10

Параметр Грюнайзена и скорости распространения акустических волн в стеклообразных твердых телах

© Д.С. Сандитов^{1,2}, С.Б. Мункуева², Д.З. Батлаев¹, С.Ш. Сангадиев¹

1 Бурятский государственный университет,

Улан-Удэ, Россия

² Институт физического материаловедения СО РАН,

Улан-Удэ, Россия

E-mail: Sanditov@bsu.ru

(Поступила в Редакцию в окончательном виде 22 января 2012 г.)

Для стеклообразных твердых тел установлена линейная корреляция между параметром Грюнайзена и отношением скоростей распространения продольной и поперечной акустических волн. Рассмотрена интерпретация взаимосвязи между этими величинами в рамках модели Пинеда.

1. Введение

Параметр Грюнайзена γ_D определяется изменением частоты колебаний решетки в зависимости от изменения объема системы и обычно вычисляется по уравнению Грюнайзена на основе экспериментальных данных о коэффициенте объемного теплового расширения β , изотермическом модуле объемного сжатия B, молярном объеме V и молярной теплоемкости при постоянном объеме C_V

$$\gamma_D = \frac{\beta BV}{C_V}.\tag{1}$$

Недавно на основе экспериментальных данных [1,2] для двух групп кристаллов был обнаружен необычный факт: линейная зависимость параметра Грюнайзена γ_D от отношения скоростей распространения продольной v_L и поперечной v_s звуковых волн [3,4]

$$\gamma_D = C_1 \left(\frac{v_L}{v_S} \right) - C_2, \tag{2}$$

где величина γ_D определена по уравнению Грюнайзена (1), C_1 и C_2 — эмпирические постоянные. Для рассмотренных кристаллов полученные на основе экспериментальных данных зависимости γ_D от v_L/v_S представляют собой две прямые.

Необычность этой формулы заключается в том, что она однозначно связывает между собой гармоническую (v_L/v_S) и сугубо ангармоническую (γ_D) величины. Между тем принято считать, что линейные и нелинейные коэффициенты в разложении потенциальной энергии решетки по деформации являются независимыми параметрами.

Настоящая работа посвящена исследованию зависимости параметра Грюнайзена от отношения скоростей звука v_L/v_S для стеклообразных твердых тел, которые можно считать фактически изотропными или по крайней мере квазиизотропными средами. Обсуждается природа взаимосвязи между параметром Грюнайзена и отношением скоростей акутических волн v_L/v_S , которое

у изотропных веществ является однозначной функцией коэффициента Пуассона.

2. Линейная корреляция между γ_D и v_L/v_S для стекол

Для некоторых классов твердых тел, особенно для стекол, не всегда удается найти необходимые данные о величинах, входящих в уравнение Грюнайзена (1). Поэтому при расчетах γ_D иногда привлекается формула Леонтьева [5]

$$\gamma_D = \frac{3}{2} \left(\frac{B_A}{\rho \bar{v}_k^2} \right),\tag{3}$$

которая находится в удовлетворительном согласии с уравнением Грюнайзена [1–5]. Здесь \bar{v}_k — среднеквадратичная скорость акустических волн,

$$\bar{v}_k^2 = \frac{v_L^2 + 2v_S^2}{3},$$

ho — плотность, B_A — адиабатический модуль объемного сжатия. Соотношение Грюнайзена (1) выводится из уравнения состояния, а формула Леонтьева (3) получена непосредственно из определения параметра Грюнайзена $\gamma_D = -d \ln \omega/d \ln V$ путем усреднения частоты колебаний решетки ω .

Формула Леонтьева в отличие от уравнения Грюнайзена дает возможность рассчитывать γ_D по доступным экспериментальным данным. При ее выводе использована теория упругости, которая справедлива для идеальной изотропной сплошной среды. Поэтому указанная формула применима прежде всего к квазиизотропным телам типа стекол.

С помощью формулы Леонтьева (3) мы рассчитали параметр Грюнайзена для кварцевого стекла SiO_2 и для пяти групп двух- и трехкомпонентных стекол: Li_2O-SiO_2 , Na_2O-SiO_2 , $Li_2O-Na_2O-SiO_2$, $Li_2O-Al_2O_3-SiO_2$ и $Na_2O-Al_2O_3-SiO_2$ с разным содержанием окислов (см. таблицу и рисунок). Известно, что ионы щелочных

тлотность ρ , скорости распространения продольных v_L и поперечных v_S акустических волн, адиаоатический модуль объемного сжатия B_A , коэффициент Пуассона μ и параметр Грюнайзена γ_D для стекол Na ₂ O $-$ Al ₂ O ₃ $-$ SiO ₂ (использованы данные [6])											
	Состав по шихте, mol.%	3			8 -						

Номер стекла	Состав по шихте, mol.%			o Ira/m³		21 ma/s	$B_A \cdot 10^{-8}$, Pa		41-
	Na ₂ O	Al ₂ O ₃	SiO ₂	ρ , kg/m ³	v_L , m/s	v_S , m/s	$B_A \cdot 10$, Pa	μ	γ_D
17	15	0	85	2339	5430	3340	342	0.196	1.27
18	15	5	80	2358	5570	3390	370	0.206	1.31
19	15	10	75	2410	5697	3510	386	0.194	1.26
20	15	15	70	2465	5737	3469	416	0.212	1.33
21	15	20	65	2428	5850	3540	425	0.211	1.33
22	15	25	60	2472	6000	3568	470	0.226	1.39
23	25	0	75	2439	5280	3140	359	0.226	1.39
24	25	5	70	2455	5480	3240	394	0.231	1.42
25	25	10	65	2461	5610	3330	411	0.228	1.40
26	25	15	60	2480	5640	3350	418	0.227	1.40
27	25	20	55	2470	5680	3450	405	0.208	1.32
28	25	25	50	2499	5790	3490	432	0.215	1.34
29	25	30	45	2519	6026	3556	490	0.233	1.42
30	35	0	65	2497	5340	3070	398	0.253	1.51
31	30	5	65	2486	5500	3200	413	0.244	1.47
32	20	15	65	2450	5670	3490	390	0.195	1.27
33	17.5	17.5	65	2447	5746	3458	418	0.216	1.35

Примечание. Величина γ_D рассчитана по формуле Леонтьева (3).

металлов (лития и натрия) в щелочно-силикатных стеклах располагаются в пустотах кремнекислородной сетки ($-\mathrm{Si-O-Si-}$), а ионы алюминия в алюмосиликатных стеклах, например типа $\mathrm{Na_2O-Al_2O_3-SiO_2}$, встраиваются в саму кремнекислородную сетку. Следовательно, эти стекла различаются по структуре. Были использованы данные работ [6–8]. На рисунке приводится зависимость параметра Грюнайзена γ_D от отношения скоростей акустических волн v_L/v_S для этих стекол. Как и следовало ожидать, указанная зависимость оказывается линейной и описывается эмпирическим соотношением (2). Более того, в отличие от кристаллов [3,4] экспериментальные точки для всех исследованных стекол ложатся на одну прямую (см. рисунок). Часть из них не нанесена на эту прямую, чтобы не загромождать рисунок.

Ранее было показано [4], что у кристаллических твердых тел одного класса постоянные C_1 и C_2 в соотношении (2) практически совпадают, так что выражение (2) принимает вид

$$\gamma_D = C\left(\frac{v_L - v_S}{v_S}\right),\tag{4}$$

где $C \approx \mathrm{const} \approx C_1 \approx C_2$. В частности, у щелочногалоидных кристаллов $C \approx 2$. Следовательно, для них параметр Грюнайзена определяется относительной разностью скоростей распространения продольной и поперечной акустических волн. Легко убедиться, что исследованные нами стекла также подчиняются закономерности (4): зависимость γ_D от $(v_L - v_S)/v_S$ имеет вид прямой, проходящей через начало координат.

Представляет интерес выяснение природы взаимосвязи между величинами v_L/v_S и γ_D хотя бы на качественном уровне.

3. Обсуждение результатов

Из теории упругости известно, что у изотропных тел отношение скоростей звука v_L/v_S является однозначной функцией коэффициента Пуассона μ [9]

$$\frac{v_L}{v_S} = \sqrt{\frac{2(1-\mu)}{(1-2\mu)}}. (5)$$

Следовательно, вместо изучения связи между отношением скоростей распространения акустических волн v_L/v_S и параметром Грюнайзена γ_D можно рассматривать взаимосвязь между коэффициентом Пуассона μ и величиной γ_D .

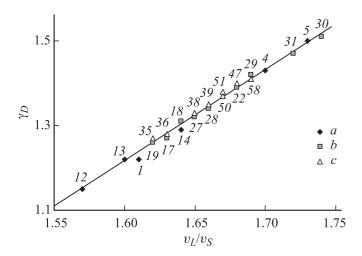
Коэффициент Пуассона (коэффициент поперечной деформации) определяется отношением поперечной деформации тела $\varepsilon_z = \Delta d/d_0$ к его продольному удлинению $\varepsilon_x = \Delta l/l_0$ при одноосном растяжении

$$\mu = -\frac{\varepsilon_z}{\varepsilon_r}$$

и прежде всего характеризует приращение объема тела $\Delta V/V$ при одноосной деформации

$$\frac{\Delta V}{V} = \varepsilon_x (1 - 2\mu). \tag{6}$$

Коэффициент поперечной деформации μ оказывается связанным с пластической деформацией стекол [10], а



Корреляция между γ_D и v_L/v_S для ряда стеклообразных систем с различным химическим составом. Все точки ложатся на прямую. Чтобы не загромождать рисунок, приведена лишь часть точек: a - 1, 4, 5, 12, 13, 14; b - 17, 18, 19, 22, 27, 28, 29, 30, 31 (см. таблицу); c - 35, 36, 38, 39, 47, 50, 51, 58.a — стекла $Li_2O-Na_2O-SiO_2$, содержание $SiO_2/Na_2O/Li_2O$, mol.%: I = 85/15/0, 2 = 80/20/0, 3 = 75/25/0, 4 = 70/30/0, 5 - 67/33/0, 6 - 65/35/0, 7 - 67/0/33, 8 - 75/5/20, $9 - \frac{75}{10}$, $10 - \frac{75}{15}$, $11 - \frac{75}{20}$, $12 - \text{SiO}_2$; Li₂O-SiO₂, содержание Li₂O, mol.%: 13 — 16, 14 — 26, 15 - 32, 16 - 40 [8]. b - натриево-алюмосиликатные стекла Na₂O-Al₂O₃-SiO₂, номера точек соответствуют номерам стекол в таблице [6]. c — стекла $Li_2O-Al_2O_3-SiO_3$, содержание $Li_2O/Al_2O_3/SiO_2$, mol.%: 34 — 15/4/81, 35 — 15/6/70, $36 - \frac{15}{8},77, 37 - \frac{15}{10},75, 38 - \frac{15}{12},73, 39 - \frac{15}{15},70,$ 40 - 15/16/69, 41 - 15/18/67, 42 - 15/22/63, 43 - 33/2/65, 44 - 31/4/65, 45 - 29/6/65, 46 - 27/8/65, 47 - 25/10/65, 48 — 23/12/65, 49 — 21/14/65, 50 — 19/16/65, 51 -17.5/17.5/65, 52 - 17/18/65, 53 - 15/20/65, 54 - 13/22/65, 55 - 20/20/60, 56 - 19/20/61, 57 - 17/20/63, 58 - 13/20/67, 59 — 11/20/69 [7].

также с температурой их размягчения [11]. Поскольку коэффициент Пуассона определяется деформациями, происходящими во взаимно перпендикулярных направлениях, по-видимому, он выражает своеобразную зависимость μ (следовательно, и отношения v_L/v_S) от интенсивности развития процессов неупругости в реальном деформируемом теле [12].

Для реальных твердых тел с неоднородными структурами могут наблюдаться случаи отклонения от выводов теории упругости. В этом отношении интересен подход Кузьменко [12,13], согласно которому коэффициент Пуассона реальных твердых тел отражает способность вещества противодействовать изменению объема. Высокое значение μ указывает на то, что материал может эффективно компенсировать изменение объема, возникающее на первом этапе деформирования. Чем больше μ , тем меньшей оказывается итоговая величина изменения объема твердого тела. Верхний предел $\mu = 0.5$ следует из условия, что изменение объема при деформировании

компенсируется полностью противодействием вещества (при $\mu=0.5$ имеем $\Delta V=0$, см. (6)). Это условие выполняется для жидкостей, а для твердых тел полной компенсации изменения объема не бывает, поэтому для них $\mu<0.5$.

Согласно теории Кузьменко [13], коэффициент Пуассона наряду с указанным выше характеризует долю энергии сдвига W_S в общей энергии деформирования W

$$\frac{W_S}{W} = \frac{1 - 3\mu^2 - 3\mu^3}{1 + \mu}. (7)$$

Чем больше μ , тем меньше энергия сдвиговых деформаций и сопротивление материала сдвигу и тем ближе он к жидкости. Отсюда следует, что коэффициент Пуассона должен быть связан, например, с такой характеристикой неупругости твердого тела, как предел текучести — напряжение сдвига $\sigma_{\rm y}$, выше которого наблюдается пластическая деформация.

В самом деле, материалы с небольшими пределами текучести, т. е. с повышенной мягкостью и пластичностью (золото, серебро, медь), имеют высокие значения μ , приближающиеся к 0.5, а хрупкие твердые тела (бериллий, стекла) характеризуются низкими коэффициентами Пуассона μ . В частности, у кварцевого стекла с высоким пределом текучести имеем $\mu = 0.17$ [10].

Таким образом, в рамках теории Кузьменко можно (по крайней мере, качественно) объяснить наличие определенной связи между коэффициентом Пуассона (отношением v_L/v_S) и пластичностью твердых тел.

Недавно Пинеда [14] в рамках простейшей модели исследовал влияние структурных изменений на коэффициент Пуассона металлических стекол. С помощью этой модели, на наш взгляд, можно попытаться обосновать взаимосвязь между коэффициентом Пуассона и параметром Грюнайзена. Кратко обсудим этот вопрос.

Пинеда использует следующие основные допущения: 1) потенциал межатомного взаимодействия состоит из гармонической и ангармонической частей

$$U(r) = a(r - r_0)^2 - a(r - r_0)^3,$$
 (8)

где a — гармонический, b — ангармонический коэффициент, r_0 — межатомное расстояние, соответствующее минимуму потенциала; 2) упругие свойства определяются непосредственным окружением атомов — первой координационной сферой; 3) распределение расстояний между ближайшими атомами подчиняется гауссовому распределению.

Эти допущения в первом приближении носят общий характер. Поэтому полагаем, что модель Пинеда применима не только к металлическим стеклам, но и к другим аморфным веществам, в частности к силикатным стеклам. Возможно, она годится и для квазиизотропных щелочно-галоидных кристаллов с центральными силами межатомного взаимодействия.

В окончательные формулы мгновенных модулей объемного сжатия B и сдвига G входят безразмерные параметры

$$s = \frac{\delta}{r_0}, \quad \sigma = \frac{\sigma_1}{r_0}, \quad \gamma_1 = \frac{br_0}{a}, \tag{9}$$

где $\delta=r_1-r_0$; r_1 и σ_1 — средний радиус частицы и ширина первой координационной сферы. Величины s и σ характеризуют отклонения межатомного расстояния от его равновесного значения r_0 и среднюю дисперсию вблизи r_0 соответственно. Параметр γ_1 характеризует степень ангармоничности потенциала. Он пропорционален параметру Грюнайзена $\gamma_D=br_0/6a$ [15].

Модель была использована Пинеда для объяснения экспериментов по структурной релаксации и по всестороннему сжатию металлических стекол. В обоих процессах плотность стекла увеличивается, что приводит к возрастанию упругих модулей. Однако коэффициент Пуассона в результате структурной релаксации уменьшается (снижение параметра σ оказывается сильнее), но увеличивается при сжатии под давлением (здесь эффект уменьшения s является доминирующим). В целом модель качественно правильно описывает изменения упругих характеристик в этих опытах.

Мы привлекли модель Пинеда для проверки зависимости отношения упругих модулей (B/G) и, следовательно, коэффициента Пуассона μ от параметра ангармоничности γ_1 . Из модели следует, что такая зависимость существует. В самом деле, в соответствии с формулами упругие модули B и G пропорциональны гармоническому коэффициенту a — параметру межатомного потенциала, а их отношение B/G (следовательно, и коэффициент Пуассона μ) практически не зависит от a и определяется главным образом параметром ангармоничности γ_1 . Отсюда следует зависимость коэффициента Пуассона μ и, следовательно, отношения v_L/v_S от параметра Грюнайзена γ_D — меры ангармонизма колебаний решетки.

Наряду с приведенными выше примерами взаимосвязи между гармоническими и ангармоническими свойствами твердых тел (2) и (3) известны другие подобные корреляции, установленные на основе экспериментальных данных (см. [1,2,10,11,16]), в частности правило Баркера [16], одназначно связывающее модуль упругости B с коэффициентом теплового расширения β в достаточно широком интервале значений этих характеристик: $\beta^2 B \approx {\rm const}$, где B — гармоническая, а β — ангармоническая величины.

Вместе с тем в физике твердого тела в целом слабо исследована природа этого явления [12–14,17–19]. Кроме работ Кузьменко [12,13] и Пинеда [14] заслуживает внимания подход Конторовой [17–19].

В рамках одномерной модели твердого тела потенциальная энергия межатомного взаимодействия двух смежных частиц записывается в виде [17]

$$U \approx \frac{ax^2}{2} - \frac{bx^3}{6},$$

где a — гармонический, b — ангармонический коэффициент в разложении U(x) в ряд Тейлора по смещениям частиц $x=(r-r_0)$,

$$a = \left(\frac{d^2U}{dr^2}\right)_{r=r_0}, \quad b = -\frac{1}{2}\left(\frac{d^3U}{dr^3}\right)_{r=r_0}.$$
 (10)

Используя в производных (10) уравнение Ми

$$U=-\frac{A}{r^m}+\frac{B}{r^n},$$

Конторова [17] получает следующую связь между гармоническим и ангармоническим коэффициентами:

$$b = \left(\frac{m+n+3}{2r_0}\right)a. \tag{11}$$

Как она считает, ответ на вопрос о природе связи между линейными и нелинейными свойствами твердых тел можно получить только при условии знания функции U(x) и наличии микроскопической теории указанных свойств.

К сожалению, в настоящее время нет общепризнанной микроскопической теории гармонических и ангармонических свойств и строго установленной функции U(x). Тем не менее Конторова на качественном уровне объясняет некоторые закономерности (в частности, взаимосвязь между модулем упругости и коэффициентом теплового расширения) наличием определенной связи между коэффициентами a и b типа (11) и зависимостью рассматриваемых линейных и нелинейных характеристик от этих коэффициентов a и b.

Таким образом, подход Конторовой [17–19] указывает на принципиальную возможность существования определенных корреляций между казалось бы совершенно различными по своей природе физическими свойствами твердых тел, в том числе между гармоническими и ангармоническими свойствами. Как указано в [17], причиной существования этих связей является общность закона взаимодействия между частицами для данной группы кристаллов.

4. Заключение

Для стекол существует определенная взаимосвязь между отношением скоростей распространения продольной и поперечной акустических волн и такой нелинейной величиной, как параметр Грюнайзена, что может быть качественно обосновано в рамках модели Пинеда [14]. Наличие у стекол корреляции между коэффициентом Пуассона, являющимся однозначной функцией отношения скоростей звука v_L/v_S , и нелинейной неупругой величиной — пластической деформацией — можно качественно объяснить с помощью теории Кузьменко [12,13].

Список литературы

- [1] В.Н. Беломестных. Письма в ЖТФ 30, 3, 14 (2004).
- [2] В.Н. Беломестных, Е.П. Теслева. ЖТФ 74, 8, 140 (2004).
- [3] Д.С. Сандитов, В.В. Мантатов, Б.Д. Сандитов. ФТТ **51**, 947 (2009).
- [4] Д.С. Сандитов, А.А. Машанов, М.В. Дармаев. ЖТФ **79**, *9*, 155 (2009).
- [5] К.Л. Леонтьев. Акуст. журн. 27, 554 (1981).
- [6] В.Я. Лившиц, Д.Г. Теннисон, С.Б. Гукасян, А.К. Костанян. ФХС 8, 6, 688 (1982).
- [7] Г.О. Карапетян, В.Я. Лившиц, Д.Г. Теннисон. ФХС **5**, *3*, 314 (1979).
- [8] Г.О. Карапетян, В.Я. Лившиц, Д.Г. Теннисон. ФХС 7, 2, 188 (1981).
- [9] Л.Д. Ландау, Е.М. Лифшиц. Теория упругости. Наука, М. (1965). 204 с.
- [10] Д.С. Сандитов, В.В. Мантатов, Б.Д. Сандитов. ЖТФ 79, 4, 150 (2009).
- [11] Д.С. Сандитов, М.В. Дармаев, Б.Д. Сандитов, В.В. Мантатов. Деформация и разрушение материалов 4, 18 (2008).
- [12] В.А. Кузьменко. Новые схемы деформирования твердых тел. Наук. думка, Киев (1973). 200 с.
- [13] В.А. Кузьменко. Развитие представлений о процессе деформирования материалов. УкрНИИТИ, Киев (1968). 50 с.
- [14] E. Pineda. Phys. Rev. B 73, 104109 (2006).
- [15] А.И. Бурштейн. Молекулярная физика. Наука, Новосибирск (1986). С. 202.
- [16] R.E. Barker. J. Appl. Phys. 39, 107 (1963).
- [17] Т.А. Конторова. В кн.: Некоторые проблемы прочности твердых тел / Под ред. С.Н. Журкова. Изд-во АН СССР, М. (1959).
- [18] Т.А. Конторова. ЖТФ 26, 2021 (1956).
- [19] В.П. Жузе, Т.А. Конторова. ЖТФ 28, 727 (1958).