удк 621.315.592 Фотопроцессы в полупроводниково-углеродном фотоконденсаторе с двойным электрическим слоем

© Ф.О. Иващишин, И.И. Григорчак[¶], Б.П. Бахматюк

Национальный университет "Львовская политехника", 79013 Львов, Украина

(Получена 29 октября 2009 г. Принята к печати 12 ноября 2009 г.)

Показана возможность создания функционально-гибридной гальвано-фотоконденсаторной активной системы, которая в темноте имела бы возможность использовать не только накопленную при освещении энергию, но при необходимости и собственную химическую энергию. В экспериментах в качестве фоточувствительного анода использовался моноселенид индия *n*-типа проводимости, выращенный методом Бриджмена. Электрохимические исследования проводились в трехэлектродной ячейке с апротонным раствором электролита, в качестве которого выбирался 0.4 молярный раствор йодида лития в *γ*-бутиролактоне и одномолярный тетрафторборат лития в этом же растворителе.

1. Введение

Сегодня, когда энергосбережение является одним из важнейших приоритетов практически всех сфер экономики, проблема эффективного использования солнечной энергии становится особенно актуальной. Ее суть состоит не столько в решении задачи повышения коэффициента полезного действия (кпд) процесса преобразования солнечной энергии в электрическую, сколько в поиске дешевых способов ее аккумулирования и долговременного хранения. Разумеется, последнее можно достичь путем *in situ* объединения в одном приборе функциональных возможностей преобразования и одновременного аккумулирования энергии, т. е. низкоэнтропийным (токообразующим) неорганическим фотосинтезом.

Первые систематические попытки решения этой задачи были предприняты три десятиления тому назад, когда авторы работ [1-4] предложили использовать фотоэлектрохимические преобразователи солнечного излучения в электрическую энергию, которые способны ее аккумулировать и работать как источники электрической энергии в отсутствие света. В них преобразованная энергия солнечного излучения на границе раздела неширокозонный полупроводник-электролит аккумулировалась в специально сконструированном электроде накопления. Однако запатентованный фотонакопитель [4] имел невысокое значение коэффициента полезного действия ~ 1-2%, обусловленное большой поверхностной рекомбинацией носителей в полупроводящем сульфиде кадмия CdS, а низкая воспроизводимость параметров была вызвана в основном сложностью подбора электролита, антикоррозионной редокс-пары и электрода накопления. Последующее развитие этого направления происходило по пути использования в качестве фотоактивного анода оксидных полупроводников с широкой запрещенной зоной, которые выявляли себя как устойчивые фотоэлектроды [5,6]. Однако фотопреобразователи, которые содержат полупроводники с широкой запрещенной зоной, могут удовлетворительно использоваться только в ультрафиолетовой и ближней ультрафиолетовой областях спектра и, таким образом, они не являются эффективными для преобразования солнечной энергии. Более того, в таких системах накопление преобразованной энергии солнечного излучения реализовалось в виде химических продуктов электролиза, а не в виде электрической энергии.

Эффекты аккумулирования преобразованной энергии можно было бы реализовать с помощью интеркаляционных процессов [7,8], а именно деинтеркаляцией при освещении интеркалированного катионами полупроводника п-типа проводимости и их интеркаляцией в полупроводник р-типа проводимости. Очевидно, что последний должен иметь в своей структуре "гостевые" позиции, т. е. характеризоваться сотовым, канальным или слоистым кристаллическим строением. Слоистая структура оказалась бы наиболее приемлемой с точки зрения двумерности диффузионных областей для "гостевых" компонентов. В случае, если у них края валентной зоны и зоны проводимости лежат на более высоких энергетических уровнях, нежели электроны связей металл-халькоген, то фотовозбуждение может происходить без химического разложения. При этом фотогенерация носителей будет проходить на металлических центрах, экранированных от химического взаимодействия с электролитом инертными плоскостями халькогена. В результате этих процессов равновесный электродный потенциал полупроводника *п*-типа проводимости будет сдвигаться в положительную сторону, а полупроводника *р*-типа проводимости — в отрицательную относительно водородного электрода сравнения. Изменение разницы этих потенциалов в состоянии равновесия после освещения и будет определять эдс фотоаккумулятора в темноте. Что касается фотокоррозии, к которой менее устойчивы полупроводники р-типа проводимости, то преодолеть ее можно путем реализации редокс-процессов, когда кинетические свойства редокс-пар электролита обеспечивают быстрое захватывание носителей по мере их выхода на поверхность. Однако и этому случаю свойствен

[¶] E-mail: Ivangr@rambler.ru

недостаток, на который необходимо обратить внимание. Связан он с тем, что кинетика фототокообразующих реакций будет лимитироваться фарадеевскими процессами и в катодной, и в анодной областях, т.е. как фотодеинтеркаляционными, так и интеркаляционными процессами. Это в свою очередь может приводить к диффузионным поляризациям, что в конечном итоге будет ухудшать энергомощностные параметры. В принципе преодолеть этот недостаток можно было бы заменой интеркаляционного электрода (полупроводника р-типа) блокирующим электродом с высокоразвитой поверхностью. На границе раздела его с электролитом будет формироваться двойной электрический слой (ДЭС), в котором существует возможное емкостное (электростатическое) накопление заряда [9,10]. Однако к настоящему времени как этому аспекту проблемы, так и тщательному изучению кинетики фотоаккумулирования практически не придавали внимания. Более того, значительную практическую ценность представляет возможность создания функционально-гибридной гальванофотоконденсаторной активной системы, которая в темноте имела бы свойство использовать не только накопленную при освещении энергию, но при надобности и собственную химическую. Данная работа посвящена попытке ответить на поставленные вопросы.

2. Методика эксперимента

В экспериментах в качестве фоточувствительного анода использовали моноселенид индия InSe n-типа проводимости, выращенный методом Бриджмена. Ширина его запрещенной зоны, по оптическим данным, составляет при комнатной температуре 1.21 эВ. Как хорошо известно [11], для него характерно существование так называемых "гостевых" позиций — ориентированных перпендикулярно кристаллической оси С областей действия слабых ван-дер-ваальсовых сил. Особенности кристаллического строения материалов этого класса не требуют прецизионной механической или химической обработки поверхности и обусловливают повышенную инертность к адсорбции посторонних атомов или молекул. Отсутствие оборванных связей на поверхности этих материалов обеспечивает очень малую скорость поверхностной рекомбинации [12]. Кроме того, они характеризуются высокой фоточувствительностью в видимой и ближней инфракрасной областях спектра.

Электрохимические исследования проводили в трехэлектродной ячейке (рис. 1) с апротонным раствором электролита, в качестве которого использовали 0.4 M раствор йодида лития LiI в γ -бутиролактоне (γ -BL) и 1 M тетрафторборат лития LiBF₄ в этом же растворителе. Электродом сравнения служил хлорсеребряный электрод. Блокирующий электрод с высокоразвитой поверхностью был изготовлен на основе активированного угля марки Аусфер (АУА) по стандатной технологии [13]. Для освещения использовали источник

Рис. 1. Схема фотоэлектрохимической ячейки.

монохроматического излучения мощностью 10 Вт с тепловым фильтром. Спектральные характеристики записывались в автоматическом режиме. Импедансные измерения проводили в частотном интервале $10^{-2}-10^6$ Гц с помощью измерительного комплекса AUTOLAB фирмы ECO CHEMIE (Голландия), снабженного компьютерными программами FRA-1 и GPES. Моделирование импедансных зависимостей проводили с помощью компьютерной программы Zview-2. Гальваностатический разряд в темноте и электрохимическое формирование интеркалатных фаз Li_xInSe (где *x* — количество внедренного лития, которое соответствует одной формульной единице селенида индия) обеспечивали стандартной гальваностатирующей техникой.

3. Результаты и их обсуждение

Возможность генерирования фотоносителей в *n*-типе InSe, которыми можно заряжать двойной электрический слой границы раздела активированного угля с электролитом, была исследована в электрохимической ячейке:

AVA/0.4MLiI :
$$\gamma$$
-BL/n-InSe. (I)

Энергетическую диаграмму этого процесса можно изобразить следующим образом (рис. 2, *a*). Следовательно, фотоячейка (рис. 1) будет владеть некоторым темновым значением напряжения U_0^D , которое является разницей стационарных электродных потенциалов InSe φ_{IS0} и активированного угля φ_{C0} в использованном растворе электролита, которые отмечены на шкале потенциалов (рис. 2, *b*). При включении света на границе раздела селенида индия с электролитом появляется фотоэдс, которая в замкнутой цепи представлена фотонапряжением U_0^{Φ} . Тогда, исходя из экспериментально полученной зависимости изменения напряжения фотоэлектрохимической ячейки при действии света с течением времени

Рис. 2. Энергетическая диаграмма: *a* — электрохимической системы конфигурации I, *b* — то же конфигурации II; *c* — шкала потенциалов, *d* и *e* — эквивалентные схемы фотоячеек *a* и *b*.

(рис. 3, кривая 1), ее эквивалентная схема будет иметь вид, представленный на рис. 2, *c*. Из него легко находим значение фотонапряжения $U^{\Phi} \approx 0.56$ В. Следует иметь в виду, что U^{Φ} может отличаться от его исходного значения U_0^{Φ} , так как интеркаляция анионами может изменять значение фотоэдс, в частности, и в сторону возрастания [8]. Более того, поскольку из энергетической диаграммы (рис. 2, *a*) видно, что в *n*-InSe внедряются анионы, закономерно [14], что его равновесный электродный потенциал будет смещаться в положительную относительно стандартного водородного электрода сравнения сторону так, что U^D будет также увеличивать-

Рис. 3. Хронопотенциограммы: *1* — фотозаряда, *2* — разряда в темноте электрохимической ячейки конфигурации I.

ся. В результате суммарное напряжение будет приближаться к некоторому равновесному значению, которое в данном случае составляет 0.45 В. В соответствии со схемой (рис. 2, d) фотоконденсатор зарядится до величины, не превышающей этого значения. Накопленная в конденсаторе энергия во время фотодеинтеркаляции при отсутствии освещенности может быть отдана во внешнюю цепь, как это показано на рис. 3 (кривая 2).

Повысить начальное значение темнового напряжения U_0^D (что является практически ценным с точки зрения развития технологии гибридных гальванофотоаккумуляторных систем) можно путем замены *n*-InSe на его интеркалированную фазу Li_xInSe. Например, Li_{0.009}InSe в электрохимической ячейке конфигурации

$$ABA/1MLiBF_4 : \gamma - BL/n - Li_x InSe,$$
 (II)

которая обеспечивает значение $U_0^D = 0.72$ В. Освещенность приводит к появлению фотоэдс, меньшей по величине, чем первичное значение, и составляет 0.41 В. Этому случаю соответствует энергетическая диаграмма (рис. 2, b) и эквивалентная схема (рис. 2, b), поскольку равновесный электродный потенциал Li_{0.009}InSe (φ_{IS1}) сдвинулся в отрицательную сторону (рис. 2, c). Немонотонное значение U(t) (рис. 4, кривая I) является результатом немонотонного изменения фото- и темновой эдс с изменением x в Li_xInSe. Последующий рост литиевой "гостевой" нагрузки в Li_xInSe вызывает дальнейшее смещение равновесного электродного потенциала интеркалата (φ_{IS2}) в отрицательную область (рис. 2, c) и приводит к возрастанию значения U_0^D , которое для

Рис. 4. Изменение напряжения электрохимической ячейки конфигурации II при освещении: *I* — для Li_{0.009}InSe и *2* — для Li_{0.05}InSe.

Li_{0.05}InSe составляет 1.65 В. Характер функциональной зависимости U(t) для этого случая (рис. 4, кривая 2) прежде всего показывает отсутствие резкого начального падения (как для x = 0.009), что свидетельствует о сильном уменьшении фотоэдс и о падении при освещении разрядного напряжения, чего и следовало ожидать, исходя из шкалы потенциалов (рис. 2, *c*).

Полученные данные позволяют сделать важное практическое заключение: для увеличения энергоемкости в гибридном гальвано-фотоконденсаторном приборе необходимо, чтобы значение равновесного электродного потенциала фарадеевского процесса деинтеркаляции Li из Li_xInSe на шкале потеницалов было положительнее потенциала стандартного блокирующего электрода в этом же электролите.

Хотя освещенность фотоэлектрохимической ячейки конфигурации II и уменьшает разрядное напряжение, но можно надеяться на улучшение кинетики токообразующих реакций. Для подтверждения этого предположения были построены диаграммы Найквиста (рис. 5, а) для $Li_x InSe$ с разным значением x в темноте и при освещении интегральным (белым) светом. Как видим, для обоих значений х характерна тенденция к уменьшению результирующего импеданса при освещении. Кроме этого, интересен факт ярко выраженного низкочастотного индуктивного отклика только для Li_{0.009}InSe (который исчезает при интегральном освещении), в то же время высокочастотная "отрицательная" емкость свойственна всем ветвям представленных на рис. 5 диаграмм (в заданном масштабе они не визуализируются). Последнюю, высокочастотную ветвь разумно отнести к собственной индуктивности ячейки и подсоединенных проводов.

Полученные результаты выступают основанием для выбора импедансной модели исследуемых механизмов в виде, изображенном на рис. 5, *b*. В данной схеме R_3 — релаксационное сопротивление низколитииро-

ванной фазы двухфазного Li_xInSe, C_3 — ее химическая емкость, которая пропорциональна отношению концентрации носителей *n* к положению уровня Ферми E_{Fn} : $C_3 = e^2 \cdot \partial n/\partial E_{Fn}$ [15]. Звено Рендлса–Эршлера $R_2-C_1 \parallel W_S$ [16] моделирует перенос катионов лития из высоколитиированной фазы Li_xInSe в электролит, а R_1 отражает сопротивление стадии переноса заряда между двумя фазами кристалла. Индуктивность L_1 формирует как высокочастотные ветви всех диаграмм, так и низкочастотную темновую для Li_{0.009}InSe. В последнем случае она моделирует функциональную взаимозависимость обеих фаз [17], что приводит к трансформации дебаевской релаксации высоколитиированной фазы в недебаевскую,

$$L_1 = R_3 C_3 R_1.$$

Структура данной импедансной модели хорошо согласуется с характером хронопотенциограмм (рис. 4), который указывает на существование двухфазных состояний Li_xInSe по крайней мере в исследованном концентрационном интервале "гостевой" нагрузки.

Проверка адекватности построенной модели экспериментальным данным показала хорошие результаты: коэффициент Крамерса–Кронига не превышал $3 \cdot 10^{-5}$, частотные зависимости разниц 1-го порядка имели полностью случайный характер. Компьютерная параметрическая идентификация показала ошибку совпадения экспериментальных точек и точек, полученных путем моделирования, не более 5%. На рис. 6, *а* и *b* представлены результаты последней для Li_{0.009}InSe и Li_{0.05}InSe

Рис. 5. Диаграммы Найквиста: a — систем Li_{0.009}InSe и Li_{0.05}InSe в 1 M LiBF₄ : γ -BL в темноте и при освещении и b — эквивалентная электрическая схема.

Физика и техника полупроводников, 2010, том 44, вып. 7

Рис. 6. Зависимость изменения параметров модельной эквивалентной схемы от энергии фотонов на фотоаноде: *a* — Li_{0.009}InSe, *b* — Li_{0.05}InSe.

при освещенности монохроматическим светом с разной длиной волны.

Перед анализом спектральных зависимостей значений элементов импедансной структуры 6, *a* и *b* отметим получение ожидаемого понятного результата для Li_{0.05}InSe при освещении каждой длиной волны. Вследствие чего наблюдается улучшение кинетики деинтеркаляции за

Физика и техника полупроводников, 2010, том 44, вып. 7

счет значительного уменьшения всех резистивных элементов и роста коэффициента диффузии лития в ван-дерваальсовых областях (что соответствует уменьшению импеданса Варбурга). Единственным нетривиальным результатом в этом случае являются ярко выраженные экстремумы в R_2 , C_1 и W_S-T , которые формируют звено, которое моделирует процессы на границе раздела высоколитиированной фазы с электролитом. Интересно, что экстремумы отвечают энергиям фотонов, которые существенно превышают энергию края фундаментального поглощения (рис. 6, *a*). Такие спектральные особенности характерны и для Li_{0.009}InSe, но с двумя следующими качественными отличиями (рис. 6, *a*):

— $W_S - T$ для данного значения энергии фотонов имеет локальный минимум (рост коэффициента диффузии), а не максимум, как и для Li_{0.05}InSe;

— зависит от частоты падающего света также и параметр C_3 .

При этом для Li_{0.009}InSe наблюдается уникальный эффект — сильное (почти в 160 раз) возрастание сопротивления стадии межфазного (интеркалат—электролит) переноса заряда R_2 при освещении фотонами энергией около 2.35 эВ. Поскольку изменение величин R_3 и L_1 при освещении практически превышает точность полученных данных, то за улучшение кинетики при освещенности интегральным светом Li_{0.009}InSe отвечают уменьшение R_1 и диффузионного сопротивления, которые формируют $W_S - T$.

Чтобы уяснить механизм не совсем привычного спектрального поведения Li_{0.009}InSe, необходимо принять во внимание два сопутствующих экспериментальных факта — резкий локальный минимум значения емкости двойного электрического слоя C₁ и рост коэффициента диффузии в данной области спектра (рис. 6, *a*). Именно последний указывает на то, что отвечающей за уменьшение межфазного тока обмена является не его ионная составляющая, а электронная. Тогда корреляция относительного уменьшения С1 и роста R2 указывает на "резонансное" обеднение межфазной области носителями тока. Его природу можно логично объяснить с точки зрения явления отрицательной фотопроводимости [18-21]. В нашем случае его суть связана с гашением инжекционного тока при облучении квантами с энергией ~ 2.35 эВ путем захвата носителей в долгоживущие межфазные барьерные состояния, в результате чего наблюдается уменьшение концентрации носителей тока и, как следствие, рост сопротивления. При этом фотовозбуждение, скорее всего, отвечает переходу валентная зона-резонансный уровень в зоне проводимости, который рожден при внедрении лития.

При увеличении степени "гостевой" нагрузки до x = 0.05 качественно сохраняется "сценарий" расширения области пространственного заряда под действием света из того же спектрального диапазона, однако сопровождающая смена энергетической топологии примесных состояний, положение уровня Ферми и соотношение процессов захвата и рекомбинации в общем процессе "гибели" электронов, очевидно, вносят изменения в количественные соотношения. В этом случае, как и следовало ожидать, согласно [22], происходит уменьшение отрицательной фотопроводимости, что связано с сокращением расстояния между ионами внедренного металла. Для подтверждения достаточно обратить внимание на факт концентрационной инверсии экстремума коэффициента диффузии, который связан со сменой положения уровня Ферми через термодинамический фактор Вагнера [23].

В заключение отметим, что гальваностатический фотозаряд и разряд в темноте электрохимической ячейки (рис. 1) плотностью тока $28 \cdot 10^{-6}$ А/см² обеспечили ее удельную емкость ~ 50 Ф/г, рассчитанную на активную массу АУА, которая характерна для данного типа активированного угля.

4. Заключение

1. Аккумулирование *in situ* преобразованной в электрическую солнечной энергии достигается при освещенности фотоэлектрохимической ячейки ABA/ 0.4MLiI : *у*-*BL*/*n*-InSe. Токообразующая аккумулирующая реакция обеспечивается процессами фотоинтеркаляции анионов в *n*-InSe и заряда ДЭС границы раздела АУА/электролит.

2. Для сохранения энергоемкости в гибридном гальвано-фотоконденсаторном приборе на основе электрохимической системы ABA/1*M*LiBF₄ : γ -*BL*/*n*-Li_xInSe требуется, чтобы значение равновесного электродного потенциала фарадеевского процесса деинтеркаляции Li с Li_xInSe на шкале потенциалов находилось положительнее стационарного потенциала блокирующего электрода АУА в том же электролите.

3. Значение x в Li_xInSe выбирается с учетом как обеспечения величины зарядной емкости АУА, так и минимизации расширения области пространственного заряда. Резонансный характер, обусловленный эффектом отрицательной фотопроводимости и активированными переходами электронов из валентной зоны на резонансный литиевый уровень в зоне проводимости, основывается на гашении инжекционного тока при облучении квантами с энергией ~ 2.35 эВ путем захвата носителей в долгоживущие межфазные барьерные состояния. В результате этого наблюдается уменьшение концентрации носителей тока и, как следствие, возрастание сопротивления.

Список литературы

- [1] T.S. Jayaderaiah. Appl. Phys. Lett., 25, 399 (1974).
- [2] W.W. Anderson. Energy Conversion, 15, 95 (1976).
- [3] H. Gerisher. J. Electroanalytical Interfac. Electrochem., 58, 236 (1975).
- [4] J. Manassen, G. Hodes, D.F. Cahen. Патент США № 4064326.

- [5] V.S. Wrignhton, D.L. Morse, A.B. Ellis, D.S. Ginley, H.B. Abrahamson. J. Amer. Chem. Soc., 98, 44 (1976).
- [6] Weon-Pil Taia, Kozo Inoueb, Jae-Hee Oha. Sol. Energy Mater. Solar Cells Lett., 71, 553 (2003).
- [7] G. Betz, H. Tributsch. Progr. Sol. St. Chem., 16 (4), 195 (1985).
- [8] Б.П. Бахматюк, И.И. Григорчак, З.Д. Ковалюк, В.О. Рыбайло. Гелиотехника, вып. 3, 8 (1987).
- [9] B.E. Conway. *Electrochemical Supercapacitors* (N.Y., Plenum Publishing, 1999).
- [10] S.I. Yoon, T. Lee, S.M. Hyeon. J. Electrochem. Soc., 147, 2507 (2000).
- [11] A. Kuhn, A. Chevy, R. Chevalier. Phys. Status Solidi A, 31, 469 (1975).
- [12] W.R. McKinnon, R.R. Haering. Modern Aspects Eiectrochem., **15**, 235 (1983).
- [13] B.P. Bakhmatyuk, B.Ya. Venhryn, I.I. Grygorchak, M.M. Micov, Yu.O. Kulyk. Electrochim. Acta, 52, 6604 (2007).
- [14] Е.Ю. Никольская, К.И. Тихонов, А.А. Семенов-Кобзарь, А.А. Янаки, Л.А. Ротинян. ЖПХ, **52** (4), 902 (1981).
- [15] Ivan Mora-Sero, Juan Bisquert. Nano Lett., 6 (4), 640 (2006).
- [16] З.Б. Стойнов, Б.М. Графов, Б. Савова-Стойнова, В.В. Елкин. Электрохимический импеданс (М., Наука, 1991).
- [17] J. Bisquert, H. Randriamahazaka, G. Carsia-Belmonte. Electrochim. Acta, 51, 627 (2005).
- [18] M.S. Whittingham. Progr. Sol. St. Chem., 12, 41 (1978).
- [19] Р. Бьюб. Фотопроводимость твердых тел (М., ИЛ, 1962).
- [20] А.Ш. Абдинов, А.Г. Кязым-заде. ФТП, 10 (1), 81 (1976).
- [21] А.В. Антонов, В.Я. Алешкин, В.И. Гавриленко, З.Ф. Красильник, А.В. Новиков, Е.А. Ускова, М.В. Ускова, М.В. Шалев. ФТТ, 47 (1), 47 (2005).
- [22] Н.А. Давиденко, В.Н. Кокозей, И.И. Давиденко, О.В. Нестерова, А.Н. Лопух, Н.Г. Спицына, А.С. Лобач. Хим. физика, 26 (7), 80 (2007).
- [23] Н.В. Коровин. Электрохимия, 35 (6), 738 (1999).

Редактор Л.В. Беляков

Photoprocesses in semiconducting carbon photocapacitor with double electrical layer

F.O. Ivashchyshyn, B.P. Bakhmatyuk, I.I. Grygorchak

Lviv Polytechnical National University, 79013 Lviv, Ukraine

Abstract One of the possibilities of the formation of functional-hybrid galvanophotocapacitor active sysmen is described. This system uses both accumulated energy under lighting and its own chemical energy. *n*-type indium monoselenide synthesized by Bridgman's method was used as a photosensitive anode. Electrochemical measurements were realized in the three electrode cell using 0.4 M LiI in γ -butyrolactone and 1 M LiBF₄ in γ -butyrolactone solytions as aprotonic electrolytes.