06

Сегнетоэлектрические и пьезоэлектрические свойства белковых аминокислот и их соединений

© В.В. Леманов

Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия E-mail: Lemanov@mail.ioffe.ru

(Поступила в Редакцию 14 марта 2012 г.)

Рассмотрены белковые аминокислоты и некоторые их соединения. Существует ряд соединений на основе глицина, обладающих сегнетоэлектрическими свойствами. Такие свойства отсутствуют в хиральных аминокислотах, но реализуются в некоторых их симметричных изомерах.

Работа поддержана грантом РФФИ № 11-02-00016.

Как известно, существует 20 главных белковых аминокислот, структура которых имеет обычный вид $NH_2-CHR-COOH$ (радикалы R для них представлены в табл. 1).

Эти 20 главных белковых аминокислот принято также называть proteinogenic (standard) amino acids. Симметрия главных белковых аминокислот, за исключением глицина, является хиральной, т.е. описывается энантиоморфными группами симметрии.

Аминокислота глицин (R = H, ее кристаллы имеют симметрию C_{2h}) является наиболее симметричной в ряду рассматриваемых аминокислот, и некоторые соединения на ее основе обладают сегнетоэлектрическими свойствами, например триглицинсульфат (TGS) — Gly₃H₂SO₄, диглицин нитрат (DGN) — Gly₂HNO₃, глицинфосфит (GPI) — GlyH₃PO₃. Температуры сегнетоэлектрических фазовых переходов этих кристаллов приведены в табл. 2. Кристаллы представляют собой соединения белковых аминокислот (классическая органика) с неорганическим компонентом, и хотя неорганический компонент вносит существенный вклад, целесообразно относить эти соединения к органическим. Отметим, что спонтанная поляризация таких соединений оказывается относительно низкой, часто почти на порядок ниже, чем в ВаТіОз.

Главные белковые аминокислоты, за исключением глицина, являются хиральными, т. е. могут существовать в левой и правой модификациях. Симметрия кристаллов белковых аминокислот, кроме глицина, описывается одной из хиральных групп симметрии (11 энантиоморфных групп C_1 , C_2 , C_3 , C_4 , C_6 , D_2 , D_3 , D_4 , D_6 , T, O), и все они, за исключением кристаллов групп O, должны обладать пьезоэффектом. Действительно, многие из исследованных кристаллов являются пьезоэлектрически активными (табл. 3). В тех случаях, когда пьезоотклик не наблюдался, это могло быть связано с плохим качеством кристаллов и соответственно с большим затуханием ультразвуковых волн с частотой $10\,\mathrm{MHz}$, которые возбуждались в кристаллах при измерении пьезоэффекта.

С другой стороны, соединения этих кристаллов не являются сегнетоэлектриками из-за низкой симметрии

кристаллов. Действительно, на основе изучения, например, низкосимметричного аланина можно, по-видимому, сделать вывод, что не существует соединений аланина, обладающих сегнетоэлектрическими свойствами. При этом на основе его симметричного изомера —

Таблица 1. Радикалы R белковых аминокислот $NH_2CHRCOOH$ [1]

Аминокислота	Сокращение	Радикал <i>R</i>	
Glycine	Gly	Н	
Alanine	Ala	CH ₃	
Valine	Val	$CH(CH_3)_2$	
Leucine	Leu	$CH_2CH(CH_3)_2$	
Isoleucine	Ile	CHCH ₃ CH ₂ CH ₃	
Serine	Ser	CH₂OH	
Threonie	Thre	CH(CH ₃)OH	
Aspartic acid	Asp	$\mathrm{CH_2COO}^-$	
Glutamic acid	Glu	$(CH_2)_2COO^-$	
Asparagine	AspN	$(CH_2)CO(NH_2)$	
Glutamine	Gln	$(CH_2)_2CO(NH_2)$	
Lysine	Lys	$(CH_2)_4NH_3^+$	
Arginine	Arg	(CH2)3NHC(NH2)2	
Methionine	Met	$(CH_2)_2SCH_3$	
Cysteine	CysSH	CH ₂ SH	
Cystine	Cys	(CH ₂) ₂ S ₂ CHNH ₂ COOH	
Phenylalanine	Phe	Ароматический	
Tyrosine	Tyr	« «	
Tryptophan	Trp	Гетероциклический	
Histidine	His	« «	

Таблица 2. Температура сегнетоэлектрических фазовых переходов для ряда кристаллов

Кристалл	T_c , K
TGS	322
DGN	206
GPI	224
TSCC	130

1728 В.В. Леманов

Таблица 3. Пьезоэлектрическая активность кристаллов при комнатной температуре (исключение methionine, для которого $T=200\,\mathrm{K})$

Название	Наши данные [2]	Данные [3]
α -glycine	_	_
Alanine	+	+
Valine	+	+
Leucine	_	+
Isoleucine	_	+
Phenylalanine	_	+
Tyrosine		+
Tryptophan	_	
Serine	_	+
Threonine	+	+
Methionine	+	_
Cysteine		_
Cystine	_	+
Asparagine	+	+
Glutamine		_
Aspartic acid	+	+
Glutamic acid	+	_
Lysine HCl	+	+
Arginine		_
Histidine	+	+

саркозина — сегнетоэлектрические соединения могут быть получены. Пример такого сегнетоэлектрика TSCC (Sarc₃CaCl₂) приведен в табл. 2. Таким образом, задача обнаружения новых сегнетоэлектриков в этой группе материалов сводится к синтезу соединений нехиральных аминокислот с неорганическими компонентами, обладающими потенциальной сегнетоэлектрической активностью.

Важно при этом еще раз отметить, что глобальная симметрия кристаллов саркозина и аланина одинакова (их точечная группа симметрии D_2), но молекула саркозина более симметрична, чем молекула аланина. Таким образом, часто более важным оказывается не глобальная симметрия кристалла, а симметрия молекул, его составляющих.

Кроме того, на основе проведенных исследований можно сделать вывод, что нехиральные кристаллы, содержащие плоскость симметрии, более склонны к структурным фазовым переходам.

Список литературы

- [1] Г.В. Гурская. Структура аминокислот. Наука, М. (1956). 159 с.
- [2] В.В. Леманов, С.Н. Попов, Г.А. Панкова. ФТТ **53**, *6*, 1126 (2011)
- [3] D. Vasilescu, R. Cornillon, G. Mallet. Nature 225, 635 (1970).