удк 621.315.592 Параметры самодиффузии в кристаллах подгруппы углерода

© М.Н. Магомедов¶

Институт проблем геотермии Дагестанского научного центра Российской академии наук, 367003 Махачкала, Россия

(Получена 2 февраля 2009 г. Принята к печати 1 июля 2009 г.)

Рассчитаны параметры самодиффузии в кристаллах элементов подгруппы углерода: С, Si, Ge, α -Sn, Pb. Показано, что учет квантовых эффектов в делокализации атомов приводит к тому, что при низких температурах (меньших температуры Дебая) параметры самодиффузии сильно зависят от температуры, причем энтропия самодиффузии отрицательна: $s_d < 0$. С ростом температуры функция s_d переходит в положительную область значений. Без каких-либо подгоночных параметров рассчитаны все термодинамические параметры самодиффузии отлупроводниковых кристаллов подгруппы углерода. Изучена зависимость параметров самодиффузии от температуры при изобарическом нагреве кристаллов подгруппы IVa от T = 0 K до температуры плавления. Получено хорошее согласие как с экспериментальными, так и с теоретическими оценками других авторов. Обсуждена корреляция энтропии с энтальпией самодиффузии и корреляции объема и энтропии самодиффузии на всем температурном интервале.

1. Введение

Теоретическое изучение самодиффузии в кристаллах подгруппы углерода (C-diam, Si, Ge, α -Sn, Pb) проблематично, из-за того что методы расчета, которые хорошо работают в случае металлов, инертных газов и ионных соединений, оказываются некорректными применительно к кристаллам с ковалентным типом связи. С одной стороны, это связано с тем, что природа межатомного взаимодействия в этих кристаллах до конца не ясна [1,2], с другой стороны, неясен доминирующий механизм самодиффузии в алмазоподобных кристаллах [3]. В этих полупроводниковых кристаллах температура Дебая О сравнительно большая (например, для алмаза $\Theta = 2230 \, \text{K}$ [4]), и использование для них приближения $T/\Theta \gg 1$ (которое обычно используют при расчетах самодиффузии [5-7]) не вполне корректно. Здесь Т температура. Вместе с тем подгруппа IVa уникальна по той причине, что именно в ней осуществляется переход от ковалентной связи к металлической. Поэтому корректное изучение закономерностей самодиффузии в подгруппе IVa позволит понять фундаментальные законы химической связи в кристаллах. Решению этих вопросов и посвящена данная работа.

Модель кристалла с вакансиями и миграцией атомов

Рассмотрим одноатомный кристалл, содержащий N атомов и имеющий объем V. Моделируя с единых позиций твердое и жидкое состояние вещества, аналогично тому как это было в [8], будем представлять систему как виртуальную структуру из $N + N_v$ ячеек одинакового размера, в которой N_v ячеек вакантны. При этом будем

полагать, что структура из $N + N_v$ ячеек аналогична структуре кристаллической решетки данного вещества. Это так называемое "изоструктурное приближение решеточной модели". Кроме этого, будем считать, что атомы в системе могут находиться в двух состояниях: в локализованном (L) и в делокализованном (D). В L-состоянии атом локализован в ячейке виртуальной решетки и имеет только колебательные степени свободы. В D-состоянии атому доступен весь объем системы, и он имеет только трансляционные степени свободы. Атомы в L- или D-состоянии будем называть L- или D-атомами.

Атом переходит из *L*- в *D*-состояние (т. е. начинается миграция), когда его скорость позволяет ему за полпериода колебания в *L*-состоянии $\tau/2$ пройти расстояние, равное радиусу области доступности для *D*-атома в безвакансионной, несрелаксировавшей решеточной структуре: $\lambda_3/2 = c_0/(2k_y^{1/3})$, где $c_0 = (6k_y/\pi\rho)^{1/3}$ — размер ячейки в безвакансионной системе, k_y — коэффициент упаковки виртуальной структуры из $N + N_v$ ячеек, $\rho = N/V$ — плотность числа атомов. Релаксация системы в активированное вакансиями состояние приводит к уменьшению размеров ячейки до величины, определяемой соотношением

$$c = [6k_y V/\pi (N+N_v)]^{1/3} = c_0 (1-\phi)^{1/3}, \qquad (1)$$

где ϕ — вероятность обнаружить вакансию в виртуальной структуре из $N + N_v$ ячеек:

$$\phi = N_v / (N + N_v) = 1 - \operatorname{erf}[(E_v / k_B T)^{1/2}]$$

= erfc [(E_v / k_B T)^{1/2}], (2)

где $k_{\rm B}$ — постоянная Больцмана, T — температура, интеграл вероятностей имеет вид [9]

$$\operatorname{erf}(x) = (2/\pi^{1/2}) \int_{0}^{x} \exp(-t^{2}) dt.$$
 (3)

[¶] E-mail: mahmag@iwt.ru

Рис. 1. Поведение функции f_y из (6) и ее логарифмической производной t_y от относительной температуры $(1/y = T/\Theta_{E_0})$: $f_y = (2/y)[1 - \exp(-y)]/[1 + \exp(-y)]$ — толстая линия; $t_y = -(\partial \ln f_y/\partial \ln y) = 1 - 2y \exp(-y)/[1 - \exp(-2y)]$ — пунктир. Легко видеть, что при $T/\Theta_{E_0} > 2$ для функций можно принять: $f_y \cong 1$, $t_y \cong 0$. Но при $T/\Theta_{E_0} < 0.4$ для функции f_y имеем линейную зависимость: $f_y \cong 2T/\Theta_{E_0}$. При $T/\Theta_{E_0} < 0.2$ можно принять $t_y \cong 1$.

Энергия создания вакансии в виртуальной решеточной структуре *E_v* равна

$$E_v = E_L / \{1 + x [(C_D E_L / k_B T) - 1]\},$$
(4)

$$E_L = (f_y m/k_3^0) (c_0 k_B \Theta_{E_0}/2\hbar)^2, \quad C_D = 4k_3^0/3k_y^{2/3}, \quad (5)$$

где k_3^0 — число всех ячеек (как занятых, так и вакантных), ближайших к данному атому, \hbar — постоянная Планка, m — масса атома, Θ_{E_0} — температура Эйнштейна в безвакансионном кристалле из *L*-атомов (т. е. при $\phi = 0$, ибо λ_3 определяется для такой системы), функция f_y учитывает квантовые эффекты и имеет вид (рис. 1)

$$f_y = (2/y) [1 - \exp(-y)] / [1 + \exp(-y)], \quad y = \Theta_{E_0} / T.$$

(6)

Доля *D*-атомов будет определяться как доля атомов, имеющих кинетическую энергию выше порогового значения E_d — энергии делокализации (т. е. энергии, необходимой для перехода атома из *L*- в *D*-состояние [10,11]):

$$\begin{aligned} x(\rho,T) &= N_d(\rho,T)/N = (2/\pi^{1/2}) \int_{E_d/k_{\rm B}T}^{\infty} t^{1/2} \exp(-t) dt \\ &= 2(E_d/\pi k_{\rm B}T)^{1/2} \exp(-E_d/k_{\rm B}T) + 1 - \exp[(E_d/k_{\rm B}T)^{1/2}]. \end{aligned}$$
(7)

Для того чтобы атом перешел из локализованного (*L*-) в делокализованное (*D*-) состояние, его скорость должна быть не менее чем $v_m = \lambda_3/\tau$, где τ — период колебания *L*-атома в ячейке. Именно начиная с такой скорости, атом успевает совершить диффузионный перескок из ячейки в вакансию. Так как для эйнштейновской модели кристалла период колебания атома в ячейке равен [12] $\tau = 2\pi\hbar/k_{\rm B}\Theta_{\rm E_0}$, то функцию E_d можно определить в виде

$$E_{d} = (3/2)mv_{m}^{2}f_{y} = (3/2)m[\lambda_{3}/\tau]^{2}f_{y}$$
$$= C_{ld}E_{L} = E_{d1}f_{y}, \qquad (8)$$

$$E_{d1} = E_d(f_y = 1) = (3/8)k_y^{-2/3} m (3c_0 k_B \Theta_0 / 4\pi\hbar)^2, \quad (9)$$

где Θ — температура Дебая: $\Theta = (4/3)\Theta_E$ [13]; $C_{ld} = 3k_3^0/2\pi^2 k_y^{2/3} = (9/8\pi^2)C_D$, зависимость параметров C_{ld} и C_D от величины первого координационного числа представлена на рис. 2.

Здесь функция f_y возникает из-за того, что в общем случае классическая величина предела интегрирования $E_d(\infty)/k_{\rm B}T$ должна быть заменена отношением $E_d/2\langle E_k \rangle$, где $\langle E_k \rangle$ — средняя кинетическая энергия, приходящаяся на одну степень свободы атома системы. В классическом случае: $\langle E_k \rangle = k_{\rm B}T/2$ [14, с. 95]. Но с учетом квантовых эффектов (а делокализация — это переход от квантового движения атома в ячейке к классическому переносу по всему объему системы) необходимо ввести множитель: $f_y = k_{\rm B}T/2\langle E_k \rangle$.

Вплоть до температуры плавления T_m для большинства веществ (кроме квантовых и криокристаллов) выполняется неравенство $E_d > E_v > k_{\rm B}T_m$. Поэтому интеграл вероятностей в (2) и неполную γ -функцию в (7) на всем температурном интервале от 0 К до T_m можно

Рис. 2. Зависимость параметров $C_{ld} = 3k_3^0/2\pi^2 k_y^{2/3}$ (звездочки, точечная линия и правая шкала) и $C_D = 4k_3^0/3k_y^{2/3}$ (точки, сплошная линия и левая шкала) от значения k_3^0 для четырех кубических структур: ГЦК, ОЦК, ПКУ и алмазной упаковки. Зависимости с коэффициентом достоверности $R_{\rm cor} = 1$ описываются полиномами третьей степени: $C_{ld} = 0.6899 + 0.21575k_3^0 - 0.02497(k_3^0)^2 + 0.00147(k_3^0)^3$, $C_D = 6.0534 + 1.89236k_3^0 - 0.21895(k_3^0)^2 + 0.01291(k_3^0)^3$.

аппроксимировать формулами аррениусовского типа [9]:

$$\phi \simeq (k_{\rm B}T/\pi E_v)^{1/2} \exp(-E_v/k_{\rm B}T),$$

$$x \simeq 2(E_d/\pi k_{\rm B}T)^{1/2} \exp(-E_d/k_{\rm B}T) \left[1 + (k_{\rm B}T/2E_d) - (k_{\rm B}T/2E_d)^2 - \ldots\right] \simeq 2(E_d/\pi k_{\rm B}T)^{1/2} \exp(-E_d/k_{\rm B}T).$$
(10)

В наших работах [8,10,11,15] было показано, что вышеописанный формализм позволяет изучить активационные параметры от 0 К и до перехода в жидкую фазу. Причем, как легко видеть, параметры образования вакансий взаимосвязаны с параметрами самодиффузии, что логически и понятно. В данной работе этот формализм будет конкретизирован для расчета параметров самодиффузии в кристаллах подгруппы углерода.

Метод расчета коэффициента самодиффузии в кристалле

Коэффициент диффузии D_f равен числу атомов, переносимому через перпендикулярную выбранному направлению единичную площадку в единицу времени, при единичном в данном направлении градиенте концентрации. Таким образом, число атомов, перенесенное через площадь S_{kr} за время t при градиенте концентрации grad (N_c) , равно

$$M_{tr} = -D_f S_{kr} t \operatorname{grad}(N_c). \tag{11}$$

Это первый закон Фика (Fick) для стационарного потока [5, с. 9]. Знак минус указывает на то, что вектор потока вещества противоположен вектору градиента скалярного поля концентрации.

Рассмотрим для простоты случай "плоской самодиффузии", т.е. когда поток атомов направлен в направлении, перпендикулярном плоскости сечения. Тогда для градиента концентрации вакансий на расстоянии области доступности *D*-атома, $\lambda_3 = c_0/k_v^{1/3}$, можно принять

$$-\operatorname{grad}(N_c) = (1/\lambda_3) \left[(1/\lambda_3)^3 - \phi (1/\lambda_3)^3 \right]$$
$$= (1-\phi)/\lambda_3^4 = (1-\phi)k_y^{4/3}/c_0^4.$$
(12)

Таким образом, выражение (1) сводится к виду

$$M_{tr} = S_{kr} k_y^{4/3} D_f(\tau/2) [(1-\phi)/c_0^2], \qquad (13)$$

где для модели кристалла Эйнштейна период колебания атома в безвакансионной (ибо λ_3 определяется для такой системы), несрелаксировавшей решеточной структуре равен [12]

$$\tau = 2\pi\hbar/k_{\rm B}\Theta_{\rm E_0} = 8\pi\hbar/3k_{\rm B}\Theta_0. \tag{14}$$

Площадь сечения кристалла равна $S_{kr} = N_{cell} s_{cell} / k_y^{2/3}$, где N_{cell} — число ячеек (как занятых атомами, так и вакантных), находящихся в плоскости сечения; коэффициент $k_y^{2/3}$ учитывает плотность упаковки сферических

атомов в плоскости сечения; *s*_{cell} — средняя площадь одной ячейки (как занятой атомом, так и вакантной), которую в соответствии с (1) запишем в виде

$$s_{\text{cell}} = \pi (c/2)^2 = (\pi/4) [c_0 (1-\phi)^{1/3}]^2.$$
 (15)

Таким образом, из (10)–(15) получаем, что за время $t = \tau/2$ через площадь S_{kr} при градиенте концентрации вакансий (13) переносится количество атомов, равное [15]

$$M_{tr} = N_{\text{cell}} [\pi c^2/4] D_f (1-\phi) (4\pi \hbar k_y^{2/3}/3k_B \Theta_0 c_0^4).$$
(16)

С другой стороны, из N_{cell} ячеек, лежащих в плоскости сечения, только $N_{cell}(1-\phi)$ заняты атомами. Из них только $N_{cell}(1-\phi)$ х находятся в *D*-состоянии $(x = N_d/N -$ доля атомов, находящихся в *D*-состоянии). Из указанных $N_{cell}(1-\phi)$ х атомов только 1/6 часть будет переноситься перпендикулярно площадке S_{kr} вдоль рассматриваемого направления. Отметим, что множитель 1/6 справедлив только для равновесной самодиффузии, ибо если имеется движущая сила, то одно из шести направлений будет иметь больший приоритет перед другими направленностями. Таким образом, за время $\tau/2$ через выбранную площадку будет переноситься количество вещества, равное [15]

$$M_{tr} = x N_{\text{cell}} f_{\text{cor}} (1 - \phi)/6.$$
 (17)

Здесь $f_{\rm cor}$ — фактор корреляции, возникающий изза учета ненулевой вероятности того, что ушедший в вакансию атом может сразу вернуться обратно, не внеся вклада в диффузию [5–7]. Для приближенной оценки $f_{\rm cor}$ используются выражения $f_{\rm cor} \approx [1 - (1/k_3^0)]^2$ или $f_{\rm cor} \approx 1 - (2/k_3^0)$. Точные значения фактора корреляции для ГПУ и кубических структур при вакансионном механизме диффузии равны [5–7,16]:

$$\begin{split} f_{\rm cor} = \\ &= \begin{cases} 0.78146 \ {\rm для} \ \Gamma {\rm L}{\rm K} \ {\rm структуры} \, (k_3^0 = 12, \ k_y = 0.7405), \\ 0.78146(\parallel c), \ 0.78121(\perp c) \ {\rm для} \ \Gamma {\rm \Pi}{\rm Y} \ {\rm структуры} \\ (k_3^0 = 12, \ k_y = 0.7405), \\ 0.72722 \ {\rm для} \ O {\rm L}{\rm K} \ {\rm структуры} \, (k_3^0 = 8, \ k_y = 0.6802), \\ 0.65311 \ {\rm для} \ \Pi {\rm K}{\rm Y} \ {\rm структуры} \, (k_3^0 = 6, \ k_y = 0.5236), \\ 0.50000 \ {\rm для} \ {\rm структуры} \ {\rm aлмазa} \, (k_3^0 = 4, \ k_y = 0.3401). \end{split}$$

Зависимость фактора корреляции от структуры кристалла простого вещества показана на рис. 3. Очевидно, что для случайных блужданий имеем $f_{\rm cor} = 1$, а для примесной диффузии фактор корреляции определяется не столько структурой, сколько природой примесного атома и матрицы [16].

Рис. 3. Зависимость фактора корреляции для кубических структур из (18) от величины координационного числа k_3^0 (числа ближайших ячеек). Толстая линия — аппроксимация полиномом 3-й степени (с коэффициентом достоверности $R_{\rm cor} = 1$) зависимости $f_{\rm cor}(k_3^0)$ в виде: $f_{\rm cor}(k_3^0) = -0.18624 + 0.25277k_3^0 - 0.02328(k_3^0)^2 + 7.44796 \times 10^{-4}(k_3^0)^3$. Для сравнения показаны и приближенные зависимости: $f_{\rm cor} \approx [1 - (1/k_3^0)]^2$ — тонкая линия, $f_{\rm cor} \approx 1 - (2/k_3^0)$ — точечная линия.

Сравнивая (16) и (17), легко получить выражение для коэффициента самодиффузии в объеме кристалла простого вещества, имеющее вид

$$D_f(\rho, T) = D_d(\rho) x(\rho, T),$$

$$D_d(\rho) = f_{\rm cor}(4/\pi) (c_0/k_v^{1/3})^2 (k_{\rm B}\Theta_0/8\pi\hbar).$$
(19)

Физический смысл множителя $D_d(\rho)$ в том, что это такой коэффициент самодиффузии, который теоретически может быть при изохорической ($\rho = \text{const}$) делокализации всех атомов кристалла (т. е. при $x(\rho, T \to \infty) = 1$):

$$D_d(\rho) = \lim_{\substack{T \to \infty \\ \rho = \text{const}}} D_f(\rho, T) / x(\rho, T) = \lim_{\substack{T \to \infty \\ \rho = \text{const}}} D_f(\rho, T).$$

Связь величины $D_d(\rho)$ с предэкспоненциальным множителем в формуле Аррениуса имеет вид

$$D_{\rm Arr} = 2(E_d/\pi k_{\rm B}T)^{1/2} D_d(\rho).$$
 (20)

Выражения (5)–(9) и (19) позволяют рассчитать зависимость коэффициента самодиффузии от плотности и температуры $D_f(\rho, T)$ для кристалла одноатомного вещества, исходя из структуры кристалла, массы атома *m* и функции $\Theta(\rho, T)$. Как было показано, данный метод позволяет хорошо описать функцию $D_f(\rho, T)$ как при температурах плавления [10,11,15], так и при T = 0 K [17]. Однако в литературе функцию $D_f(\rho, T)$ обычно определяют через термодинамические параметры самодиффузии. Для сопоставления результатов нашего подхода и метода, сложившегося в литературе, определим связь функции (6)–(9) с термодинамическими параметрами самодиффузии.

4. Определение термодинамических параметров самодиффузии

Для вероятности нахождения атома в *D*-состоянии можно принять термодинамическое определение вида [5–7,13,16]:

$$x = N_d/N = \exp(-g_d/k_{\rm B}T).$$
 (21)

Параметры равновесной самодиффузии (аналогично вакансионным параметрам из [8]) вычислялись на основе формул равновесной термодинамики, которые имеют вид

$$D_{f} = D_{d}(\rho) x = D_{d}(\rho) \exp(-g_{d}/k_{B}T)$$

$$= D_{d}(\rho) \exp(s_{d}/k_{B}) \exp(-h_{d}/k_{B}T),$$

$$g_{d} = -k_{B}T \ln(x),$$

$$h_{d} = -\left[\partial \ln(x)/\partial(1/k_{B}T)\right]_{P} = g_{d} + Ts_{d},$$

$$s_{d} = -(\partial g_{d}/\partial T)_{P} = -(\partial g_{d}/\partial T)_{V} - \alpha_{p}V(\partial g_{d}/\partial V)_{T}$$

$$= (h_{d} - g_{d})/T,$$

$$v_{d} = (\partial g_{d}/\partial P)_{T} = -(V/B_{T})(\partial g_{d}/\partial V)_{T},$$
(22)

где g_d , h_d , s_d , v_d — термодинамический потенциал (или свободная энергия Гиббса), энтальпия, энтропия, объем самодиффузии, P, V, T — давление, объем и температура системы, $\alpha_p = (1/V)(\partial V/\partial T)_P$ — коэффициент теплового расширения, $B_T = -V(\partial P/\partial V)_T$ — модуль упругости.

Используя для x разложение (10) и полагая, что характеристическая температура от температуры не зависит, из (6)–(10) и (19)–(22) можно получить

$$g_{d} = E_{d} \left[1 - (k_{\rm B}T/2E_{d}) \ln(4E_{d}/\pi k_{\rm B}T) \right],$$

$$h_{d} = E_{d} \left\{ 1 - t_{y} + \alpha_{p}T \left[(2 - t_{y})\gamma_{0} - (2/3) \right] \right\},$$

$$s_{d}/k_{b} = (E_{d}/k_{b}T) \left\{ (k_{\rm B}T/2E_{d}) \ln(4E_{d}/\pi k_{\rm B}T) - t_{y} + \alpha_{p}T \left[(2 - t_{y})\gamma_{0} - (2/3) \right] \right\},$$

$$v_{d}/v_{a} = (1/v_{a}) (\partial g_{d}/\partial P)_{T}$$

$$= \left[E_{d}/(B_{T}v_{a}) \right] \left[(2 - t_{y})\gamma_{0} - (2/3) \right], \quad (23)$$

где $\gamma_0 = -[\partial \ln(\Theta_0)/\partial \ln(V)]_T$ — параметр Грюнайзена, $t_y = -\partial \ln(f_y)/\partial \ln(y), v_a$ — объем атома в кристалле, который в соответствии с (1) равен

$$v_a = k_y V / (N + N_v) = (\pi/6)c^3.$$
 (24)

Так как при $T \ll \Theta$ функции f_y и t_y сильно меняются с температурой (рис. 1), то выполняется $f_y(0) = 0, t_y(0) = 1$. Случай низких температур сложен еще и тем, что здесь функция $\Theta(T)$ обнаруживает зависимость вида [18] $\Theta_0(T) \cong \Theta_0[1 - \chi_3(T/\Theta_0)^4]$, где $\Theta_0 = \Theta_0(T = 0 \text{ K})$. Учитывая, что при низких температурах $\alpha_p(T) \propto T^3$ [19] (т.е. имеем $\alpha_p(0) = 0$), из (5)–(9),

(19) и (23) можно получить следующие выражения для диффузионных параметров при T = 0 K [17]:

$$D_{f} = D_{d}(\rho)_{0} x(0), \quad D_{Arr} = 2(M_{d}/\pi)^{1/2} D_{d}(\rho)_{0},$$

$$D_{d}(\rho)_{0} = (4/\pi) f_{cor} [c_{0}(0)/k_{y}^{1/3}]^{2} k_{B} \Theta_{0}/(8\pi\hbar),$$

$$\lim_{T/\Theta_{0} \to 0} (g_{d}/k_{B}T) = M_{d} - 0.5 \ln(4M_{d}/\pi),$$

$$\lim_{T/\Theta_{0} \to 0} s_{d}/k_{B} = s_{d}(0)/k_{B} = -M_{d} + 0.5 \ln(4M_{d}/\pi),$$

$$\lim_{T/\Theta_{0} \to 0} (v_{d}/v_{a}) = v_{d}(0)/v_{a}(0) = 0,$$

$$\lim_{T/\Theta_{0} \to 0} (v_{d}B_{T}/k_{B}T) = M_{d}[\gamma_{0}(0) - (2/3)], \quad (25)$$

где введен параметр M_d , представляющий собой предельное отношение:

$$M_{d} = \lim_{T/\Theta_{0} \to 0} (E_{d}/k_{\rm B}T) = 8E_{d0}/3k_{\rm B}\Theta_{0}$$
$$= (9mk_{\rm B}\Theta_{0}/16\pi^{2}k_{y}^{2/3})[c_{0}(0)/\hbar]^{2}.$$
(26)

Таким образом, при T = 0 К имеем $E_d(0) = g_d(0) = h_d(0) = 0$ и $v_d(0) = 0$. Но, так как для любого вещества величина M_d конечна, даже при T = 0 К коэффициент самодиффузии отличен от нуля: x(0) > 0. Этот эффект обусловлен наличием у атомов "нулевых колебаний" и был предсказан еще Андреевым и Лифшицем в 1969 году [20]. Отметим, что в классическом пределе (т.е. при $\hbar \to 0$) из (26) имеем

$$\lim_{\hbar \to 0} M_d = \infty, \quad \lim_{\hbar \to 0} \lim_{T/\Theta_0 \to 0} x(T) = \lim_{\hbar \to 0} x(0) = 0.$$

Поэтому образование вакансий и *D*-атомов при T = 0 К обусловлено (как и наличие "нулевых колебаний") квантовыми эффектами. Отметим, что активационная формула Аррениуса с не зависящей от температуры энергией активации не применима для описания активационных процессов при низких температурах [17,20].

Энтропия самодиффузии при T = 0 К отрицательна (как и энтропия образования вакансии [8,17,21]). Как следует из (23), функция s_d положительна только при условии

$$\alpha_{p}T[(2-t_{y})\gamma_{0}-(2/3)] + (k_{B}T/2E_{d})\ln(4E_{d}/\pi k_{B}T) \ge t_{y}.$$
(27)

Равенство в условии (27) достигается при более низкой температуре $(T_{sd=0})$, чем в условии для положительности энтропии образования вакансии $(T_{sv=0})$, которое имеет вид [21]

$$\alpha_p T\left[(2-t_y)\gamma_0-(2/3)\right]-(k_{\mathrm{B}}T/2E_L)\ln(\pi E_L/k_{\mathrm{B}}T)\geq t_y.$$

Так как при $0 < T < T_{sd=0} < T_{sv=0}$ функция $s_d(T)$ имеет отрицательное значение, то здесь при изобарическом образовании в кристалле *D*-атома происходит выделение тепла, равное $T \cdot s_d$. Это согласуется с выводом, полученным в [20]: при T = 0 К кристаллу энергетически выгоднее перейти в состояние, в котором часть узлов решетки вакантна, а часть атомов диффундирует по кристаллу. При $0 < T < T_{sd=0} < T_{sv=0}$ делокализация атома, как и образование вакансии, приводит к "упорядочению" кристалла. Отметим, что свойство это не прерогатива квантовых кристаллов. Оно присуще всем веществам, но наиболее заметно оно проявляется у кристаллов ³Не и ⁴Не ввиду относительно большой амплитуды "нулевых колебаний" у атомов данных веществ.

При высоких температурах $T/\Theta_{E0} > 2$, как видно из рис. 1, можно принять $f_y \cong 1$, $t_y \cong 0$. Поэтому в этой области температур энтропия самодиффузии всегда положительна. Возникающие в этих условиях *D*-атомы приводят к "разупорядочению" кристалла и переводу его в менее стабильное состояние.

В термодинамические определения параметров самодиффузии (23) входят две функции: α_p — коэффициент теплового расширения и В_Т — модуль упругости. Функции эти неудобны тем, что имеют особенности при фазовом переходе первого рода (ФП-I), например, при фазовом переходе кристалл-жидкость (ФП К-Ж). В области бинодали *S*-петли $\Phi\Pi$ К–Ж функция $\alpha_p(T, V)$ терпит разрыв 2-го рода, т.е. уходит в бесконечность. Это ведет к тому, что на бинодали ФП К-Ж имеем s_v и $s_d \to \infty$. С другой стороны, в точках спинодали *S*-петли $\Phi \Pi$ К–Ж выполняется $B_T = 0$, а в межспинодальной области B_T < 0. Это ведет к тому, что в точках спинодали функции v_v и v_d терпят разрыв 2-го рода: v_v и $v_d \rightarrow \infty$, а в межспинодальной области получается v_v и $v_d < 0$. В связи с этим аппарат равновесной и обратимой термодинамики не работает в области ФП К-Ж (как, впрочем, и в области бинодали S-петли любого ФП-I) применительно к описанию активационного процесса: образования вакансий или самодиффузии. Поэтому поведение функций h_v, s_v, v_v и h_d, s_d в области ФП К-Ж до сих пор невозможно было оценить. В этом смысле формализм выражений (5)-(9) и (19) имеет более широкую область применения.

Особенности расчета параметров самодиффузии в ковалентных кристаллах

Представим межатомное взаимодействие элементов подгруппы углерода в виде потенциала Ми–Леннарда– Джонса [1,2], поведение которого представлено на рис. 4:

$$\varphi(r) = [D/(b-a)][a(r_0/r)^b - b(r_0/r)^a].$$
(28)

Здесь D и r_0 — глубина и координата минимума потенциальной ямы, b и a — параметры, характеризующие жесткость и дальнодействие потенциала b > a.

Кристалл $k_3^0 m$, а.е.м. T_m , К	$r_0 = c_{00}, \operatorname{\AA}$	Θ ₀₀ , Κ	<i>Е</i> _{<i>L</i>1} из (32), эВ	$h_v(\exp)$, эВ
C-4 12.01 (4300)*	1.545 [23]	2230 [4] 1860 [24]** 1414.4***	8.903 6.194 3.582	(5.67) [28] 6.4-7.2 [29] 3.68-5.25 [30]
Si-4 28.09 1685 [26]	2.351 [23]	654 [4] 758 [25]** 549.1**	4.034 5.571 2.923	$\begin{array}{c}(2.88) \ [28]\\2.13-4.5 \ [30]\\(2.43-3.44) \ [31]\\2.5-4.7 \ [32]\end{array}$
Ge-4 72.59 1212 [26]	2.450 [23]	374 [4] 290 [24]** 390 [25]** 334.1***	3.806 2.288 4.139 3.037	$\begin{array}{c} (2.57) \ [28] \\ 1.97-2.7 \ [30] \\ (1.8-2.77) \ [31] \\ 2.0-3.1 \ [32] \end{array}$
α-Sn-4 118.71 286.2 [27]	2.798 [23]	236 [27] 206.6***	3.233 2.477	(2.3–3.45) [2]
eta -Sn -11^{****} 118.71 505.118 [27]	2.798 [23]	149 [25]** 170 [27]**	0.469 0.610	$\begin{array}{c} 0.52{-}0.57 \ [32] \\ 0.5{-}0.56 \ [33] \end{array}$
Pb-12 207.2 600.65 [27]	3.477 [2]	105 [4,27] 87 [24,27]** 96 [25]**	0.575 0.395 0.481	$\begin{array}{c} 0.38{-}0.5 \; [32] \\ 0.49{-}0.58 \; [33] \end{array}$

Таблица 1. Значения c_{00} и Θ_{00} и рассчитанные по ним с помощью (32) энергии создания вакансий (при $f_y = 1$) кристаллов подгруппы IV*a*. Значение $h_v(\exp)$ — это экспериментальное или теоретическое (в скобках) значение энтальпии образования вакансии

Примечание. * Температура плавления по оценке из [22]. ** Значение температуры Дебая определялось в области высоких температур: $T \gg \Theta$. В [25, с. 94, табл. 22] значение $\Theta(T \gg \Theta)$ вычислялось исходя из отношения молярной теплоемкости к коэффициенту теплового расширения, а в [26, с. 187, табл. III.1] — по температуре плавления из соотношения Линдеманна. *** Рассчитано в [8] исходя из параметров потенциала с величиной D_s для полупроводников с алмазной структурой. **** При 286.2 К [27] "серое" олово (α -Sn), имеющее структуру алмаза ($k_3^0 = 4$, $k_y = 0.3401$, $\xi = 2.25$), переходит в "белое" олово (β -Sn), которое имеет гранецентрированную тетрагональную упаковку ($k_3^0 \cong 11$, $k_y \cong 0.72$, $\xi = 0.818$).

В работе [2] было показано, что глубина потенциала D для ковалентных кристаллов (в отличие от металлов) существенно зависит от вида деформации (упругой или пластической), которой подвергается кристалл. Это обусловлено тем, что ковалентная связь состоит из двух звеньев: сильного и слабого, причем энергия слабого звена приблизительно вдвое меньше, чем сильного. Энергия всей межатомной связи (которая работает при упругой деформации) равна (см. рис. 4)

$$D = 18B_{00}V_{00}/(k_3^0 a b N_A) = D_s + \Delta D, \quad D_s = L_{00}/(k_3^0/2),$$
(29)

где L_{00} — энергия сублимации при T = 0 К и P = 0, B_{00} — изотермический модуль упругости при T = 0 К и P = 0, $V_{00} = (\pi/6k_y)N_Ar_0^3$ — молярный объем кристалла при T = 0 и P = 0, N_A — число Авогадро, $D_s/2 = L_{00}/k_0^3$ является энергией связи электрона с "чужим" ионом, т.е. одним из двух звеньев слабой связи. Величина $\Delta D/2 = (D - D_s)/2 = D_s/2 + d$ — это энергия связи электрона со "своим" ионом или одно из двух звеньев сильной связи (см. рис. 4 в [2]). При упругой (обратимой) деформации ковалентных кристаллов работают одновременно сильное и слабое звенья ковалентной связи, и глубина потенциала равна D. Именно из значения D и необходимо рассчитывать такие параметры, при измерении которых не происходит разрыва межатомных связей: скорости звука, температуры Дебая Θ , коэффициента теплового расширения. При пластической (необратимой) деформации структуры ковалентного кристалла рвутся только слабые звенья связи, и глубина потенциала определяется величиной D_s . Поэтому из величины D_s определяются такие (связанные с разрывом межатомных связей) параметры, как энергия сублимации L_{00} и энергия активационных процессов: энергия образования вакансий и самодиффузии.

Температуру Дебая $\Theta(r_0, D)$ и параметр Грюнайзена $\gamma(r_0, D)$ для металлов и кристаллов инертных газов рассчитывают из величины D (ибо для них $D = D_s$) [18]:

1 10

$$\Theta_{0}(r_{0}, D) = A_{w}(1)\xi \left\{-1 + \left[1 + \left(\frac{8D}{k_{B}A_{w}(1)\xi^{2}}\right)\right]^{1/2}\right\}$$

$$\cong \left[\frac{8DA_{w}(1)}{k_{B}}\right]^{1/2},$$

$$\gamma_{0}(r_{0}, D) = \left[\frac{(b+2)}{6}\right] \left\{1 + \left[A_{w}(1)\xi/\Theta(r_{0}, D)\right]\right\}^{-1}$$

$$\cong (b+2)/6,$$
(30)

где $A_w(r_0/c) = K_R [5k_3^0 a b (b+1)/144(b-a)](r_0/c)^{b+2}$, $K_R = \hbar^2/k_B r_0^2 m$, $\xi = 9/k_3^0$. Здесь учтено, что для всех

Таблица 2. Необходимые для расчета параметров самодиффузии значения: $\Theta_0(r_0), c_0(T), \alpha_p(T), B_T(T)$. Расчеты $\Theta_0(c)$ и $E_d(c)$ произведены исходя из $\Theta_0(r_0), r_0/c_0(T), \gamma$ и энергии создания вакансии E_{L_1} (табл. 1). Знаком ^{*m*} в колонке температуры отмечена температура плавления из [27]

Кристалл k_3^0 , γ	$\Theta(r_0), K$ (табл. 1)	<i>Т</i> , К	$c_0(T)^*,$ Å	$lpha_p(T),\ 10^{-6} 1/{ m K}$	$B_T(T)$, кбар	$\Theta_0(c), \mathbf{K}$ (31)	<i>E</i> _d (<i>c</i>), эВ (32)
C-4	1414.4 2230	300	1.545 [23]	3 [19]	4430 [1]	1414.40 2230.00	2.385 3.955
0.965 [23]	1414.4 2230	1000	1.551*	13 [19]	4362.8**	1398.62 2205.12	4.040 8.986
	1414.4 2230	1200	1.553	15 [19]	4335.3	1393.41 2196.91	4.125 9.453
Si-4	549.1 758	300	2.351 [4,23]	7.62 [19]	997 [1]	549.10 758.00	3.165 5.419
1.0 [23]	549.1 758	1000	2.359	13.95 [19]	981.6	543.53 750.31	3.549 6.682
	549.1 758	1685 ^m	2.366 [26]	14.62 [26]	967.7	538.72 743.67	3.539 6.715
Ge-4	290 390	300	2.45 [4,23]	17.46 [19]	749 [1]	290.00 390.00	2.736 4.791
1.05 [23]	290 390	1000	2.463	25.38 [19]	727.7	285.21 383.55	2.780 5.014
	290 390	1212 ^m	2.465 [26]	23.5 [26]	724.5	284.48 382.57	2.774 5.007
α-Sn-4	206.6 236	100	2.798 [23]	10.44 [19]	426 [1]	206.60 236.00	2.592 3.231
1.072***	206.6 236	240	2.81 [4]	15.72 [19]	424.3	203.78 232.77	2.934 3.792
β-Sn-11	149 170	300	3.016 [35]	66.8 [36]	543 [37]	89.79 102.45	0.410 0.533
2.25 [19]****	149 170	505.118 ^m	3.037	81.5 [36]	500	85.69 97.76	0.380 0.494
Pb-12	87 105	300	3.500 [36]	86.9 [36]	450 [1]	82.48 99.54	0.799 1.160
2.70 [19]	87 105	600.65 ^m	3.535 [36]	109.1 [36]	373	76.09 91.83	0.695 1.012

Примечание. * Кратчайшее расстояние между центрами ближайших атомов в "безвакансионном" приближении рассчитывали из плотности массы $(\rho_m = \rho m)$ по формуле, следующей из (1): $c_0(T) = [6mk_y/\pi\rho_m(T)]^{1/3}$, или из параметра решетки (*l*): $c_0(T) = q_l l(T)$, где $q_l = 2^{-1/2}$ для ГЦК, $3^{1/2}/2$ для ОЦК, 1 для ПКУ, 3^{1/2}/4 для алмазной структуры.

** Если отсутствует ссылка, то значение оценено из низкотемпературной величины: для $c_0(T)$ — из (33), а $B_T(T)$ — из (34).

*** Значение определено из корреляционной зависимости параметра Грюнайзена от массы атома для элементов подгруппы IVa [2]: $\gamma = 0.84549 + 0.04735 \ln(m).$ **** Параметр Грюнайзена для β -Sn-11 определен в [19] для области высоких температур.

кристаллов подгруппы IVa выполняется:

$$A_w(1)\xi/\Theta(r_0,D) \cong \left[k_{\mathrm{B}}A_w(1)\xi^2/8D\right]^{1/2} \cong 10^{-3} \ll 1.$$

Допустим, как и в [8], что температура Дебая и параметр Грюнайзена кристалла при изохорическом нагреве от температуры не зависят: $\eta_0 = -[\partial \ln(\Theta_0)/\partial \ln(T)]_V = 0, \quad \gamma_0 = \gamma, \quad a$ уменьшение температуры Дебая при изобарическом (P = 0) росте объема V(T) будем рассчитывать по формуле, вытекающей из (30):

$$\Theta_0(c) = \Theta_0(r_0)(r_0/c_0)^{3\gamma} = \Theta_{00}(V_{00}/V)^{\gamma}, \qquad (31)$$

где $r_0 = c(T = 0 \text{ K}, P = 0)$ — расстояние между центрами ближайших атомов при T = 0 К и P = 0.

Рис. 4. Потенциал межатомного взаимодействия (28) в алмазе (a = 2.21, b = 3.79) для общей связи: $D = D_s + \Delta D = 8.43$ эВ — сплошная линия и слабой связи: $D_s = L_{00}/(k_3^0/2) = 3.68$ эВ — пунктир. Величина $\Delta D = D - D_s$ = (D/2) + d = 4.75 эВ представляет собой разницу между глубиной потенциала, найденной из модуля упругости, и определенной по энергии сублимации алмаза при T = 0 К и P = 0. Значение $d = \Delta D - (D/2) - D_s = (\Delta D - D_s)/2 = 0.535$ эВ это энергия притяжения обобщенного в ковалентной связи валентного электрона к "своему" иону углерода.

Тогда функция (5), определяющая энергию делокализации (8), примет вид

$$E_L = f_y(c)E_{L1}(c), \quad E_{L1}(c) = E_{L1}(r_0)(r_0/c)^{2(3\gamma-1)},$$
$$E_{L1}(r_0) = (m/k_3^0)[3r_0k_B\Theta(r_0)/8\hbar]^2, \quad (32)$$

где функцию $f_y(c)$ вычисляют по формуле (6), но уже с аргументом $y = 3\Theta(c)/4T$.

Величины γ и $\Theta_0(r_0)$ можно либо брать из эксперимента, либо, используя результаты из [18], их можно рассчитать из параметров межатомного потенциала (28). В данном случае важно исследовать вопрос — какую величину глубины потенциала следует использовать при расчете активационных параметров для ковалентных кристаллов: *D* или *D_s*. Поэтому проведем расчеты двумя путями: с максимальной величиной Θ_{00} (которая характеризует величину D); с минимальной величиной $\Theta_{00} = \Theta(r_0)$, рассчитанной по формуле (30) с величиной D_s в работе [8]. В табл. 1 представлены значения Θ_{00} , оцененные в различных работах как при низких, так и при высоких температурах. Там же приведены значения $\Theta(r_0)$, рассчитанные из (30) в [8], при использовании параметров потенциала (28) с величиной D_s для полупроводников с алмазной структурой. В табл. 1 показаны рассчитанные значения $E_{L1}(r_0)$ и приведены оценки энтальпии образования вакансии из различных работ. Легко видеть, что величины $E_{L1}(r_0)$, рассчитанные с величиной $\Theta(r_0)$ из [8], ближе к величинам $h_v(\exp)$ из [28–32]. Как показано в [2], разница $\Delta D = D - D_s$ уменьшается с ростом массы элемента в подгруппе углерода от 4.5 эВ (для алмаза, см. рис. 4) до 0 (для свинца). Поэтому разница между результатами вышеуказанных двух путей расчета должна уменьшаться при переходе от алмаза к свинцу. Чтобы оценить область различия результатов для этих двух путей расчета, мы и брали минимальную и максимальную величину температуры Дебая, известную из литературы (см. табл. 1).

6. Определение параметров, необходимых для расчетов

Для расчета зависимости параметров самодиффузии от температуры вдоль изобары P = 0 необходимо знать температурные зависимости следующих функций, входящих в выражения (19)–(24): c(T), $\alpha_p(T)$ и $B_T(T)$. Ввиду отсутствия экспериментальных данных для $B_T(T)$ и c(T) при некоторых температурах эти параметры определялись из аппроксимационных выражений.

Значение $c(T_r)$ — расстояния между центрами ближайших атомов при температуре T_r — находили из экспериментальных работ, указанных в табл. 2. Если же не было экспериментальных данных для $T \gg T_r$, то значение c(T) определяли из соотношения

$$c(T) \cong c(T_r) \left[1 + (1/3) \int_{T_r}^T \alpha_p(T) dT \right]$$
$$\cong c(T_r) \left\{ 1 + (1/3) \left[T \alpha_p(T) - T_r \alpha_p(T_r) \right] \right\}, \quad (33)$$

где значение $\alpha_p(T)$ получали из экспериментальных работ, указанных в табл. 2.

Отметим, что расстояние между центрами ближайших ячеек, определяемое по формуле (1): $c = c_0(1 - \phi)^{1/3}$, в свою очередь зависит от наличия вакансий. Но ввиду того что концентрация вакансий в твердой фазе даже при температуре плавления мала: $\phi(T_m) \leq 10^{-3}$ [8], при расчетах выражений (8) и (19) можно (в качестве хотя бы первой итерации) принять $\phi = 0$, $c_0 = c$.

Изменение изотермического модуля упругости с ростом температуры в табл. 2 (как и в [8]) рассчитывали по формуле Шрамма (К.Н. Schramm, 1962) [34]:

$$B_{T}(T) = B_{T}(T_{r}) \exp\left\{-2[\gamma - (1/3)] \int_{T_{r}}^{T} \alpha_{p}(T) dT\right\}$$

$$\cong B_{T}(T_{r}) \exp\left\{-2[\gamma - (1/3)][T\alpha_{p}(T) - T_{r}\alpha_{p}(T_{r})]\right\}.$$
(34)

При этом T_r — это значение температуры, при которой величины $B_T(T_r)$ и $\alpha_p(T_r)$ были известны (как и величина $\alpha_p(T)$) из экспериментальных работ, указанных в табл. 2.

Отметим, что если для алмазной упаковки и ГЦК свинца значения фактора корреляции определены в (18), то для гранецентрированной тетрагональной упаковки "белого" олова (типа In: $k_3^0 \cong 11$, $k_y \cong 0.72$) оценка фактора корреляции произведена из аппроксимирующей

Крис- талл k_3^0	$\Theta(r_0) \ ({ m табл. 1}), \ { m K}$	<i>Т</i> , К	g _d (23), эВ	g _m (35), эВ	<i>h</i> _d (23), эВ	<i>h</i> _m (35), эВ	(23)	$\frac{s_m/k_b}{(35)}$	(23)	v_m/v_a (35)	$\begin{array}{c} x(T,\rho) \\ (10) \end{array}$	$D_d(ho) \cdot 10^3$ (19), см ² /с	$D_{\rm Arr} \cdot 10^3$ (20), cm ² /c	$D_f(T, ho) \ (19), \ { m cm}^2/{ m c}$
C-4	1414.4 2230 1414.4	300 1000	2.323 3.887 3.864	0.341 0.640 0.420	0.493 0.168 3.443	0.098 0.033 0.683	$-70.800 \\ -143.83 \\ -4.890$	-9.422 -23.465 3.053	0.222 0.251 0.841	0.044 0.050 0.167	$\begin{array}{c} 9.4 \ (-40) \\ 5.1 \ (-66) \\ 3.4 \ (-20) \end{array}$	2.298 3.623 2.290	24.903 5.056 17.692	$\begin{array}{c} 2.17 \ (-42) \\ 1.85 \ (-68) \\ 7.70 \ (-23) \end{array}$
	2230 1414.4 2230	1200	8.775 3.922 9.207	1.333 0.377 1.349	6.011 3.731 7.200	1.193 0.741 1.429	-32.073 -1.839 -19.407	-1.623 3.514 0.773	1.575 0.895 1.809	0.313 0.178 0.359	$\begin{array}{c} 6.0 \ (-45) \\ 3.4 \ (-17) \\ 2.2 \ (-40) \end{array}$	3.610 2.287 3.606	41.600 16.301 38.904	2.16 (-47) 7.73 (-20) 7.81 (-41)
Si-4	549.1 758 549.1 758 549.1 758	300 1000 1685 ^m	3.100 5.347 3.378 6.484 3.289 6.419	0.489 0.923 0.334 0.901 0.154 0.692	2.361 3.170 3.517 6.461 3.620 6.812	0.469 0.629 0.698 1.283 0.719 1.352	$\begin{array}{r} -28.578 \\ -84.196 \\ 1.611 \\ -0.263 \\ 2.280 \\ 2.702 \end{array}$	-0.785 -11.343 4.227 4.425 3.887 4.548	0.805 1.173 1.101 2.035 1.118 2.109	0.160 0.233 0.219 0.404 0.222 0.419	8.5 (-53) 1.5 (-90) 9.4 (-18) 2.1 (-33) 1.5 (-10) 6.3 (-20)	2.066 2.852 2.059 2.842 2.053 2.833	25.789 46.583 14.907 28.236 11.433 21.742	$\begin{array}{c} 1.76 \ (-55) \\ 4.36 \ (-93) \\ 1.94 \ (-20) \\ 6.00 \ (-36) \\ 3.00 \ (-13) \\ 1.80 \ (-22) \end{array}$
Ge-4	290 390 290 390 290 390	300 1000 1212 ^m	2.673 4.720 2.620 4.828 2.590 4.792	0.408 0.801 0.202 0.595 0.147 0.529	2.530 4.140 2.859 5.126 2.872 5.164	0.502 0.822 0.568 1.018 0.570 1.025	-5.534 -22.422 2.780 3.453 2.704 3.555	3.659 0.811 4.239 4.904 4.049 4.750	1.024 1.708 1.115 2.002 1.117 2.010	0.203 0.339 0.221 0.397 0.222 0.399	$\begin{array}{c} 1.3 \ (-45) \\ 5.1 \ (-80) \\ 6.3 \ (-14) \\ 4.7 \ (-25) \\ 1.7 \ (-11) \\ 1.2 \ (-20) \end{array}$	1.185 1.593 1.178 1.584 1.176 1.582	13.753 24.473 7.547 13.630 6.841 12.361	$\begin{array}{c} 1.51 \ (-48) \\ 8.18 \ (-83) \\ 7.38 \ (-17) \\ 7.39 \ (-28) \\ 2.00 \ (-14) \\ 1.87 \ (-23) \end{array}$
α-Sn-4	206.6 236 206.6 236	100 240	2.566 3.205 2.880 3.736	0.460 0.585 0.468 0.633	1.789 2.010 2.760 3.497	0.355 0.399 0.548 0.694	$\begin{array}{r} -90.147 \\ -138.61 \\ -5.801 \\ -11.538 \end{array}$	-12.199 -21.621 3.870 2.962	0.972 1.135 1.343 1.711	0.193 0.225 0.267 0.340	$\begin{array}{r} 4.8 \ (-130) \\ 3.2 \ (-162) \\ 3.3 \ (-61) \\ 3.6 \ (-79) \end{array}$	1.101 1.257 1.095 1.251	21.541 27.476 14.718 19.114	5.31 (-133) 3.97 (-165) 3.62 (-64) 4.47 (-82)
β-Sn-11	149 170 149 170	300 505.118 ^m	0.371 0.491 0.325 0.434	0.132 0.189 0.091 0.133	0.438 0.568 0.439 0.570	0.227 0.295 0.172 0.284	2.583 2.983 2.608 3.123	3.699 4.098 1.872 3.485	0.321 0.417 0.318 0.413	0.167 0.217 0.125 0.206	5.8 (-7) 5.7 (-9) 5.7 (-4) 4.7 (-5)	0.519 0.592 0.502 0.572	2.331 3.031 1.672 2.176	$\begin{array}{c} 3.00 \ (-10) \\ 3.40 \ (-12) \\ 2.87 \ (-7) \\ 2.69 \ (-8) \end{array}$
Pb-12	87 105 87 105	300 600.65 ^m	0.751 1.108 0.622 0.929	0.344 0.534 0.234 0.389	0.891 1.291 0.910 1.323	0.491 0.712 0.498 0.729	5.415 7.071 5.563 7.620	5.696 6.879 5.106 6.579	0.597 0.866 0.611 0.888	0.329 0.477 0.334 0.490	$\begin{array}{c} \textbf{2.4} \ (-13) \\ \textbf{2.4} \ (-19) \\ \textbf{6.1} \ (-6) \\ \textbf{1.6} \ (-8) \end{array}$	0.640 0.772 0.602 0.727	4.012 5.838 2.490 3.625	$\begin{array}{c} 1.54 \ (-16) \\ 1.85 \ (-22) \\ 3.65 \ (-9) \\ 1.17 \ (-11) \end{array}$

Таблица 3. Параметры самодиффузии атомов для кристаллов, данные которых приведены в табл. 2. Значение 3.25 (-6) в колонках для *x* и D_f следует понимать как величину $3.25 \cdot 10^{-6}$. Знаком ^{*m*} в колонке температуры отмечена температура плавления из [27]

кубичной зависимости $f_{\rm cor}(k_3^0)$, показанной на рис. 3: $f_{\rm cor}(k_3^0\cong 11)=0.769.$

7. Расчеты параметров самодиффузии

В табл. 3 представлены результаты расчетов с помощью выражений (10), (19), (20) и (23) всех параметров самодиффузии в кристаллах подгруппы IV*a*. Там же представлены термодинамические параметры миграции, каждый из которых равен разнице между диффузионным и аналогичным вакансионным параметром [5–7]:

$$f_m = f_d - f_v. \tag{35}$$

Из табл. З видно, что функция $g_d(T)$ растет при изобарическом нагреве до определенного максимума,

Физика и техника полупроводников, 2010, том 44, вып. 3

после которого уменьшается. Но наличие максимума у функции $g_d(T)$ не приводит к минимуму на зависимости вероятности делокализации атома от темппературы: $x(T) = \exp(-g_d/k_{\rm B}(T))$, ибо функция $g_d/k_{\rm B}T$ монотонно уменьшается с ростом температуры. Функция $h_d(T)$ возрастает с температурой нелинейно и пересекается с функцией $g_d(T)$ при определенной температуре, $T_{sd=0}$, где функция $g_d(T)$ имеет максимум, а энтропия самодиффузии, $s_d/k_{\rm B} = (h_d - g_d)/k_{\rm B}T$, равна нулю. Энтропия, относительный объем самодиффузии, функции x(T)и $D_f(T)$ возрастают с температурой. Но для германия с $\Theta(r_0) = 290 \,\mathrm{K}$ функция $s_d(T) > 0$ имеет максимум. Малые значения v_d/v_a при низких температурах приводят к упорядочению системы при делокализации атомов: $s_d < 0$ (аналогично образованию вакансий [8]). Но с ростом T функции v_d/v_a и s_d растут, и при некотором значении v_d/v_a (индивидуальном для каждого вещества)

Таблица	4.	Экспериме	нтальн	ные и	теор	оетически	е (в	скобках)	параметры	самодио	фузии	атомов	в	криста	аллах	подгрупі	Ъ
углерода,	опр	еделенные	для у	/казані	ной 7	температ	урной	области:	T-range.	Значение	T_f ука	азывает	гра	аницу	фазы.	Знаком	т
отмечена т	гемг	пература пл	авлени	ия. Для	я ани	зотропно	й стр	уктуры β -S	Sn указаны	значения	параме	тров, оп	пред	еленні	ых поп	ерек (⊥	c)
и вдоль (c) 1	главной оси	1														

Кристалл k_{3}^{0}, T_{f}, K	T-range, K	h_d , эВ	$D_{\rm Arr}, { m cm}^2/{ m c}$	<i>h</i> _m , эВ	v_d/v_a
C-4 (4300) ^m [22]	2075-2375	$\begin{array}{c} 6.8 \pm 1.6 \\ (9.1) \ [3] \\ (6.18) \end{array}$	0.41 [3] (11.6) [38]	$\begin{array}{c} (2.02) \ [38] \\ (1.286) \ [28] \end{array}$	
Si-4	1373-1573	5.12 ± 0.1	$9 \cdot 10^3$ [7,38,39]	(1.06) [38]	
1688^{m} [7]	1498-1673	4.773	1800 [7,13,39,40]	(0.685) [28]	(0.64) [28]
1685 ^m [26]	1128–1448 1473–1673	4.65 4.77	$\begin{array}{c} 1.54\cdot 10^2 [40] \\ 1.6\cdot 10^3 [40] \end{array}$	$\begin{array}{c} (0.50) \ [43] \\ 0.4{-}1.4 \ [44] \end{array}$	(0.659) [43]
	973-1658 1008-1148 $T \gg 1128$ 1128-1661	$5.01 \\ 4.6 \\ 3.6^{+0.3}_{-0.1} \\ 4.95 \\ 4.75 \pm 0.04 \\ 4.86 \\ 4.73 \\ (3.38)$	$\begin{array}{c} 1400 \ [41] \\ 40 \ [41] \\ 2.3 \cdot 10^{-3} \ [44] \\ 2175.4 \ [44] \\ 530^{+250}_{-170} \ [45] \\ 1800 \ [38] \\ 1.2 \ [42] \\ (8.9) \ [38] \end{array}$		
Ge-4 1210 ^m [7]	1039-1201	$\begin{array}{c} 3.19\\ 2.972\pm0.042\end{array}$	$\begin{array}{c} 87.0 \ [5] \\ 7.8 \pm 3.4 \ [7,39] \end{array}$	(0.95) [38] (0.616) [28]	(0.4) [28]
1212 ^m [26]	822–1164 1039–1201	3.14 2.95	24.8 [40] 7.8 [13,40]	$(0.40) \ [43] \\ (0.40) \ [46]$	(0.785) [43]
	1004-1189	2.99 (3.02)	$\begin{array}{c} 10.8 \pm 2.4 [38] \\ (5.4) [38] \end{array}$		
		$\begin{array}{c} 2.98 \pm 0.04 \\ 3.10 \\ 3.15 \pm 0.13 \\ 3.02 \pm 0.02 \\ (3.0) \ [46] \end{array}$	$\begin{array}{c} 7.8 \pm 3.4 \ [42] \\ 22.0 \ [42] \\ 44.0 \pm 4.1 \ [42] \\ 10.8 \pm 2.4 \ [39.42] \end{array}$		
α-Sn-4 286.2 [27]		$(2.8 \div 4.31)$ [2]			
β -Sn-11 505,118 ^m [27]		$0.291 \pm 0.04 \perp c$ $0.498 \pm 0.02 \parallel c$	$\begin{array}{c} (9.2\pm2)\cdot10^{-8} \ [5] \\ (3.6\pm2)\cdot10^{-6} \ [5] \end{array}$		0.185 [47]
505.078 ^m [36]	451-495	$\begin{array}{c} 1.011 \pm 0.022 \perp c \\ 1.111 \pm 0.035 \parallel c \end{array}$	$\begin{array}{c} 1.4 \pm 0.5 \; [7,39] \\ 8.2 \pm 6 \; [7.39] \end{array}$		
	433-499	$\begin{array}{c} 1.089 \pm 0.035 \perp c \\ 1.111 \pm 0.044 \parallel c \end{array}$	$\begin{array}{c} 10.7 \pm 1 \; [39,\!40] \\ 7.7 \pm 3 \; [39,\!40] \end{array}$		
		1.06 ÷ 1.09 [16]			
Pb-12 600.65^m [27] 600.6^m [36]	500-573 447-595 473-596 423-593	$\begin{array}{c} 1.05{-}1.215\\ 1.050\\ 1.113\pm0.011\\ 1.107\\ 1.131\end{array}$	$\begin{array}{c} 0.28{-}6.7 [5] \\ 0.28 [7] \\ 0.995 \pm 0.2 [39] \\ 0.887 [40] \\ 1.37 [13] \end{array}$	0.54-0.6 [33]	0.714 [6,47] 0.852 [47] 0.659 [48] (0.442) [48]

функция s_d переходит в положительную область, где делокализация атомов уже разупорядочивает систему: $s_d > 0$.

В табл. 4 приведены экспериментальные и теоретические (в скобках) оценки: энтальпии самодиффузии *h_d*; предэкспоненциального множителя в формуле Аррениуса для самодиффузии, $D_f = D_{\text{Arr}} \exp(-h_d/k_{\text{B}}T)$; энтальпии миграции, $h_m = h_d - h_v$, и относительного объема самодиффузии, v_d/v_a , в кристаллах подгруппы IV*a*, сделанные другими авторами.

Физика и техника полупроводников, 2010, том 44, вып. 3

Из всех кристаллов подгруппы IV*a* наиболее хорошо изучены параметры свинца. Как видно из табл. 3 и 4, все рассчитанные параметры самодиффузии для свинца совпали с экспериментальными оценками в пределах точности их определения. Для энтропии самодиффузии свинца в работе [47] получено $s_d/k_{\rm B} = 4.129$, что также хорошо согласуется с расчетами из табл. 3 при использовании "высокотемпературного" значения $\Theta = 87$ K [24,27].

Из всех термодинамических параметров самодиффузии наиболее точно определяется энтальпия. Из табл. 3 и 4 видно, что согласие рассчитанных и экспериментальных значений энтальпии самодиффузии для полупроводников с алмазной структурой лучше при использовании в расчетах минимальных значений температур Дебая, т.е. тех, что получены при использовании потенциала (28) с глубиной ямы, равной D_s . Этот же вывод был сделан и в [8] при изучении параметров образования вакансий. Таким образом, при делокализации атома, как и при образовании вакансии, в полупроводниковом кристалле рвутся только слабые звенья ковалентной связи (с энергией D_s), как это происходит при пластической (необратимой) деформации структуры полупроводниковом кристалла.

Для алмаза мы не располагали значениями c, α_p и B_T в области температур 2075–2375 K, где авторами [3] были оценены диффузионные параметры алмаза. Но исходя из линейной экстраполяции энтальпии самодиффузии из табл. 3 (имеются в виду результаты для $\Theta = 1414.4$ K из [8]) можно получить

$$h_d(2200 \text{ K}) \cong 3.731 + \{ [h_d(1200 \text{ K}) - h_d(1000 \text{ K})]/200 \text{ K} \}$$

 $\times 1000 \text{ K} \cong 5.171 \text{ } \text{B}.$ (36)

Эта оценка хорошо согласуется с величиной 6.8 ± 1.6 эВ из [3]. Как отметили сами авторы [3], теоретические *ab initio* расчеты величины h_d приблизительно на 30% (9.1 эВ) выше экспериментальных. Это намного хуже, чем наша оценка из (36).

Для кремния и германия наши расчеты величин h_d и *h_m* для области высоких температур отлично совпали с наиболее свежими экспериментальными данными, указанными в табл. 4. Причем у нас так же, как и в работах [40,44], для кремния функция $h_d(T)$ росла при изобарическом нагреве. Но полученные нами значения относительных объемов самодиффузии заметно превышают теоретические оценки других авторов. Это может быть связано с тем, что в указанных в табл. 4 работах при оценке величины v_d/v_a предполагалась (как и для h_d) ее неизменность с температурой, что не вполне корректно. Для вакансионного механизма самодиффузии в кремнии в [45] была получена оценка энтропии самодиффузии, $s_d/k_{\rm B} = 5.5$, что вдвое больше расчетов из табл. 3. Это отличие также может быть обусловлено тем, что в [45] при оценке $s_d/k_{\rm B}$ и h_d предполагалась их неизменность с температурой.

Для "белого" олова β -Sn наши оценки энтальпии самодиффузии в 2 раза меньше экспериментальных данных, что может быть объяснено существенной анизотропией тетрагональной решетки β -Sn и некорректностью использования для нее значения $k_2^0 \approx 11$.

Как следует из полученных результатов, наблюдаются корреляции $s_d(T) \propto h_d(T)$ и $s_d/k_{\rm B} \propto v_d/v_a$. Линейную зависимость s_d от h_d , обнаруженную в экспериментальных данных для металлов, полупроводников и других веществ, часто называют компенсационным эффектом или правилом Майера-Нелдела (the compensation (Meyr-Neldel) rule [49-53]). Легко понять, что чем больше энергия тратится на делокализацию атома, тем более разупорядочивается кристалл и тем больше значение s_d , причем для каждого вещества существует определенное значение энтальпии самодиффузии: $h_d(s_d = 0)$, при котором $s_d = 0$. Линейную зависимость $s_d/k_B \propto v_d/v_a$ иногда называют правилом Зенера-Кейса-Лаусона (Zener-Keyes-Lawson, 1951) [52,53]. Физический смысл этой корреляции также легко понять: чем больший объем образуется при делокализации атома, тем больше ра-

Рис. 5. Изменение множителя $D_d(\rho) \times 10^3 \, [\text{cm}^2/\text{c}]$ из табл. 3 с относительной температурой $T/\Theta(r_0)$. Для полупроводниковых алмазоподобных кристаллов использованы данные для минимального значения температуры Дебая из табл. З. Для металлических кристаллов свинца и "белого" олова представлены данные для обоих температур Дебая. Тонкими сплошными линиями показаны линейные аппроксимации для зависимости $Y = D_d(\rho) \times 10^3 \,[\text{cm}^2/\text{c}]$ от $X = T/\Theta(r_0),$ полученные для различных наборов данных из табл. 3: для С-4: корреляции Y = 2.30168 - 0.01699X, коэффициент Y = 2.06868 - 0.00516X, $R_{\rm cor} = -0.99856;$ для Si-4: $R_{\rm cor} = -0.99927;$ коэффициент корреляции для Ge-4: Y = 1.18796 - 0.00287X, коэффициент корреляции $R_{\rm cor} = -0.99994$; для Sn-4: Y = 1.10529 - 0.00885X, коэффициент корреляции $R_{cor} = -1$; для Sn-11 — верхняя кривая: Y = 0.62125 - 0.01658X, $R_{cor} = -1$; для Sn-11 — нижняя кривая: *Y* = 0.54386 - 0.011235*X*, *R*_{cor} = -1; для Pb-12 верхняя кривая: Y = 0.8169 - 0.01572X, $R_{cor} = -1$; для Pb-12 — нижняя кривая: Y = 0.67792 - 0.011X, $R_{cor} = -1$.

зупорядочивается решетка кристалла. Очевидно, что данное соотношение справедливо для всех веществ. При этом для каждого вещества существует свое характерное значение объема самодиффузии, $v_d(s_d = 0)/v_a$, начиная с которого энтропия самодиффузии переходит в положительную область значений. При $v_d < v_d(s_d = 0)$ делокализация атома "упорядочивает" кристалл ($s_d < 0$), а при $v_d > v_d(s_d = 0)$ решетка кристалла "разупорядочивается" при делокализации атома.

Для металлических кристаллов Pb и β -Sn относительный объем самодиффузии при температурах, близких к плавлению, в 3–7 раз меньше, чем величина v_d/v_a для ковалентных кристаллов. Это разлиие можно объяснить рыхлостью упаковки алмазоподобных кристаллов и большими значениями межатомных энергий. Для плотного ГЦК-Pb делокализация атома (либо образование вакансии) приводит к увеличению объема на величину, меньшую объема атома, за счет стягивания плотной решетки внутрь вакансии. Для алмазоподобных кристаллов подгруппы IVa при делокализации атома (либо образование вакансии) при T_m происходит заметное растягивание вакансии в рыхлой решетке алмаза из-за сильного притяжения оставшихся ближайших соседей.

Как видно из табл. 3 и рис. 5, величина множителя $D_d(\rho)$ из (19) очень слабо меняется с температурой, чего нельзя сказать о предэкспоненциальном множителе (20) из формулы Аррениуса, D_{Arr} . В связи с этим можно утверждать, что описание самодиффузии выражением (19) является логически более обоснованным, чем активационной формулой Аррениуса, а величина $D_d(\rho)$ из (19) является диффузионной константой вещества. Множитель $D_d(\rho)$ — это коэффициент самодиффузии, который имеет виртуальный кристалл при изохорической (ρ = const) делокализации всех его атомов (т. е. при x = 1). Температурная зависимость коэффициента самодиффузии определяется функцией $x(\rho, T)$.

8. Заключение

1. Разработана аналитическая методика для расчета зависимости параметров самодиффузии от плотности и температуры как в металлах, так и ковалентных кристаллах.

2. Впервые без каких-либо подгоночных параметров рассчитаны все термодинамические параметры самодиффузии для кристаллов подгруппы углерода. Изучено изменение параметров самодиффузии при изобарическом нагреве кристаллов подгруппы IV*a* от T = 0 K до температуры плавления. Методика показала хорошее согласие с известными из литературы экспериментальными оценками.

3. Согласие рассчитанных параметров самодиффузии с экспериментальными оценками лучше, если в расчетах брать величину температуры Дебая, рассчитанную из межатомного потенциала с глубиной ямы, равной $D_s = L_{00}/(k_0^3/2)$. Таким образом, показано, что при

4. Показано, что при низких температурах ($T < \Theta$) зависимость энтальпии самодиффузии от температуры очень существенная, что делает использование уравнения Аррениуса для определения энергетических параметров активационного процесса не корректным. Даже при T = 0 К концентрация диффундирующих атомов в кристалле отлична от нуля, что обусловлено квантовыми эффектами. При высоких температурах ($T > \Theta$) зависимость параметров самодиффузии от температуры ослабляется.

5. Показано, что энтропия самодиффузии возрастает с температурой, переходя при определенной температуре из области отрицательных значений в положительную область. Указано, что для каждого вещества существуют свои характерные значения $h_d(s_d = 0)$ и $v_d(s_d = 0)/v_a$, при которых делокализация не изменяет упорядоченность кристалла и начиная с которых решетка кристалла разупорядочивается при делокализации атома.

6. Объяснено выполнение как "компенсационного правила" — линейной зависимости s_d от h_d , так и линейной зависимости энтропии самодиффузии от относительного объема самодиффузии, $s_d/k_B \propto v_d/v_a$. Показано, что при переходе через точку $s_d = 0$ зависимость функции v_d/v_a от величины s_d возрастает.

7. Показано, что величина $D_d(\rho)$ из (19) является диффузионной константой вещества, а температурная зависимость коэффициента самодиффузии полностью определяется долей делокализованных атомов в системе, $x(\rho, T)$.

Автор выражает благодарность В.И. Зубову, А.Д. Филенко, К.Н. Магомедову и З.М. Сурхаевой за плодотворные дискуссии и помощь в работе.

Работа выполнена при финансовой поддержке программы президиума РАН (проект № 12.1.19).

Список литературы

- [1] С.М. Стишов. Письма ЖЭТФ, 71 (1), 25 (2000).
- [2] М.Н. Магомедов. Журн. неорган. химии, 49 (12), 2057 (2004).
- [3] K.T. Koga, M.J. Walter, Eizo Nakamura, Katsura Kobayashi. Phys. Rev. B, 72 (2), 024 108 (2005).
- [4] Ч. Киттель. Введение в физику твердого тела (М., Наука, 1078). [Ch. Kittel. Introduction to Solid State Physics, 5th ed. (N.Y., J. Wiley, 1976)].
- [5] С.Д. Герцрикен, И.Я. Дехтяр. Диффузия в металлах и сплавах в твердой фазе (М., ГИФМЛ, 1960).
- [6] J.R. Manning. Diffusion Kinetics for Atoms in Cyrstals (Toronto, D. Van Nostrand Comp., 1968).
- [7] Б.С. Бокштейн. Диффузия в металлах (М., Металлургия, 1978).
- [8] М.Н. Магомедов. ФТП, 42 (10), 1153 (2008).

- [9] Справочник по специальным функциям, под ред. М. Абрамовиц, И. Стиган (М., Наука, 1979). [Handbook of Mathematical Functions, ed. by M. Abramovitz, I. Stegun (N.Y., National Bureau of Standards, 1964)].
- [10] М.Н. Магомедов. Физика металлов и металловедение, № 10, 13 (1992).
- [11] М.Н. Магомедов. Металлы, № 6, 27 (2001).
- [12] Р. Фейнман. Статистическая механика. М., Наука, 1975. [R.P. Feynman. Statistical Mechanics (Massachusetts, W.A. Benjamin Inc., 1972)].
- [13] L.A. Girifalco. Statistical Physics of Materials (N.Y., J. Wiley 1973).
- [14] *Problems in Thermodynamics and Statistical Physics*, ed. by P.T. Landsberg (London, Pion, 1971).
- [15] М.Н. Магомедов. Физика металлов и металловедение, 80 (4), 36 (1995).
- [16] Е.М. Соколовская, Л.С. Гузей. Металлохимия (М., Изд-во МГУ, 1986).
- [17] М.Н. Магомедов. Письма ЖТФ, 28 (10), 64 (2002).
- [18] М.Н. Магомедов. ФТТ, 45 (1), 33 (2003).
- [19] С.И. Новикова. Тепловое расширение твердых тел (М., Наука, 1974).
- [20] А.Ф. Андреев, И.М. Лифшиц. ЖЭТФ, 56 (6), 2057 (1969).
- [21] М.Н. Магомедов. Письма ЖТФ, 34 (10), 20 (2008).
- [22] Л.А. Шульман. Сверхтвердые материалы, № 4, 58 (1993).
- [23] И.В. Александров, А.Ф. Гончаров, А.Н. Зисман, С.М. Стишов. ЖЭТФ, 93 (8), 680 (1987).
- [24] Б.Ф. Ормонт. Введение в физическую химию и кристаллохимию полупроводников (М., Высш. шк., 1968).
- [25] А.Р. Регель, В.М. Глазов. Периодический закон и физические свойства электронных расплавов (М., Наука, 1978).
- [26] С.В. Станкус, Р.А. Хайрулин, П.В. Тягельский. Теплофизика высоких температур, 37 (4), 559 (1999).
- [27] В.Е. Зиновьев. Теплофизические свойства металлов при высоких температурах. Справочник (М., Металлургия, 1989).
- [28] G.M. de'Munari, L. Gabba, F. Giusiano, G. Mambriani. Phys. Status Solidi A, 34 (2), 455 (1976).
- [29] M.I. Heggie. J. Phys.: Condens. Matter, 3 (18), 3065 (1991).
- [30] U. Krause, J.P. Kuska, R. Wedell. Phys. Status Solidi B, 151 (2), 479 (1989).
- [31] Y. Taji. J. Phys. Soc. Jpn., 48 (4), 1237 (1980).
- [32] N.F. Uvarov, E.F. Hairetdinov, W. Bollmann. Cryst. Res. Technol., 24 (4), 413 (1989); Cryst Res. Technol., 24 (5), 543 (1989).
- [33] А.Н. Орлов, Ю.В. Трушин. Энергия точечных дефектов в металлах (М., Энергоатомиздат, 1983).
- [34] Д.Ш. Цагарейшвилли. Методы расчета термических и упругих свойств кристаллических неорганических веществ (Тбилиси, Мецинереба, 1977).
- [35] В.К. Григорович. Периодический закон Менделеева и электронное строение металлов (М., Наука, 1966).
- [36] С.В. Станкус, Р.А. Хайрулин. Теплофизика высоких температур, 44 (3), 393 (2006).
- [37] Physical Acoustics, ed. by W.P. Mason (London, Academic Press, 1965) v. 3, pt B.
- [38] Р. Сволин. В сб.: Атомная диффузия в полупроводниках, под ред. Д. Шоу (М., Мир, 1975). [Atomic Diffusion in Semiconductors, ed. by D. Shaw (London, Plenum Press, 1973)].
- [39] К.Дж. Смитлз. Металлы: Справочное издание (М., Металлургия, 1980). [Metals Reference Book, ed. by Colin I. Smithells (London, Butterworth and Co. (Publishers) Ltd., 1976)].

- [40] CRC Handbook of Chemistry and Physics. 74th ed. Editor-in-Chief David R. Lide (London, CRC Press Standards, 1993– 1994).
- [41] P.M. Fahey, P.B. Griffin, J.D. Plummer. Rev. Mod. Phys., 61 (2), 289 (1989).
- [42] С. Ху. В сб.: Атомная диффузия в полупроводниках, под ред. Д. Шоу (М., Мир, 1975). [Atomic Diffusion in Semiconductors, ed. by D. Shaw (London, Plenum Press, 1973)].
- [43] T. Soma, A. Morita. J. Phys. Soc. Jpn., **32** (2), 357 (1972).
- [44] Y. Shimizu, M. Uematsu, K.M. Itoh. Phys. Rev. Lett., 98 (9), 095 901 (2007).
- [45] H. Bracht, E.E. Haller, R. Clark-Phelps. Phys. Rev. Lett., 81 (2), 393 (1998).
- [46] H.M. Pinto, J. Coutinho, V.J.B. Torres, G. Oberg, P.R. Briddon. Mater. Sci. Semicond. Proc., 9 (4–5), 498 (2006).
- [47] Д. Лазарус, Н. Нахтриб. В сб.: Твердые тела под высоким давлением, под ред. В. Пол, Д. Варшауэр (М., Мир, 1966). [Solids under Pressure, ed. by W. Paul, D.M. Warschauer (N.Y., McGraw-Hill Book Company, 1963)].
- [48] Р. Кейес. В сб.: Твердые тела под высоким давлением, под ред. В. Пол, Д. Варшауэр (М., Мир, 1966) [Solids under Pressure, ed. by W. Paul, D.M. Warschauer (N.Y., McGraw-Hill Book Company, 1963)].
- [49] В.А. Кисилишин. ДАН СССР, 295 (1), 127 (1987).
- [50] A. Yelon, B. Movaghar. Phys. Rev. Lett., 65 (5), 618 (1990).
- [51] М.Р. Магомедов. Теплофизика высоких температур, 40 (1), 152 (2002).
- [52] P.A. Varotsos. Phys. Rev. B, 75 (17), 172 107 (2007).
- [53] P. Varotsos, K. Alexopoulos. Phys. Status Solidi B, 110 (9), 9 (1982).

Редактор Л.В. Беляков

Self-diffusion parameters in carbon subgroup crystals

M.N. Magomedov

Institute for Geothermal Research of Daghestan Scientific Centre, Russian Academy Sciences, 367003 Makhachkala, Russia

Abstract The parameters of self-diffusion in the carbon subgroup crystals: C, Si, Ge, α -Sn and Pb — were calculated. It is shown that an account of quantum effects in the delocalization of atoms brings about that under low temperature (below Debye temperature) the parameters of self-diffusion have the strong temperature dependence self-diffusion entropy being negative: $s_d < 0$. With growing of the temperature the function s_d moves over to the positive region of values. All the thermodynamic parameters of self-diffusion in the semiconductor crystals of the carbon subgroup are calculated without any fitting parameters. The temperature dependences of self-diffusion parameters were studied for crystals of IVa subgroup elements at the isobarically heating from T = 0 to the melting temperatures. A good agreement with the experimental data and the theoretical estimations reported by other authors was obtained. The correlation of entropy and enthalpy of self-diffusion, and the correlation of the volume and entropy of self-diffusion for all temperature range are discussed.