного монокристаллического Si характерен симметричный пик при 521 см⁻¹ [24,25].

4. Обсуждение результатов

Как следует из данных по ИК поглощению (рис. 3) и комбинационному рассеянию (рис. 4), по мере отжига МНС SiO_x/ZrO_2 имеет место в целом та же последовательность структурно-фазовых переходов, что и для МНС SiO_x/SiO_2 [8]. В исходных МНС присутствуют точечные дефекты типа кислородно-дефицитных центров, а также цепочки из атомов Si, которые могут быть замкнуты в кольца [16] либо образовывать разветвленные (фрактальные) структуры [17] без фазовой границы. По мере отжига такие структуры формируют аморфные нановключения, а после отжигов при 1000–1100°С аморфные нановключения кристаллизуются и преобразуются в нанокристаллы Si.

Данные ИК пропускания демонстрируют, что по мере отжига в слоях SiO_x происходит фазовое разделение на SiO₂ и Si. Это приводит к все более выраженному проявлению пиков поглощения, характерных для стехиометрического SiO₂. Пик при 880 см⁻¹, связанный с нефазовыми включениями, присутствует уже в исходной структуре, но он усиливается после отжига при 500°С, что указывает на формирование дополнительного количества таких включений путем коагуляции растворенных в исходном оксиде атомов Si. Ослабление этого пика и его исчезновение при более высоких температурах свидетельствует о превращении нефазовых включений в кластеры Si, имеющие четкие границы с матрицей [14].

Пик при 480 см⁻¹ (рис. 4) в спектре КРС структур, отожженых при 700 и 900°С, обусловлен аморфными кластерами Si [24,25]. После отжига при 1000–1100°С этот пик исчезает, и появляется четкий несимметричный пик при ~ 521 см⁻¹ (с плечом со стороны меньших значений рамановского сдвига), характерный для нано-кристаллического Si [24,25].

Аналогичная последовательность фазовых переходов наблюдается при отжигах однослойных пленок SiO_x [14] и ионно-имплантированных кремнием слоев SiO_2 [26].

Эволюция спектров ФЛ отражает указанную последовательность превращений (рис. 1 и 2). Различия между МНС (8 нм)/(2 нм) и (4 нм)/(2 нм) носят количественный, но не качественный характер. В исходных пленках доминирует пик при 550 нм, связанный с нефазовыми кремниевыми включениями [8], а также существует заметная ФЛ в более коротковолновой области (~400-500 нм), где обычно светятся кислородно-дефицитные центры в SiO₂ и ZrO₂ [8,18]. При отжиге 500-600°С ФЛ в этой области ослабляется, появляется полоса в районе 600-650 нм, связанная с аморфными нановключениями [27,28]. При более высоких температурах отжига эта полоса, в свою очередь, ослабляется, а максимум сдвигается к более высоким значениям длины волны, что наблюдалось и в работе [8] для системы SiO_x/SiO₂. Обе тенденции при температурах отжига ниже 1000°С можно объяснить укрупнением включений *a*-Si (в основном в латеральном направлении) вследствие присоединения оставшихся в оксиде кремния растворенных атомов Si. Поведение ФЛ при температурах отжига ниже 1000°С корреспондирует с фактом относительно слабой люминесценции массивного аморфного кремния при комнатной температуре и положением пика ФЛ для сплошных пленок a-Si [29]. Наконец, при 1000-1100°С, когда *a*-Si кристаллизуется, появляется интенсивное свечение при ~ 750-800 нм, характерное для НК Si с диаметром 2-5 нм [7]. Как и в случае MHC SiO_x/SiO_2 [7], существует корреляция между средним размером НК Si и толщиной слоев SiO_x в MHC, проявляющаяся в коротковолновом сдвиге максимума ФЛ от НК Si с уменьшением толщины.

Отличие в поведении ФЛ от МНС SiO_x/ZrO₂ и ФЛ МНС SiO_x/SiO₂ выражено в основном для наиболее высокотемпературной области — 1100°С. Если для МНС SiO_x/SiO₂ [8] переход от отжига при 1000 к 1100°С характеризуется ростом интенсивности пика ФЛ, связанного с НК Si, то для МНС SiO_x/ZrO₂ (8 нм)/(2 нм) наряду с ожидаемым ростом интенсивности происходит сдвиг пика в коротковолновую сторону. Для МНС с меньшим периодом (4 нм)/(2 нм) аналогичный сдвиг тоже наблюдается, но интенсивность ФЛ, будучи низкой после отжига 1000°С (сравнимой с интенсивностью $\Phi \Pi$ в области ~ 750-800 нм при отжиге 800°С), еще больше уменьшается после отжига 1100° (рис. 2, *b*). Такое различие в поведении системы SiO_x/ZrO₂ (по сравнению с MHC SiO_x/SiO_2) можно объяснить тем, что при высоких температурах отжига ZrO2 вступает в химическую реакцию с НК Si (или с SiO_x) с образованием силицида циркония или силиката [30,31]. Это приводит к частичному "съеданию" (скорее всего, неоднородному по площади образца) слоя SiO_x или НК Si и за счет этого к уменьшению средних размеров кристаллитов, что вызывает "синий" сдвиг пика ФЛ для большепериодных (8 нм)/(2 нм) структур; для малопериодной структуры (4 нм)/(2 нм), где размеры НК меньше, данный процесс приводит к исчезновению части НК Si и соответствующему снижению интенсивности ФЛ. Поскольку мелкие НК при 1100°C полностью исчезают, этим объясняется монотонное изменение положения пика с температурой отжига для данных структур. Снижение интенсивности ФЛ при высоких температурах отжига было замечено и в случае ВТО МНС Si/ZrO2, когда уже в исходной структуре имел место контакт кремния с оксидом циркония [12]. Химические реакции ZrO₂ с кремнийсодержащим слоем являются основной причиной того факта, что интенсивность $\Phi \Pi$ от НК Si в системе SiO_x/ZrO₂ слабее (до ~ 50 раз) таковой для системы SiO_x/SiO₂, ранее полученной нами в условиях, подобных условиям получения системы SiO_x/ZrO_2 [32].

В пользу предположения о реакции между ZrO_2 и слоями $SiO_2:nc$ -Si свидетельствует снижение пика KPC после отжига при 1100°C по сравнению с отжигом при 1000°C. В [32] по данным ИК поглощения нами было обнаружено, что пленки ZrO_2 толщиной 300 нм на кремниевой подложке, сформированные и отожженые в условиях, подобных условиям формирования системы HK Si в ZrO_2 , дают пики поглощения, соответствующие силикату циркония.

Отличие в поведении ФЛ МНС SiO_x/ZrO₂ от поведения ФЛ МНС SiO_x/SiO₂ при повышении температуры отжига состоит также в появлении коротковолнового пика ФЛ в районе 450 нм при промежуточных температурах отжига 900-1000°С (рис. 1, а и 2, а), обычно обусловленного кислородно-дефицитными центрами в диоксиде кремния [8,27]. Объяснение этого факта не тривиально, так как вхождение части атомов Si в состав силиката или силицида, казалось бы, должно сдвигать стехиометрию SiO_x в сторону относительного повышения значения х, т.е. понижать концентрацию кислородных вакансий. Можно предположить, что при температурах ниже 1100°С на начальной стадии реакции между ZrO₂ и SiO_x выделяется металлический цирконий, который затем отнимает часть атомов кислорода у SiO_x, тем самым повышая концентрацию кислородных вакансий. При более высокой температуре отжига выделение металлического циркония, по-видимому, не успевает происходить, и пик ФЛ при 450 нм не наблюдается.

5. Заключение

В работе показана возможность синтеза НК Si в диэлектрической матрице на базе МНС SiO_x/ZrO₂ путем высокотемпературного отжига. Поведение оптических свойств этой системы с повышением температуры отжига в основном совпадает с таковым для МНС SiO_x/SiO₂ [8], а наблюдаемые отличия обусловлены химическими реакциями SiO_x или Si с ZrO₂. Это приводит к худшим люминесцентным свойствам данной системы. Однако этот недостаток в значительной степени компенсируется наличием в ней *high-k* диэлектрика (вместо SiO₂), имеющего большие перспективы применения в микро- и оптоэлектронике. Можно ожидать, что создание трехкомпонентных структур МНС типа $SiO_x/SiO_2/ZrO_2$, где слой SiO_x будет изолирован от слоя ZrO₂ тонкой прослойкой SiO₂, предотвратит или ослабит химическое взаимодействие и позволит улучшить люминесцентные свойства системы.

Авторы выражают искреннюю признательность С.С. Андрееву, Ю.А. Вайнеру и А.И. Белову за методическую помощь при выполнении экспериментов.

Работа выполнена частично в рамках АВЦП "Развитие научного потенциала высшей школы", ФЦП "Научные и научно-педагогические кадры инновационной России", гранта президента РФ (МК-185.2009.2) и гранта РФФИ (№ 10-02-00995).

Список литературы

- D.J. Lockwood. In: Spectroscopy of Emerging Materials, ed. by E.C. Faulques et. al. (N.Y.–Boston–Dordrecht–Mockow, Kluwer Academic Publishers, 2004) p. 97.
- [2] P.M. Fauchet. Mater. Today, 8, 26 (2005).
- [3] G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, K.-l. Lin. Thin Sol. Films, 511-512, 654 (2006).
- [4] P. Punchaipetch, Y. Uraoka, T. Fuyuki, A. Tomyo, E. Takahashi, T. Hayashi, A. Sano, S. Horii. Appl. Phys. Lett. 89, 093 502 (2006).
- [5] T. Zheng, Z. Li. Superlat. Microstruct., 37, 227 (2005).
- [6] М. Херман. Полупроводниковые сверхрешетки (М., Мир, 1989).
- [7] M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Bläsing. Appl. Phys. Lett., 80 (4), 661 (2002).
- [8] L.X. Yi, J. Heitmann, R. Scholz, M. Zacharias. Appl. Phys. Lett., 81 (22), 4248 (2002).
- [9] G.D. Wilk, R.M. Wallace, J.M. Anthony. J. Appl. Phys., 89 (10), 5243 (2001).
- [10] Т.Н. Крылова. Интерференционные покрытия (Л., Машиностроение, 1973).
- [11] А.Ф. Хохлов, И.А. Чучмай, А.В. Ершов. ФТП, 34 (3), 349 (2000).
- [12] А.В. Ершов, И.А. Чугров, Д.И. Тетельбаум, С.С. Андреев, А.И. Белов, Ю.А. Вайнер, А.А. Ершов, И.А. Карабанова, А.И. Машин, А.Н. Михайлов. Вестн. Нижегор. ун-та им. Н.И. Лобачевского, 4, 45 (2009).

- [13] H.Rinnert, M. Vergnat, G. Marchal, A. Burneau. Appl. Phys. Lett., **72** (24), 3157 (1998).
- [14] Г.А. Качурин, С.Г. Яновская, В.А. Володин, В.Г. Кеслер, А.Ф. Лейер, М.-О. Ruault. ФТП, 36 (6), 685 (2002).
- [15] B.T. Sullivan, D.J. Lockwood, H.J. Labbe, Z.-H. Lu. Appl. Phys. Lett., 69 (21), 3149 (1996).
- [16] M. Zacharias, D. Dimova-Malinovska, M. Stutzmann. Philos. Mag. B, 73, 799 (1996).
- [17] А.Ф. Лейер, Л.Н. Сафронов, Г.А. Качурин. ФТП, 33 (4), 389 (1999).
- [18] D.V. Tsu, G. Lucovsky, B.N. Davidson. Phys. Rev. B. 40, 1795 (1989).
- [19] H. Ono, T. Ikarashi, K. Ando, T. Kitano. J. Appl. Phys., 84 (11), 6064 (1998).
- [20] P. Lange. J. Appl. Phys., 66 (1), 201 (1989).
- [21] R.M. Almeida, A.C. Marques, S. Pelliz, G.C. Righini, A. Chiasera, M. Mattarelli, M. Montagna, V. Tosello, R.R. Goncales, H. Portales, S. Chaussedent, M. Ferrari, L. Zampedri. Philos. Mag., 84, 1659 (2004).
- [22] B.-O. Cho, S.X. Lao, J.P. Chang. J. Appl. Phys., 93 (11), 9345 (2003).
- [23] X. Zhao, D. Vanderbilt. Phys. Rev. B, 65, 075105 (2002).
- [24] R. Tsu, H. Shen, M. Dutta. Appl. Phys. Lett., 60 (1), 112 (1992).
- [25] L. Tsybeskov, K.D. Hirschman, S.P. Duttagupta, M. Zacharias, P.M. Fauchet, J.P. McCaffrey, D.J. Lockwood. Appl. Phys. Lett., 72 (1), 43 (1998).
- [26] T. Inokuma, Y. Wakayama, T. Muramoto, R. Aoki, Y. Kurata, S. Hasegawa. J. Appl. Phys., 83 (4), 2228 (1998).
- [27] Y. Cong, B. Li, B. Lei, W. Li. J. Luminecs., 126, 822 (2007).
- [28] H. Rinnert, M. Vergnat, A. Burneau. J. Appl. Phys., 89 (1), 237 (2001).
- [29] Аморфный кремний и родственные материалы, под ред. Х. Фрицше (М., Мир, 1991).
- [30] C.C. Fulton, T.E. Cook, G. Lucovsky, R.J. Nemanich. J. Appl. Phys., 96 (5), 2665 (2004).
- [31] J.-P. Maria, D. Wicaksana, A.I. Kingon, B. Busch, H. Schulte, E. Garfunkel, T. Gustafsson. J. Appl. Phys., 90 (7), 3476 (2001).
- [32] А.В. Ершов. Тез. докл. VII Междунар. конф. по актуальным проблемам физики, материаловедения, технологии и диагностики кремния, нанометровых структур и приборов на его основе (Кремний — 2010) (Н. Новгород, Изд-во Нижегор. гос. ун-та, 2010) с. 202.

Редактор Т.А. Полянская

An evolution of the optical properties at annealing of multilayered nanoperiodic SiO_x/ZrO_2 system contained silicon nanoclusters

A.V. Ershov, D.I. Tetelbaum, I.A. Chugrov, A.I. Mashin, A.N. Mikhaylov, A.V. Nezhdanov, A.A. Ershov, I.A. Karabanova

Lobachevsky State University of Nizhni Novgorod, 930950 Nizhni Novgorod, Russia

Abstract Investigation of photoluminescence, infrared absorption and Raman scattering spectra of multilayered nanoperiodic amorphous a-SiO_x/ZrO₂ structures, prepared by the vacuum evaporation and post-annealed at different temperatures (500–1000°C) has been conducted. It was established that evolution of optical propertied with increasing annealing temperature is determined by transformation of silicon nanoclusters contained in the SiO_x layers in the sequence: non-phase inclusions—amorphous clusters—nanocrystals, the sizes of latters being limited by initial thickness of SiO_x layers and chemical reactions with ZrO₂.