¹⁸ Задача Александера–Андерсона для двух атомов, адсорбированных на графене

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: Sergei Davydov@mail.ru

(Поступила в Редакцию 6 февраля 2012 г.)

С использованием предложенной ранее модельной плотности состояний графена получены функции Грина для задачи Александера–Андерсона. Рассмотрены как ферромагнитный, так и антиферромагнитный димеры. Показано, что для описания плотности состояний адатома димера может быть использована плотность состояний изолированного адатома с двумя сдвинутыми в противоположных направлениях положениями центра тяжести квазиуровня. Продемонстрировано, что приближенный метод получения функции Грина димера, предложенный нами ранее и состоящий в том, что в качестве затравочной берется функция Грина адатома, а не атома, дает тот же результат, что и подход Александера–Андерсона. В пределе малых энергий даны оценки зависимости косвенного взаимодействия адатомов димера от параметров задачи.

Работа выполнена в рамках программ президиума РАН "Квантовая физика конденсированных сред" и "Основы фундаментальных исследований нанотехнологий и наноматериалов" и поддержана грантом РФФИ (проект № 12-02-00165а).

1. Введение

В работе [1] Александер и Андерсон рассмотрели взаимодействие двух примесных атомов, находящихся внутри металлической матрицы. Для описания случая, когда в матрице имеется только один примесный атом, использовался гамильтониан Андерсона [2]

$$H = \sum_{k,\sigma} \varepsilon_k c_{k\sigma}^+ c_{k\sigma} + E \sum_{\sigma} a_{\sigma}^+ a_{\sigma} + \sum_{k,\sigma} V_{ak} (c_{k\sigma}^+ a_{\sigma} + a_{\sigma}^+ c_{k\sigma}) + U a_{\uparrow}^+ a_{\uparrow} a_{\downarrow}^+ a_{\downarrow}.$$
(1)

Здесь ε_k — энергия электрона в металлической матрице, находящегося в состоянии $|\mathbf{k}\sigma\rangle$, где **k** — волновой вектор, $\sigma = (\uparrow, \downarrow)$ — спиновый индекс; E — затравочная (до взаимодействия с матрицей) энергия электрона примесного атома в состоянии $|a\sigma\rangle$; V_{ak} — энергия взаимодействия между состояниями $|\mathbf{k}\sigma\rangle$ и $|a\sigma\rangle$; U — внутриатомное кулоновское отталкивание электронов примесного атома, находящихся в состояниях с противоположно направленными спинами; $c^+_{k\sigma}(c_{k\sigma})$ оператор рождения (уничтожения) электрона матрицы в состоянии $|\mathbf{k}\sigma\rangle$; $a^+_{\sigma}(a_{\sigma})$ — аналогичные операторы для электрона примесного атома в состоянии $|a\sigma\rangle$.

При нахождении функции Грина, отвечающей гамильтониану (1), использовалось расширенное приближение Хартри–Фока, заключающееся в замене последнего (корреляционного) члена в (1) на $U(a_{\uparrow}^{+}a_{\uparrow}n_{a\downarrow} + a_{\downarrow}^{+}a_{\downarrow}n_{a\uparrow} - n_{a\uparrow}n_{a\downarrow})$, где $n_{a\sigma} = \langle a_{\sigma}^{+}a_{\sigma} \rangle$ — число заполнения состояния $|a\sigma\rangle$, $\langle \ldots \rangle$ означает усреднение по основ-

ному состоянию гамильтониана (1). При получении окончательных результатов использовалось также так называемое приближение бесконечно широкой зоны, когда плотность состояний матрицы $\rho_m(\omega)$, где ω — энергетическая переменная, считалась константой. Это ограничение было снято в работе Халдейна и Андерсона [3], где в электронном спектре матрицы предполагалось наличие щели. К задаче об адсорбции одиночного атома гамильтониан (1) был впервые применен Ньюнсом [4].

В задаче Александера и Андерсона [1] рассматривались два одинаковых примесных атома $(E_1 = E_2 = E)$, связанных прямым обменным взаимодействием вида

$$H_{12} = t \sum_{\sigma} (a_{1\sigma}^+ a_{2\sigma} + a_{2\sigma}^+ a_{1\sigma}), \qquad (2)$$

где $t = t_{12} = t_{21}$ — энергия прямого обмена. Следует также учитывать, что для примесей, находящихся на расстоянии r_{12} , выполняется соотношение $V_{1k} = \exp(i\mathbf{kr}_{12})V_{2k}$. Таким образом, двухпримесная задача вновь описывалась гамильтонианом (1) с добавлением (2) и дополнительным суммированием в третьем члене по j = 1, 2. Отметим, что в работе [1] вновь использовалось приближение $\rho_m(\omega) = \text{const.}$

В настоящей работе рассматривается задача Александера–Андерсона для атомов, адсорбированных на поверхности графена. Ясно, что приближение бесконечно широкой зоны здесь (в общем случае) не проходит, так как плотность состояний графена $\rho_g(\omega)$ далека от константы [5]. В дальнейшем, несмотря на величину расстояния r_{12} , будем именовать систему двух адатомов димером.

2. Плотность состояний димера, адсорбированного на графене (общие соотношения)

В работе [6] для описания локальной плотности состояний графена предложена простая модель (*М*-модель), согласно которой $\rho_g(\omega)$ составляет $2\rho_m|\omega|/\Delta$ при $|\omega| < \Delta/2$; $\rho_m\Delta/2|\omega|$ — при $\Delta/2 < |\omega| < D/2$; нуль — при $|\omega| > D/2$. Здесь D/2 — ширина π - и π^* -зон проводимости графена, лежащих соответственно ниже и выше точки Дирака $\omega = 0$, $D/\Delta = 3$, $\rho_m = 4/(1 + 2\ln 3)\Delta$. Для адсорбированного одиночного атома функция Грина равна

$$g_a^{\sigma} = \left(\omega - \varepsilon_{a\sigma} - \Lambda(\omega) + i\Gamma(\omega)\right)^{-1}, \qquad (3)$$

где $\varepsilon_{a\sigma} = E + Un_{a-\sigma}$, $\Gamma(\omega) = \pi V^2 \rho_g(\omega)$ — полуширина квазиуровня (зависимостью V_{ak} от k пренебрегаем); $\Lambda(\omega)$ — функция сдвига квазиуровня. В приближении бесконечно широкой зоны $\Gamma(\omega)$ переходит в константу, а функция сдвига $\Lambda(\omega)$ обращается в нуль. Ясно, таким образом, что для использования результатов работы [1] в наших условиях мы должны к энергии $\varepsilon_{a\sigma}$ добавить $\Lambda(\omega)$ и учесть зависимость от энергии ширины квазиуровня адатома.

Рассмотрим для начала ферромагнитный димер, полагая, что $n_{a1\sigma} = n_{a2\sigma} \equiv n_{a\sigma}$. Отсюда легко показать, что $\tilde{\epsilon}_{a1\sigma} = \tilde{\epsilon}_{a2\sigma} \equiv \tilde{\epsilon}_{a\sigma}(\omega) = \epsilon_{a\sigma} + \Lambda(\omega)$. Тогда в соответствии с [1] для функций Грина образующих диполь адатомов $G_{a1}^{\sigma} = G_{a2}^{\sigma} \equiv G_{a}^{\sigma}$ получим следующее выражение:

$$G_{a}^{\sigma} = \left(\omega - \tilde{\varepsilon}_{a\sigma}(\omega) + i\Gamma(\omega) - \frac{|T(\omega) + t|^{2}}{\omega - \tilde{\varepsilon}_{a\sigma}(\omega) + i\Gamma(\omega)}\right)^{-1},$$
(4)

где

$$T(\omega) = V^2 \sum_{k} \frac{\exp(i\mathbf{k}\mathbf{r}_{12})}{\omega - \varepsilon_k + is}, \quad s = 0^+.$$
(5)

Взаимодействие T описывает косвенный обмен. В дальнейшем будем обозначать числитель последнего члена в выражении (4) как $\Theta = |T(\omega) + t|$.

 $G_a^\sigma = rac{1}{2} ig(G_{a+}^\sigma + G_{a-}^\sigma ig),$

Перепишем функцию Грина (4) в виде

где

$$G_{a+}^{\sigma} = (\omega - \tilde{\varepsilon}_{a\sigma}(\omega) + i\Gamma(\omega) \pm \Theta)^{-1}.$$
 (7)

Поскольку плотность состояний на адатоме димера $\tilde{\rho}_a^{\sigma} = \mathrm{Im} G_a^{\sigma},$ запишем

$$\tilde{\rho}_{a}^{\sigma} = \frac{1}{2} \left(\tilde{\rho}_{a+}^{\sigma} + \tilde{\rho}_{a-}^{\sigma} \right), \tag{8}$$

(6)

где

ĺ

$$\tilde{\rho}_{a\pm}^{\sigma}(\omega) = \frac{1}{\pi} \frac{\Gamma(\omega)}{\left(\omega - \tilde{\varepsilon}_{a\sigma}(\omega) \pm \Theta\right)^2 + \Gamma^2(\omega)}.$$
 (9)

Таким образом, плотность состояний на адатоме димера (для одного направления спина) является суперпозицией двух пиков, центрированных около энергий, являющихся корнями уравнений $\omega - \tilde{\varepsilon}_{a\sigma}(\omega) \pm \Theta \approx 0$, где знак приближенного равенства возникает из-за энергетической зависимости полуширины квазиуровня. Поэтому уже из выражения (9) следует, что плотность состояний димера (для одного спинового состояния) может иметь как один, так и два максимума.

Перейдем теперь к рассмотрению антиферромагнитного димера, для которого $n_{a1\sigma} = n_{a2-\sigma} \equiv n_{a\sigma}$, $\tilde{\varepsilon}_{a1\sigma} = \tilde{\varepsilon}_{a2-\sigma} \equiv \tilde{\varepsilon}_{a\sigma}(\omega) = \varepsilon_{a\sigma} + \Lambda(\omega)$. Тогда в соответствии с [1] для функций Грина, образующих диполь адатомов, имеем $G_{a1}^{\sigma} = G_{a2}^{-\sigma} \equiv G_{a}^{\sigma}$, где G_{a}^{σ} по-прежнему определяется выражением (4) и может быть преобразована к виду (6), (7).

3. Частные случаи и аппроксимации

Для того чтобы избежать ненужных в данном случае усложнений, рассмотрим два предельных случая: $U \rightarrow 0$ и $U \rightarrow \infty$. Первый из них приводит к тому, что $n_{a\uparrow} = n_{a\downarrow} = \frac{1}{2} n_a$. Это немагнитный случай, так как спиновая намагниченность $m = n_{a\uparrow} - n_{a\downarrow} = 0.$ Второй случай магнитный. Действительно, если считать, например, уровень $\tilde{\varepsilon}_{a\uparrow}$ заполненным, то уровень $\tilde{arepsilon}_{a\perp} = E + \Lambda + U n_{a\uparrow}$ лежит очень высоко и оказывается практически пустым.¹ Таким образом, в этом случае $n_a \approx n_{a\uparrow} \approx m$. В ферромагнитном случае значения m_1 и m_2 будут совпадать, в антиферромагнитном случае $m_1 = -m_2$. Следовательно, в обоих пределах для внутриатомного кулоновского отталкивания U у нас нет нужды решать систему двух связанных уравнений для определения чисел заполнения, и мы можем, опуская спиновый индекс, рассматривать энергию $\tilde{\varepsilon}_a$ как независимый параметр задачи задачи.

Проанализируем выражение (5), приняв для спектра ε_k электронов аппроксимацию [5], справедливую при низких (по отношению к точке Дирака) энергиях:

$$\varepsilon_{\pm}(q) = \pm \frac{3}{2} t_g a |\mathbf{q}|. \tag{10}$$

Здесь a = 1.42 Å — расстояние между ближайшими соседями в графене, $\mathbf{q} = \mathbf{K} - \mathbf{k}$, где волновой вектор Дирака $\mathbf{K} = a^{-1}(2\pi/3\sqrt{3}, 2\pi/3)$, $t_g \sim 3$ eV — интеграл перехода между ближайшими соседями в графене, начало отсчета энергии помещено в точку Дирака, знак плюс относится к π^* -зоне ($\omega > 0$), знак минус — к π -зоне ($\omega < 0$). При вычислении T будем рассматривать ближнюю область, полагая $qr_{12} \ll 1$, и дальнюю область, где $qr_{12} \gg 1$.

Для ближней области $(qr_{12} \ll 1)$ положим $\exp(qr_{12}) \approx 1$ и введем вектор обрезания \mathbf{q}_B . Тогда путем прямого вычисления получим

$$T_{\text{near}}(\omega) \approx \frac{2V^2}{\xi^2} \bigg(\mp \xi + \omega \ln \bigg| \frac{\omega}{\omega \mp \xi} \bigg| \bigg), \qquad (11)$$

¹ Это рассуждение справедливо только в рамках расширенного приближения Хартри-Фока.

где энергия обрезания $\xi = (3t_g a q_B/2)$, верхний знак относится к области $\omega > 0$, нижний знак — к области $\omega < 0$. В пределе $\omega \to 0$ получим

$$T_{\text{near}}(\omega) \approx \mp \frac{2V^2}{\xi}.$$
 (12)

В дальней области $(q_B r_{12} \gg 1)$ при $\omega \rightarrow 0$ получим

$$T_{\rm far} \approx \mp \frac{2V^2}{\xi} \frac{\sin(q_B r_{12}/2)}{(q_B r_{12}/2)} \exp(iq_B r_{12}/2).$$
 (13)

Интересно отметить, что при $q_B r_{12} \ll 1$ выражение (13) переходит в (12), если приравнять мнимую экспоненту к единице. Причина такого соответствия состоит в том, что при выводе формулы (13) мы фактически не использовали предел $q_B r_{12} \gg 1$. Таким образом, мы можем применять выражение (13) в обеих областях. Отметим, что та же зависимость от r_{12} получена в [1]. Такая зависимость косвенного обмена от расстояния между двумя взаимодействующими атомами аналогична далекой асимптотике взаимодействия Рудермана–Киттеля–Касуя–Иосиды (РККИ) в случае графена (см. далее).

В приведенных оценках мы пренебрегли зависимостью косвенного взаимодействия T от энергии ω , что, по нашему мнению, не вносит серьезной ошибки. Так, например, в пределе $\omega \to \pm \xi$ получим $T_{\text{near}}(\omega) \approx \approx \mp (2V^2/\xi)[1 - \ln(\xi/|\omega \mp \xi|)]$, так что зависимость от ω весьма слаба. В непосредственной близости от границ линейной области $(-\xi, \xi)$ взаимодействие меняет знак.

Легко показать, что в случае (13) выражение $\Theta^2 = |T(\omega) + t|^2$ является действительным. В пределе $q_B r_{12} \gg 1$ интеграл перекрытия $t \propto \exp(-2\alpha r_{12})$ (где α — характерная обратная длина спада атомной волновой функции $|a\rangle$) экспоненциально стремится к нулю, так что можем положить $|T_{\text{far}}| \gg t$. Таким образом, в дальней области

$$\Theta_{\text{far}} \approx \frac{2V^2}{\xi} \frac{\sin(q_B r_{12}/2)}{(q_B r_{12}/2)}.$$
(14)

Перейдем теперь к ближней области $q_B r_{12} \ll 1$. Поскольку для графена a = 1.42 Å, справедливо предположить, что и $q_B a \ll 1$.² Тогда из (12) следует, что $|T_{\text{near}}| \sim (V^2/t_g)(q_B a)^{-1}$. Полагая $V \sim t \sim t_g$, получаем неравенство $|T_{\text{near}}|/t \gg 1$. К тому же выводу приводит и рассмотрение предела $\omega \to \pm \xi$. Таким образом, создается впечатление, что при адсорбции на графене косвенный обмен и ближней области превалирует над прямым обменом. Поэтому в дальнейшем полагаем

$$\Theta_{\text{near}} \approx \frac{2V^2}{\xi}.$$
 (15)

Далее используются безразмерные величины: плотности состояний $R = \tilde{\rho}_a(\Delta/2), \ R_{\pm} = \rho_{a\pm}(\Delta/2), \ f(x) = \rho_g/\rho_m,$

энергетическая переменная $x = 2\omega/\Delta$, энергия квазиуровня $\eta = 2E/\Delta$, параметр связи адатом-графен $\gamma = 2\rho_m V^2/\Delta$, параметр взаимодействия адатомов димера $\vartheta = 2\Theta/\Delta$, функция сдвига $\lambda(x) = \Lambda(x)/\rho_m V^2$ $= x \ln |x^2/(1-x^2)| + x^{-1} \ln |(1-x^2)/(1-(x/3)^2)|$ (см. [6]). Теперь выражения (8) и (9) можно переписать в следующем виде:

$$R(x) = \frac{1}{2}(R_{+}(x) + R_{-}(x)), \qquad (16)$$

$$R_{\pm} = \frac{1}{\pi} \frac{\pi \gamma f(x)}{\left(x - \eta - \gamma \lambda(x) \pm \vartheta\right)^2 + \left(\pi \gamma f(x)\right)^2}.$$
 (17)

При $\vartheta = 0$ выражение (16) с учетом (17) переходит в формулу для приведенной плотности состояний одиночного адатома на графене (см. формулу (11) в [6]). Более того, заменив η_a из [6] на $\eta_{\pm} = \eta \mp \vartheta$, можем использовать для функций $R_{\pm}(x)$ все результаты численных расчетов работы [6].

Интересно отметить следующее обстоятельство. В работе [7] задача о димере рассматривалась с помощью искусственного приема, предложенного нами много лет назад [8]. Используя в качестве затравочной функцию Грина G_a , совпадающую с (3) (в случае, когда U = 0 и спиновый индекс опущен), и применяя уравнение Дайсона с учетом прямого обмена t, в [7] мы определили функцию Грина атома димера D, которая, как легко показать, совпадает с функцией Грина (6), (7) при замене t на Θ . По-видимому, мы здесь имеем не столь уж редкий случай, когда приближенный метод дает точный результат. Как следствие, все результаты, полученные нами в работе [7], могут быть отнесены и к результатам задачи Александера–Андерсона.

4. Взаимодействие РККИ для графена

Взаимодействие РККИ достаточно интенсивно исследуется для графена. В подавляющем большинстве работ рассматривается косвенное взаимодействие двух локализованных магнитных моментов (см., например, последние работы [9-12] и ссылки, приведенные в них). Во всех этих работах для дальней области получено осцилляционное взаимодействие, спадающее как r_{12}^{-3} , что, вообще говоря, необычно для стандартной двумерной системы. В работе [13] показано, однако, что с усилением электрон-электронного взаимодействия осцилляции подавляются, а в [14] продемонстрировано, что в допированном дырочном графене РККИ-взаимодействие магнитных моментов, локализованных на одной и той же подрешетке, пропорционально $r_{12}^{-2}k_F\sin(2k_Fr_{12})[1+\cos((K-K')r_{12})]$, где K-K' разность волновых векторов точек Дирака.

Собственно взаимодействию адатомов посвящены работы [15–17]. В первых двух рассматривается роль неэквивалентных подрешеток графена, эффекты упорядочения адатомов и отличие косвенного обмена от кубического спада с расстоянием. Последняя работа посвящена переходу Пайерлса, причем показано, что

² Действительно, это справедливо даже в случае димера, составленного атомами водорода, когда $r_{12} \sim 1$ Å.

при малых покрытиях (дальняя область) имеет место квадратичный спад РККИ-взаимодействия. Таким образом, лишь модель Александера–Андерсона приводит к зависимости вида $\sin(\bar{\mathbf{k}}\mathbf{r}_{12})/(\bar{\mathbf{k}}\mathbf{r}_{12})$, где $\bar{\mathbf{k}}$ — некоторый волновой вектор из первой зоны Бриллюэна. С учетом изложенного выше следует отметить необходимость проведения дополнительных исследований.

Список литературы

- [1] S. Alexander, P.W. Anderson. Phys. Rev. 133, 6A, A1594 (1964).
- [2] P.W. Anderson. Phys. Rev. 124, 1, 41 (1961).
- [3] F.D.M. Haldane, P.W. Anderson. Phys. Rev. B 13, 6, 2553 (1976).
- [4] D.M. Newns. Phys. Rev. 178, 3, 1123 (1969).
- [5] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys. 81, *1*, 109 (2009).
- [6] С.Ю. Давыдов, Г.И. Сабирова. ФТТ 53, 4, 608 (2011).
- [7] С.Ю. Давыдов. ФТП **46**, *3*, 379 (2012).
- [8] С.Ю. Давыдов. ФТТ 20, 6, 1752 (1978).
- [9] A.M. Black-Schaffer. arXiv: 1001.4024.
- [10] E. Kogan. arXiv: 1106.5151.
- [11] B. Lee, J. Kim, E.R. Mucciolo, G. Bouzerar, S. Ketteman. arXiv: 1110.6272.
- [12] S.R. Power, F.S.M. Guimares, A.T. Costa, R.B. Muniz, M.S. Ferreira. arXiv: 1112.0205.
- [13] A.M. Black-Schaffer. Phys. Rev. B 82, 073 409 (2010).
- [14] M. Sherafati, S. Satpathy. arXiv: 1106.1947.
- [15] V.V. Cheianov, O. Syljuasen, B.L. Altshuler, B. Fal'ko. Phys. Rev. B 80, 233 409 (2009).
- [16] V.V. Cheianov, O. Syljuasen, B.L. Altshuler, B. Fal'ko. arXiv: 1002.2330.
- [17] D.A. Abanin, A.V. Shytov, L.S. Levitov. arXiv: 1004.3678.