Выращивание монокристаллов $(In_2S_3)_x(Feln_2S_4)_{1-x}$ и свойства фоточувствительных структур на их основе

© И.В. Боднарь, В.Ю. Рудь*[¶], Ю.В. Рудь[†], Е.И. Теруков[†]

Белорусский государственный университет информатики и радиоэлектроники, 220013 Минск, Беларусь * Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

† Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

(Получена 29 апреля 2009 г. Принята к печати 30 апреля 2009 г.)

Установлена полная взаимная растворимость в системе $(In_2S_3)_x(FeIn_2S_4)_{1-x}$. Развита технология и впервые выращены монокристаллы непрерывного ряда твердых растворов $(In_2S_3)_x(FeIn_2S_4)_{1-x}$. Получена линейная зависимость параметра элементарной ячейки монокристаллов с кубической решеткой шпинели от состава твердых растворов. Созданы первые фоточувствительные барьеры Шоттки и на основании исследований их фоточувствительности обсуждается характер межзонных переходов и оценены значения ширины запрещенной зоны в зависимости от атомного состава. Обнаружена возможность использования полученных твердых растворов в качестве широкополосных фотопреобразователей оптического излучения.

1. Многокомпонентные полупроводники включают в себя малоизученный класс магнитных соединений $A^{II}B_{2}^{III}C_{4}^{VI}$, где A^{II} — Mn, Fe, Co, Ni; B^{III} — Ga, In; С^{VI} — S, Se, Te [1-5], обладающих необходимым потенциалом для расширения функционального диапазона приборов нового поколения фотоэлектроники. Следует подчеркнуть, что в последние годы возникло и уже интенсивно развивается новое научное направление спинтроника, основанная на существовании зависимости проводимости от магнитной структуры вещества, которая формируется внешним магнитным полем [6]. В связи с этим необходимо отметить усиление активности в поиске новых магнитных полупроводниковых фаз. Настоящая работа принадлежит новому направлению полупроводниковой электроники и в ней сообщается о выращивании первых монокристаллов твердых растворов $(In_2S_3)_x(FeIn_2S_4)_{1-x}$, на которых решена проблема создания первых фоточувствительных структур и исследованы зависимости фотоэлектрических свойств структур из этих материалов от атомного состава твердых растворов.

2. Предварительно синтезированные поликристаллические слитки $(In_2S_3)_x$ (FeIn_2S_4)_{1-x} измельчались и загружались в снабженный капилляром кварцевый тигель. После вакуумирования (~ 10^{-3} Па) внутренняя ампула отпаивалась и помещалась в наружную, которая также вакуумировалась и отпаивалась. После этого ампула помещалась в установку для направленной кристаллизации. Температура вещества повышалась до ~ 1400 K, и расплав выдерживался в течение ~ 2 ч с целью его гомогенизации. Направленная кристаллизация осуществлялась за счет снижения температуры со скоростью ~ 3 K/ч до 1020 K и твердофазной выдержки

слитка. Выращенные в таком режиме монокристаллы имели диаметр ~ 14 мм и длину ~ 40 мм.

Атомный состав выращенных монокристаллов определялся микрозондовым рентгеноспектральным анализом на установке Сатеса-SX100. Реализованная при этом относительная погрешность определения состава составляла ± 5 ат%. Параметры элементарной ячейки и равновесность выращенных монокристаллических образцов определялись на компьютеризированном рентгеновском дифрактометре ДРОН-3М в Си K_{α} -излучении.

Микрозондовый анализ показал, что концентрация элементов в выращенных монокристаллах $(In_2S_3)_x(FeIn_2S_4)_{1-x}$ соответствует рассчитанной для исходной шихты. Индицирование позволило установить, что на дифрактограммах всех выращенных кристаллов присутствуют рефлексы, характерные для кубической элементарной ячейки шпинели. На рис. 1 (кривая 1) приведена экспериментальная зависимость параметра ячейки α от состава твердых растворов. Эта зависимость, как следует из рис. 1, линейная, что и должно быть при наличии непрерывной растворимости на псевдобинарном разрезе In₂S₃-FeIn₂S₄. Следует при этом отметить установленный факт того, что разрешение высокоугловых рефлексов указывает на достаточно хорошую гомогенность впервые выращенных из расплава монокристаллов твердых растворов $(In_2S_3)_x(FeIn_2S_4)_{1-x}$.

3. Для измерения удельного сопротивления путем шлифовки и полировки на абразивных порошках изготовлялись образцы в виде параллелепипедов со средними размерами $0.1 \times 0.2 \times 6.0$ мм. Для получения омических контактов к образцам $(In_2S_3)_x(FeIn_2S_4)_{1-x}$ использовали тонкую пленку чистой меди, перед нанесением которой поверхность образца подвергалась химической полировке.

[¶] E-mail: rudvas@rambler.ru

Состав <i>x</i> , мол%	Тип проводимости	ρ, Ω · см	<i>Е</i> _{<i>A</i>} , эВ	Структура	<i>S</i> ^{<i>m</i>} _{<i>U</i>} , В/Вт	$\hbar \omega^m$, эВ	δ, эВ	E_G^{ind} , $\Im \mathbf{B}$	E_G^{dir} , эВ
1.0 0.8	n n	$\begin{array}{c} 3 \cdot 10^3 \\ 3 \cdot 10^9 \end{array}$	~ 0 1.05	$\frac{In/In_2S_3}{In/(In_2S_3)_x \cdot (FeIn_2S_4)_{1-x}}$	3000 60	2.60 2.07	2.9 > 2.3	1.40 1.38	2.54 2.39
0.6	р	$2.5\cdot10^9$	0.83	$\ln/(\ln_2 S_3)_x \cdot (FeIn_2 S_4)_{1-x}$	20	2.07	1.17	1.36	2.27
0.4	р	$8 \cdot 10^6$	0.40	$\ln/(\ln_2 S_3)_x \cdot (FeIn_2 S_4)_{1-x}$	20	2.70	1.62	1.31	2.16
0.2	n	$1.3 \cdot 10^6$	0.35	$\ln/(\ln_2 S_3)_x \cdot (FeIn_2 S_4)_{1-x}$	80	2.79	1.38	1.37	1.92
0.0	р	$6\cdot 10^4$	0.18	$In/(FeIn_2S_4)$	50	2.23	1.12	1.39	1.68

Электрические свойства кристаллов $(In_2S_3)_x \cdot (FeIn_2S_4)_{1-x}$ и фоточувствительность структур $In/(In_2S_3)_x (FeIn_2S_4)_{1-x}$ при T = 300 К

Рис. 1. Зависимости параметра элементарной ячейки (кривая I) и значений ширины запрещенной зоны для прямых (кривая 2) и непрямых (кривая 3) межзонных переходов от состава кристаллов твердых растворов $(In_2S_3)_x(FeIn_2S_4)_{1-x}$ при T = 300 K.

По знаку термоэдс было установлено, что в зависимости от состава x происходит изменение типа проводимости в образцах твердых растворов $(In_2S_3)_x(FeIn_2S_4)_{1-x}$ (см. таблицу). Это обстоятельство позволяет предположить, что тип проводимости образцов, полученных синтезом исходных компонент одинаковой степени чистоты, определяется именно их атомным составом, тогда как наблюдаемая зависимость типа проводимости от величины x одновременно указывает на изменения в характере межатомного взаимодействия в таких сложных системах. Представленные в таблице результаты измерений удельного сопротивления (ρ) полученных образцов обнаруживают также зависимость величины ρ от состава образцов (см. таблицу). Важно подчеркнуть, что наиболее низкоомные образцы характерны для позиционно-упорядоченных фаз In₂S₃ и FeIn₂S₄, тогда как при образовании твердых растворов в диапазоне x = 0.6 - 0.8 возникает наиболее высокоомное вещество.

На рис. 2 представлены типичные температурные зависимости удельного сопротивления $\rho(T)$ для образцов твердых растворов $(In_2S_3)_x(FeIn_2S_4)_{1-x}$ в области температур 290–420 К. Следует заметить, что для образцов

Рис. 2. Температурная зависимость удельного сопротивления кристаллов твердых растворов $(In_2S_3)_x$ (FeIn₂S₄)_{1-x} x, мол%: I = 1.0, 2 = 0.8, 3 = 0.6, 4 = 0.4, 5 = 0.2, 6 = 0.

Физика и техника полупроводников, 2010, том 44, вып. 1

с относительно низким сопротивлением $\rho \simeq 10^3$ Ом · см его величина практически не зависит от температуры (рис. 2, кривая *I*), тогда как по мере повышения величины ρ возникает выраженная температурная зависимость удельного сопротивления, которая подчиняется типичному для компенсированных полупроводников закону [7,8]:

$$\rho = \rho_0 \exp(E_{A(D)}/kT), \qquad (1)$$

где $E_{A(D)}$ — энергия активации доминирующих акцепторных (донорных) центров, k — постоянная Больцмана, T — температура. Оцененная из зависимостей $\rho(T)$ (рис. 2, кривые 2–6) энергия активации донорных и акцепторных центров в предположении их сильной компенсации заполняет широкий диапазон 0.18–1.0 эВ. Наблюдаемое в случае наиболее высокоомных образцов (рис. 2, кривые 2 и 3) отклонение от закона (1) может быть связано с переходом к прыжковой проводимости по уровням дефектов, возникающим с понижением температуры.

Важно также указать, что термоциклирование образцов не вызывает каких-либо гистерезисных явлений. Это обстоятельство позволяет сделать важное предположение об отсутствии фазовых переходов в кристаллах твердых растворов $(In_2S_3)_x(FeIn_2S_4)_{1-x}$ в пределах указанных выше температур.

4. Первые исследования контактных явлений в выращенных монокристаллах новых полупроводников позволили обнаружить возможности получения фоточувствительных структур путем вакуумного термического осаждения тонких пленок индия ($t_1 \simeq 1$ мкм), а также безвакуумного нанесения серебряной пана механически, а затем химически полиросты ванные поверхности монокристаллических пластин твердых растворов $(In_2S_3)_x(FeIn_2S_4)_{1-x}$ со средними размерами 0.1 × 5.0 × 5.0 мм. Омический контакт к кристаллам твердых растворов создавался химическим осаждением чистой меди из водных растворов Cu₂SO₄. Как следует из исследований стационарных вольт-амперных характеристик, созданные структуры $In(Ag)/(In_2S_3)_x(FeIn_2S_4)_{1-x}$ обладали коэффициентом выпрямления $K \simeq 5$ при напряжениях смещения $U \simeq 5$ В при T = 330 К. Пропускное направление в этих структурах всегда реализовывалось при подаче положительной полярности внешнего смещения на подложку твердого раствора $(In_2S_3)_x(FeIn_2S_4)_{1-x}$.

5. Освещение поверхностно-барьерных структур на основе твердых растворов $(In_2S_3)_x(FeIn_2S_4)_{1-x}$ сопровождается проявлением фотовольтаического эффекта, доминирующего при освещении структур со стороны барьеров из индия и серебра, причем знак фотонапряжения согласуется с направлением выпрямления и оказался нечувствительным к интенсивности и энергии фотонов, а также локализации светового зонда (диаметр ~ 0.5 мм) на фоточувствительной поверхности структур. Эти результаты служат основанием для того, чтобы наблюдаемый фотовольтаический эффект

Рис. 3. Спектры относительной квантовой эффективности фотопреобразования поверхностно-барьерных структур (1, 3-6) и фотоэлектрохимической ячейки (2) на основе твердых растворов $(In_2S_3)_x(FeIn_2S_4)_{1-x}$ при 300 К. На вставке — схема структур $In/(In_2S_3)_x(FeIn_2S_4)_{1-x} x$, мол%: 1 - 1.0, 2, 3 - 0.8, 4 - 0.6, 5 - 0.4, 6 - 0.

приписать возникновению энергетического барьера на контакте металлов (In, Ag) с кристаллами твердых растворов $(In_2S_3)_x(FeIn_2S_4)_{1-x}$ (x = 0-1).

Первые спектры относительной квантовой эффективности фотопреобразования $\eta(\hbar\omega)$ приведены на рис. 3 (кривые 1-6) для впервые полученных поверхностнобарьерных структур $In/(In_2S_3)_x(FeIn_2S_4)_{1-x}$ во всей области растворимости данной системы (x = 0-1) в геометрии фотопреобразования (см. вставку к рис. 3). Главное достоинство твердых растворов $(In_2S_3)_x(FeIn_2S_4)_{1-x}$, как видно из рис. 3, заключается в том, что созданные фотопреобразователи позволяют обеспечить фоточувствительность в широком спектральном диапазоне от 1 до 3.7 эВ при 300 К. Полученные спектры фоточувствительности $\eta(\hbar\omega)$ для поверхностнобарьерных структур $In/(In_2S_3)_x(FeIn_2S_4)_{1-x}$ анализировались на основе теории фундаментального оптического поглощения в алмазоподобных полупроводниках [7,9]. Результаты такого анализа на примере двух структур демонстрируются на рис. 4. Из этого рисунка видно, что типичные спектры фотоактивного фундаментального поглощения в полученных структурах хорошо спрямляются в координатах $(\eta \cdot \hbar \omega)^{1/2} = f(\hbar \omega)$ (рис. 4, кривые 1 и 3) и в их более коротковолновой части — в координатах $(\eta \cdot \hbar \omega)^2 = f(\hbar \omega)$ (рис. 4, кривые 2 и 4). Это первая попытка интерпретации зонного спектра твердых растворов $(In_2S_3)_x(FeIn_2S_4)_{1-x}$, основанная на анализе спектров фундаментального фотоактивного поглощения объемных монокристаллов заданного состава с кубической структурой шпинели (пространственная группа Fd3m) [4]. Первые эксперименты служат основанием для предположения о том, что регистрируемое по спектрам

Puc. 4. Спектры $(\eta \cdot \hbar \omega)^{1/2} = f(\hbar \omega)$ — кривые 1 и 3 и $(\eta \cdot \hbar \omega)^2 = f(\hbar \omega)$ — кривые 2 и 4 структур In/(In₂S₃)_x(FeIn₂S₄)_{1-x}, x, мол%: 1, 2 — 0.4, 3, 4 — 0.6.

фототока короткого замыкания поверхностно-барьерных структур $In/(In_2S_3)_x(FeIn_2S_4)_{1-x}$ фотоактивное поглощение формируется непрямыми (E_G^{ind}) и прямыми (E_G^{dir}) межзонными оптическими переходами, значения энергии которых приведены в таблице.

Основные фотоэлектрические параметры полученных структур In/(In₂S₃)_x (FeIn₂S₄)_{1-x} для различных составов твердых растворов также приведены в таблице. Видно, что максимальные вольтовая фоточувствительность S_u^m и ширина области высокой фоточувствительности наблюдаются в структурах, для которых в качестве подложек используется бинарное соединение In₂S₃ (см. таблицу и рис. 3, кривая *I*), тогда как с понижением показателя состава твердых растворов x < 1 спектры $\eta(\hbar\omega)$ характеризуются наличием максимума $\hbar\omega^m$, спектральное положение которого определяется величиной *x* и, по всей видимости, определяется достигнутым на начальном этапе технологических исследований качеством впервые полученных энергетических барьеров на монокристаллах (In₂S₃)_x(FeIn₂S₄)_{1-x}.

На рис. 1 также представлены полученные экспериментальные зависимости значений E_G^{dir} (кривая 2) и E_G^{ind} (кривая 3) от атомного состава компонент псевдобинарного разреза, построенного на соединениях In₂S₃ и FeIn₂S₄. Видно, что ширина запрещенной зоны для непрямых межзонных переходов E_G^{ind} практически не зависит от показателя состава x, тогда как ширина запрещенной зоны для прямых межзонных переходов E_G^{dir} с повышением содержания тройного соединения FeIn₂S₄ в твердом растворе снижается по линейному закону (рис. 1, кривая 2), как и параметр элементарной ячейки монокристаллов (рис. 1, кривая 1).

Таким образом, доказано существование непрерывного ряда твердых растовров в пределах системы $(In_2S_3)_x(FeIn_2S_4)_{1-x}$, разработана технология и выращены первые объемные монокристаллы таких твердых растворов. Установлено, что монокристаллы обладают кубической структурой шпинели и характеризуются линейной зависимостью параметра элементарной ячейки от атомного состава. Установлено, что температурная зависимость удельного сопротивления монокристаллов твердого раствора следует экспоненциальному закону. Получены первые фоточувствительные структуры $In/(In_2S_3)_x$ (FeIn₂S₄)_{1-x} и исследованы спектры их фоточувствительности, определена зависимость параметров зонного спектра в зависимости от состава твердых растворов. Сделан вывод о перспективности использования впервые созданных фоточувствительных структур в качестве широкополосных фотопреобразователей оптических излучений.

Список литературы

- [1] Н.А. Горюнова. Сложные алмазоподобные полупроводники (М., Сов. радио, 1968).
- [2] Р.Н. Бекимбетов, Ю.В. Рудь, М.А. Таиров. ФТП, 21, 1051 (1987).
- [3] Н.Н. Нифтиев, О.Б. Тагиев. ФТП 38, 164 (2004).
- [4] H.D. Lutz, M. Feher. Spectrochim. Acta, 27A, 357 (1971).
- [5] V. Sagredo, M.C. Moron, L. Betancourt, G.E. Delgado. J. Magnetism. Mat., 312, 294 (2007).
- [6] А.В. Ведяев. УФН, 172, 1458 (2002).
- [7] S.M. Sze. *Physics of Semiconductor Devices* (N.Y., Willey Interscience Publ. 1981).
- [8] J.S. Blakemore. Semiconductor Statistic (Pergamon Press, N.Y., 1962).
- [9] Ю.И. Уханов. Оптические свойства полупроводников (М., Наука, 1977).

Редактор Л.В. Беляков

Growth of $(In_2S_3)_x(Feln_2S_4)_{1-x}$ Single Crystals and Properties of the Photosensitivity Structures on their basis

I.V. Bodnar, V.Yu. Rud*, Yu.V. Rud'[†], E.I. Terukov[†]

Belorussian State University of Informatics and Radiolelectronics, 220013 Minsk, Belarus * Saint-Petersburg State Polytechnical University, 195251 St. Petersburg, Russia * Ioffe Physicotechnical Institute Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract The technology has been developed and single crystals of the continuous raw of the $(In_2S_3)_x(FeIn_2S_4)_{1-x}$ solid solutions have been grown. The linear dependence of the parameter of the unit cell with a cubic structure on the solid solution composition was obtained. The first photosensitive Schottky barriers were created. On the photosensitivity of $Cu/(In_2S_3)_x(FeIn_2S_4)_{1-x}$ structures the character of the interband transitions is discussed and the band gap values were evaluated. We have discovered the possibility to use such solid solutions as broad-band photoconverters of the optical radiation.