Особенности молекулярно-пучковой эпитаксии слоев GaN (0001) и GaN (0001) при использовании различных способов активации азота

© А.М. Мизеров[¶], В.Н. Жмерик, В.К. Кайбышев, Т.А. Комиссарова, С.А. Масалов, С.В. Иванов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 10 декабря 2008 г. Принята к печати 17 декабря 2008 г.)

Приведены результаты сравнительных исследований кинетики роста слоев GaN с различной полярностью при аммиачной молекулярно-пучковой эпитаксии и молекулярно-пучковой эпитаксии с плазменной активацией азота с использованием сапфировых подложек и GaN (0001)/*c*-Al₂O₃-темплейтов, выращенных методом газофазной эпитаксии из металлорганических соединений. Показана возможность получения слоев GaN (0001) с атомарно-гладкой поверхностью при молекулярно-пучковой эпитаксии с плазменной активацией азота. Для этого предложено проводить рост в металлобогащенных условиях, вблизи режима образования капель Ga при температуре, близкой к температуре разложения GaN ($T_s \approx 760^{\circ}$ C). Сделан вывод о положительном влиянии увеличения температуры роста на структурные, оптические и электрические свойства слоев GaN (0001). Продемонстрировано высокое качество пленок GaN (0001), выращенных методом МПЭ ПА при низкой температуре $\sim 700^{\circ}$ C на GaN/*c*-Al₂O₃-темплейтах.

PACS: 81.15.Hi, 81.05.Ea, 68.43.Nr, 68.37.-d

1. Введение

Уникальные свойства нитридов третьей группы (A³N), позволяющие достигать высокой эффективности излучательной рекомбинации в квантово-размерных гетероструктурах InGaN/GaN, а также формировать слои двумерного электронного газа с высокой подвижностью и скоростью насыщения электронов в гетероструктурах AlGaN/GaN, обусловили в последнее десятилетие беспрецедентный по срокам и масштабам прорыв в научных исследованиях свойств этих материалов и коммерческом производстве светоизлучающих диодов и СВЧ-транзисторов на их основе [1]. Наряду с технологиями на основе газофазной эпитаксии из металлорганических соединений (ГФЭМОС), используемыми для массового производства приборов, интенсивно развивается и молекулярно-пучковая эпитаксия (МПЭ). В этой технологии для получения химически активного азота используется либо термический крекинг аммиака (NH₃-MПЭ), либо активация молекулярного азота в газоразрядной плазме, возбуждаемой в специальных плазменных активаторах (МПЭ ПА). Последняя технология характеризуется не только уникальными возможностями управления процессом роста на атомарном уровне, но и позволяет проводить рост в безводородной атмосфере при относительно низких температурах подложки (T_S) . Это, во-первых, позволяет эффективно легировать слои A³N примесью Мд без постростовой активации. А во-вторых, возможность снижения T_S до ~ 500°C важна для роста слоев $In_xGa_{1-x}N$ с высоким содержанием In (вплоть до x = 1), и лучшие результаты по росту этих соединений получены с помощью МПЭ ПА.

В технологии МПЭ ПА N-полярная поверхность GaN(0001) реализуется при росте на плазменно-нитридизованных подложках c-Al₂O₃ без использования какихлибо зародышевых слоев. Исследование роста слоев GaN (0001) интересно с точки зрения их использования в качестве буферных слоев для получения N-полярного нитрида индия, поскольку в этом случае рост может проводиться при более высоких Т_S по сравнению с ростом InN (0001), что приводит к их более высокому структурному совершенству [5]. Кроме того, направление поля внутренней поляризации в N-полярных гетероструктурах GaN/AlGaN, используемых для создания СВЧ транзисторов, приводит к образованию 2D электронного газа на нижнем интерфейсе GaN/AlGaN, что имеет потенциальные преимущества по сравнению с положением у верхнего интерфейса над слоем AlGaN при Ga-полярности [6,7].

Одной из важных особенностей МПЭ ПА при росте слоев А³N является возможность задания любой полярности в зависимости от типа используемой подложки и параметров начальных стадий роста [2]. Наибольшее внимание исследователей привлекает рост GaN с Ga-полярной поверхностью, т.е. с ориентацией связи Ga-N вдоль направления (0001), которая реализуется при использовании для роста так называемых "темплейтов" подложек *c*-Al₂O₃ со слоями GaN толщиной в несколько микрон, предварительно выращенных газофазными технологиями и поэтому изначально имеющих Ga-полярность. При использовании в МПЭ ПА слегка Ga-обогащенных условий были получены слои GaN (0001) с атомарно-гладкой поверхностью (АГП) и основными оптическими и электрофизическими параметрами, значения которых близки к параметрам слоев, выращенных газофазными технологиями [3,4].

[¶] E-mail: mizerov@beam.ioffe.ru

Вместе с тем слои GaN (0001) обычно характеризуются существенно более шероховатой морфологией поверхности и худшими оптическими и электрофизическими свойствами по сравнению со слоями GaN (0001)[8,9]. Эти различия обусловлены меньшей подвижностью адатомов на поверхности растущего слоя GaN (0001) и повышенной концентрацией в этих слоях остаточных примесей (не ниже 10^{17} см⁻³) из-за ее более высокой химической активности по сравнению с поверхностью GaN (0001), что приводит к активному встраиванию кислорода, являющегося в GaN мелким донором [10].

В немногих работах по исследованию кинетики роста GaN (000 $\overline{1}$) главным образом рассматривались процессы формирования адсорбционных слоев Ga на поверхности роста [8,9]. Однако параметры роста слоев с различной полярностью, полученных на разных установках МПЭ, трудно сопоставлять между собой. Кроме того, в опубликованных на данный момент работах, на наш взгляд, недостаточное внимание уделялось исследованию возможностей улучшения параметров слоев GaN (000 $\overline{1}$).

В данной работе проводятся сравнительные исследования кинетики роста слоев GaN обеих полярностей при использовании NH₃-МПЭ и МПЭ ПА на одной технологической установке. Основное внимание уделяется поиску условий МПЭ ПА, необходимых для повышения планарности слоев GaN (000 $\overline{1}$) за счет варьирования как потока Ga, так и температуры подложки.

2. Эксперимент

Рост слоев GaN проводился на установке МПЭ Compact 21T (Riber), позволяющей реализовывать как NH₃-МПЭ с помощью инжектора аммиака, так и МПЭ ПА с использованием плазменного активатора азота HD-25 (Oxford Appl. Res.).

В случае NH₃-МПЭ нитридизация подложки проводилась при $T_S = 500^{\circ}$ С в потоке аммиака $q_{\rm NH_3} = 200 \, {\rm kcm^3 Muh^{-1}}$ в течение 10 мин. После этого выращивался низкотемпературный ($T_S = 500^{\circ}$ С) зародышевый слой GaN толщиной ~ 130 нм, который затем отжигался при $T_S = 850^{\circ}$ С в потоке аммиака в течение 10 мин [11]. Для роста основного слоя GaN с максимальной скоростью до 1 мкм · ч⁻¹ использовались $q_{\rm NH_3} = 5-200 \, {\rm kcm^3} \cdot {\rm мин^{-1}}$ и $T_S = 500-890^{\circ}$ С.

При МПЭ ПА слоев GaN использовались подложки c-Al₂O₃, предварительно отожженные при $T_S = 800^{\circ}$ C в течение 60 мин, а затем нитридизованные при $T_S = 700^{\circ}$ C в течение 10 мин в потоке активированного азота, обеспечиваемом плазменным активатором при мощности разряда Q = 115 Вт и расходе азота $q_N = 5 \text{ нсм}^3 \cdot \text{мин}^{-1}$. Несколько слоев GaN выращивались на Ga-полярных 3 мкм GaN-темплейтах, предварительно выращенных ГФЭМОС. Варьирование Q в диапазоне от 100 до 180 Вт при постоянном

 $q_{\rm N} = 5 \, {\rm нcm}^3 \cdot {\rm мин}^{-1}$ позволяло линейно регулировать поток активированного азота $F_{{\rm N}^*}$, что обеспечивало изменение максимальной скорости роста ${\rm A}^3{\rm N}$ -соединений в пределах от 0.2 до 0.7 мкм · ч⁻¹ соответственно [4].

В процессе роста температура подложки контролировалась с помощью ИК-пирометра, а для определения скорости роста слоев GaN использовалась лазерная интерферометрия на длине волны 660 нм. Морфология поверхности растущих слоев контролировалась с помощью дифракции отраженных быстрых электронов (ДОБЭ). Слои GaN характеризовались растровой электронной (РЭМ), просвечивающей электронной (ПЭМ), атомносиловой (АСМ) и сканирующей туннельной (СТМ) микроскопией, а также измерениями спектров фотолюминесценции (ФЛ), холловских значений концентрации и подвижности носителей заряда. Полярности поверхности слоев GaN (0001) и GaN (0001) различались по более сильной степени изменения морфологии поверхности в первом случае при их травлении в растворе 2M NaOH при комнатной температуре в течение 5-10 мин [12].

3. Результаты и обсуждение

В случае роста слоев GaN непосредственно на c-Al₂O₃ наблюдались Ga- и N-полярности при использовании аммиачной МПЭ и МПЭ ПА соответственно. Однако в последнем случае при росте на GaN (0001)-темплейтах полярность выращенного слоя наследовала полярность подложки, т.е. была Ga-полярной. Эти результаты соответствуют модели Иошикава и Ксу, согласно которой при росте GaN полярность растущего слоя GaN определяется начальным слоем, с которого начинается рост GaN [13]. Образование на сапфировой подложке поверхностного слоя атомов азота при плазменной нитридизации подложки в случае МПЭ ПА приводит к росту N-полярного слоя GaN. Напротив, начальный слой, состоящий из атомов III группы, что характерно для нитридизованной сапфировой подложки в случаях NH₃-МПЭ и поверхности ГФЭМОС темплейта, обусловливает рост GaN (0001).

При исследовании кинетики роста GaN в первую очередь были определены параметры МПЭ роста, обеспечивающие единичное отношение потоков $F_{\text{Ga}}/F_{\text{N}^*}$ в условиях несущественной десорбции атомов Ga и активированных молекул азота, а также при отсутствии разложения GaN. В случае NH₃-МПЭ с этой целью был выращен слой GaN при уменьшающемся потоке аммиака и постоянных других параметрах роста (T_S , F_{Ga}). Единичное отношение $F_{\text{Ga}}/F_{\text{N}^*}$ определялось из демонстрируемого на рис. 1, *а* эффекта остановки роста GaN при $q_{\text{NH}_3} = 6 \,\text{нсм}^3 \cdot \text{мин}^{-1}$ вследствие образования на поверхности блокирующего слоя Ga при переходе от Nк Ga-обогащенным условиям роста ($T_S \approx 800^\circ$ C) [14]. Для решения аналогичной задачи в случае МПЭ ПА выращивался слой GaN при возрастающем потоке Ga

Рис. 1. Определение стехиометрических условий роста GaN: a -при NH₃-МПЭ, $T_S = 800^{\circ}$ С, b -при МПЭ ПА, $T_S = 700^{\circ}$ С. Пунктирной линией обозначена область с $F_{\text{Ga}}/F_{\text{N*}} \approx 1$.

и постоянных значениях T_S и F_{N^*} . Достижение условия $F_{Ga}/F_{N^*} \approx 1$ соответствовало началу участка насыщения скорости роста GaN ($T_S \approx 700^{\circ}$ C) (рис. 1, *b*).

Температурные зависимости скорости роста GaN (v_g) обнаружили различные предельные значения T_S для технологий МПЭ ПА и NH₃-МПЭ, что демонстрируется на рис. 2, *a*, *b*. В первом случае $v_g \approx 0.5 \,\mathrm{MKM} \cdot \mathrm{y}^{-1}$ практически не зависит от T_S вплоть до 750°С, а при более высоких T_S наблюдается ее снижение, связанное с началом термического разложения GaN. Данный эффект может быть описан зависимостью аррениусовского типа $\sim E_a/kT_S$ (k — постоянная Больцмана) со значением энергии активации $E_a = 3.0 \pm 0.3$ эВ, что согласуется с результатами других авторов, варьирующимися в диапазоне 2.8-3.6 эВ [3,15]. Для аналогичной зависимости $v_{e}(T_{S})$ в случае NH₃-МПЭ снижение скорости роста примерно с тем же значением $E_a = 3.4 \pm 0.3$ эВ наблюдалось при более высоких $T_S > 820^{\circ}$ C. Разброс значений Еа может быть обусловлен как структурными свойствами слоев, в частности их полярностью, морфологией поверхности, так и условиями роста [15]. Разница в значениях T_S , соответствующих началу снижения v_g , может быть объяснена тем, что в случае МПЭ ПА использовавшийся нами плазменный активатор азота не позволяет существенно повысить поток активного азота, чтобы скомпенсировать это разложение и повысить рабочие T_S . В случае NH₃-МПЭ откачная система позволяла легко достигать $q_{\rm NH_3} = 200$ нсм³ · мин⁻¹, что соответствовало переходу в сильно азотобогащенные условия с $F_{\rm Ga}/F_{\rm N^*} \approx 1/30$ и обеспечивало рост слоев GaN с $v_g \approx 1$ мкм · ч⁻¹ вплоть до $T_S = 820^{\circ}$ С (рис. 2, *b*).

Описанные выше различия зависимостей $v_g(T_S)$ обусловили использование различных ростовых условий для достижения двумерного роста GaN в каждой из разновидностей МПЭ. Было обнаружено, что минимальные значения $T_S \approx 700^{\circ}$ С, обеспечивающие планарную поверхность GaN (0001), наблюдаются в случае роста технологией МПЭ ПА на GaN-темплейтах при использовании слегка Ga-обогащенных усло-

Рис. 2. *Іп situ* измерения зависимости скорости роста GaN от температуры подложки в случае МПЭ ПА: *a* — при постоянных $F_{\text{Ga}}/F_{\text{N}^*} \approx 1.2$, $F_{\text{Ga}} = 0.6 \text{ мкм/ч}$, $q_{\text{N}_2} = 5 \text{ нсм}^3 \cdot \text{мин}^{-1}$, $F_{\text{N}^*} = 0.5 \text{ мкм/ч}$; *b* — NH₃-МПЭ при постоянных $F_{\text{Ga}}/F_{\text{N}^*} \approx 1/30$, $F_{\text{Ga}} = 1 \text{ мкм/ч}$, $q_{\text{N}_3} = 200 \text{ нсм}^3 \cdot \text{мин}^{-1}$.

Физика и техника полупроводников, 2009, том 43, вып. 8

Рис. 3. Изображения поверхности: a — СТМ слоя GaN, выращенного МПЭ ПА на 3 мкм GaN-темплейте; b — СТМ слоя GaN, выращенного МПЭ ПА на c-Al₂O₃-подложке при $T_S = 700^{\circ}$ C; c — СТМ слоя GaN, выращенного МПЭ ПА на c-Al₂O₃-подложке при $T_S = 760^{\circ}$ C; d — АФМ слоя GaN, выращенного NH₃-MBE на c-Al₂O₃-подложке при $T_S = 820^{\circ}$ C.

вий $F_{\text{Ga}}/F_{\text{N}^*} = 1.1-1.2$ [4]. В этом случае поверхность GaN (0001) имела стандартную для ГФЭМОС морфологию терраса-ступень, представленную на рис. 3, *a*, со средним значением шероховатости поверхности rms ≈ 1.75 нм на площади 1×1 мкм². Характерной особенностью данной морфологии является наличие спирального роста, связанного с дефектами темплейта (вертикальными винтовыми дислокациями) [16].

При росте на подложках c-Al₂O₃ в тех же условиях ($T_S = 700^{\circ}$ C, $F_{\text{Ga}}/F_{\text{N}^*} = 1.3$) слои GaN ($000\overline{1}$), как показано на рис. 3, *b*, имели существенно более шероховатую поверхность, состоящую из отдельных зерен с характерным размером $L \approx 1$ мкм и значением rms = 6.5 нм на площади 5×5 мкм². Необходимо также отметить сравнительно высокий уровень шероховатости поверхности в пределах зерна (rms ≤ 1.5 нм). Существенное улучшение морфологии наблюдалось при повышении F_{Ga} , но происходящее при этом образование микрокапель Ga затрудняет практическое использование такого режима в приборных структурах. Более перспективным для улучшения морфологии поверхности GaN ($000\overline{1}$) оказалось повышение T_S . На рис. 3, *c* демонстрируется

морфология такого слоя, свободного от микрокапель, который был выращен вблизи температуры начала термического разложения ($T_S = 760^{\circ}$ C). Зерна слоя имеют характерный латеральный размер $L \approx 1.5$ мкм, а значения rms составляют 3.7 и 0.5 нм на площадях 5×5 мкм² и 200 × 200 нм² соответственно. Необходимость повышения потока Ga до значения $F_{\text{Ga}}/F_{\text{N}^*} = 1.8$ (при том же F_{N^*}) по сравнению с низкотемпературным ростом (при $T_S = 700^{\circ}$ C) указывает на существенную десорбцию Ga с поверхности растущего слоя.

Наиболее высокие ростовые температуры, необходимые для двумерного роста, использовались при росте слоев GaN (0001) методом NH₃-МПЭ. В этом случае при низких значениях $T_S < 800^{\circ}$ С наблюдался трехмерный рост, и лишь при $T_S \ge 800^{\circ}$ С происходил переход к двумерному механизму. При этом необходимо было поддерживать максимально возможные значения $q_{\rm NH_3} \ge 200$ нсм³ · мин⁻¹, соответствующие сильно N-обогащенным условиям роста с $F_{\rm Ga}/F_{\rm N*} \le 1/30$. На рис. 3, *d* приводится изображение морфологии слоя GaN (0001), выращенного NH₃-МПЭ вблизи условий, соответствующих начальному участку снижения

скорости роста на температурной зависимости $v_g(T_S)$ при $T_S = 820^{\circ}$ С и $F_{Ga}/F_{N^*} = 1/30$. Данный слой имел атомарно-гладкую поверхность со значениями гms, равными 5 и 0.4 нм на площадях 3 × 3 мкм² и 100 × 100 нм² соответственно.

Полученные результаты свидетельсвуют о различных механизмах формирования поверхностных слоев с повышенной подвижностью адатомов в обеих модификациях МПЭ. В случае МПЭ ПА Ga-обогащенные условия приводят к формированию поверхностного слоя адсорбированных атомов Ga с высокой поверхностной подвижностью. Наши результаты по низкотемпературному росту GaN (при $T_S = 700^{\circ}$ C) свидетельствуют, что в случае роста GaN (0001) на GaN-темплейтах поверхностная подвижность адатомов выше по сравнению с ростом N-полярных слоев на подложках с-Al₂O₃. В последнем случае лишь повышение Т_S до предельного значения ($T_S = 760^{\circ}$ C) позволяет достигать высоких значений подвижности адатомов и получать слои $GaN(0001)/c-Al_2O_3$ с атомарно-гладкой поверхностью в пределах отдельных зерен с характерным размером ~ 1 мкм.

В случае роста GaN (0001) методом NH₃-МПЭ возрастание поверхностной подвижности адатомов и связанный с этим двумерный рост, по-видимому, достигаются только за счет повышения T_S . Использование при этом больших потоков NH₃ можно объяснить необходимостью подавления реакции разложения GaN [17]. Таким образом, максимально возможное значение $T_S = 820^{\circ}$ С определялось предельным значением $q_{\text{NH}_3} = 200 \text{ нсм}^3 \cdot \text{мин}^{-1}$.

В спектрах ФЛ слоев CaN (0001), выращенных при $T_{\rm S} = 760^{\circ}{\rm C}$, наблюдается относительно узкий пик с энергией максимума 3.48 эВ и полушириной на половине максимума FWHM ≈ 8 мэВ (при 20 K). Следует отметить, что это значение более чем в 2 раза превышает аналогичный параметр слоев GaN (0001), выращенных нами на темплейтах (в частности, в [4] FWHM = 3 мэВ). Как сообщалось в работе [18], причиной данного различия может быть более высокая концентрация остаточных примесей, в частности кислорода, и точечных дефектов вблизи прорастающих дислокаций, которые уширяют линию связанных экситонов в GaN (0001). Так, при МПЭ ПА GaN (0001) образующийся 2 MC адсорбционный слой атомов Ga значительно снижает вероятность встраивания кислорода по сравнению с GaN $(000\overline{1})$ [19]. Кроме того, согласно измерениям ПЭМ, концентрация прорастающих дислокаций в слоях GaN (0001) составляла $1.5 \cdot 10^{10}$ см⁻², в то время как для слоев GaN (0001), выращенных на темплейте, она была на порядок ниже, $\sim 2 \cdot 10^9 \, \mathrm{cm}^{-2}$.

Исследования электрических свойств слоев GaN (000 $\overline{1}$) показали, что, несмотря на значительное снижение величины собственной концентрации электронов от $n_e = 9.4 \cdot 10^{17}$ до $n_e = 2 \cdot 10^{17}$ см⁻³ с подвижностью $\mu = 200$ см² · B⁻¹c⁻¹ при увеличении T_S от 700

до 760°С, она тем не менее на порядок превышает значения n_e , характерные для лучших слоев GaN (0001) [6].

4. Заключение

Сравнительные исследования кинетики роста GaN при NH₃-МПЭ и МПЭ ПА показали, что в первом случае возрастание поверхностной подвижности адатомов достигается за счет повышения T_S > 820°C при бо́льших потоках $q_{\rm NH_3} \ge 200 \, {\rm hcm}^3 \cdot {\rm мин}^{-1}$, подавляющих реакцию разложения GaN, а во втором — поверхностная подвижность обеспечивается адсорбированными атомами Ga при росте в Ga-обогащенных условиях, а максимальная $T_S = 760^{\circ}$ C ограничена началом разложения GaN. Кроме того, показана потенциальная возможность получения слоев GaN (0001) с атомарно-гладкой поверхностью при МПЭ ПА. Для этого необходимо проводить рост в Ga-обогащенном режиме, вблизи начала образования капельной фазы Ga при относительно высоких температурах роста $T_S \approx 760^{\circ}$ С. При этом из-за повышенной десорбции Ga при T_S > 700°C для поддержания Ga-обогащенных условий роста необходимо увеличить соотношение $F_{\rm Ga}/F_{\rm N^*}$ с 1.3 при $T_S \approx 700^{\circ}{\rm C}$ до 1.8 при $T_S = 760^{\circ}$ C. Также показано положительное влияние увеличения температуры роста на морфологию поверхности, структурные, оптические и электрические свойства слоев GaN (0001).

Авторы благодарят А.А. Ситникову и Р.В. Золотареву за проведение ПЭМ характеризации.

Работа выполнена при поддержке проектов РФФИ (№ 07-02-12233-офи_а, № 07-02-13618-офи_ц) и программой президиума РАН "Квантовые наноструктуры".

Список литературы

- Y.F. Wu, A. Saxler, M. Moore. IEEE Electron Dev. Lett., 25, 117 (2004).
- [2] D. Huang, P. Visconti, K.M. Jones, M.A. Reshchikov, F. Yun, A.A. Baski, T. King, H. Morkoč. Appl. Phys. Lett., 78 (26), 4145 (2001).
- [3] B. Heying, R. Averbeck, L.F. Chen, E. Haus, H. Riechert, J.S. Speck. J. Appl. Phys., 88 (4), 1855 (2000).
- [4] В.Н. Жмерик, А.М. Мизеров, Т.В. Шубина, С.Б. Листошин, С.В. Иванов. Письма ЖТФ, **33** (8), 36 (2007).
- [5] K. Xu, A. Yoshikawa. Appl. Phys. Lett., 82 (2), 251 (2003).
- [6] S. Keller, C.S. Suh, Z. Chen, R. Chu, S. Rajan, N.A. Fichtenbaum, M. Furukawa, S.P. DenBaars, J.S. Speck, U.K. Mishra. J. Appl. Phys., 103, 033 708 (2008).
- [7] M.N. Wong, S. Rajan, R.M. Chu, T. Palacios, C.S. Suh, L.S. McCarthy, S. Keller, J.S. Speck, U.K. Mushra. Phys. Status Solidi A, **204** (6), 2049 (2007).
- [8] X.Q. Shen, T. Ide, S.H. Cho, M. Shimizu, S. Hara, H. Okumura. Appl. Phys. Lett., 77 (24), 4013 (2000).
- [9] E. Monroy, E. Sarigiannidou, F. Fossard, N. Gogneau,
 E. Bellet-Amalric, J.-L. Rouvière, S. Monnoye, H. Mank,
 B. Daudin. Appl. Phys. Lett., 84 (18), 3684 (2004).

Физика и техника полупроводников, 2009, том 43, вып. 8

- [10] C. Adelmann, J. Brault, G. Mula, B. Daudin, L. Lymperakis, J. Neugebauer. Phys. Rev. B, 67, 165419 (2003).
- [11] N. Grandjean, M. Leroux, M. Laügt, J. Massies. Appl. Phys. Lett., 71, 240 (1997).
- [12] A.R. Smith, R.M. Feenstra, D.W. Greve, M.-S. Shin, M. Skowronsky, J. Neugebauer, J.E. Northrup. Appl. Phys. Lett., 72, 2114 (1998).
- [13] A. Yoshikawa, K. Xu. Thin Sol. Films, 412, 38 (2002).
- [14] D. Crawford, R. Held, A.M. Johnston, A.M. Dabiran, P.I. Cohen. MRS Internet J. Nitride Semicond. Res., 1 (12) (1996).
- [15] N. Granjean, J. Massies, F. Semond, S.Yu. Karpov, R.A. Talalaev. Appl. Phys. Lett., 74 (13), 1854 (1999).
- [16] S. Vezian, F. Natali, F. Semond, J. Massies. Phys. Rev. B, 69, 125 329 (2004).
- [17] S.Yu. Karpov, R.A. Talalaev, Yu.N. Makarov, N. Grandjean, J. Massies, B. Damilano. Surf. Sci., 450, 191 (2000).
- [18] B. Monemar, P.P. Paskov, J.P. Bergman, A.A. Toropov, T.V. Shubina, T. Malinauskas, A. Usui. Phys. Status Solidi B, 245 (9), 1723 (2008).
- [19] T. Zywietz, J. Neugebauer, M. Scheffler. Appl. Phys. Lett., 74, 1695 (1999).

Редактор Л.В. Беляков

Peculiarities of molecular-beam epitaxy of GaN (0001) and GaN (000 $\overline{1}$) epilayers at different nitrogen activation techniques

A.M. Mizerov, V.N. Jmerik, V.K. Kaibyshev, T.A. Komissarova, S.A. Masalov, S.V. Ivanov

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract The paper reports on a comparative study of growth kinetics of GaN films of a different polarity, deposited by either ammonia-based or plasma-assisted molecular-beam epitaxy on c-sapphire and GaN (0001)/*c*-Al₂O₃ templates grown by metal-organic chemical vapour deposition. The possibility of growing of GaN (0001) layers with atomically smooth surface is demostrated. This implies usage of metal-rich droplet-free growth regime at growth temperature close to the onset of GaN decomposition ($T_S \sim 760^{\circ}$ C). It is shown that the growth temperature increase improves structural, optical and electrical properties of the GaN (0001) films. Also the low temperature ($\sim 700^{\circ}$ C) growth of high quality GaN (0001) layers atop of GaN (0001)/*c*-Al₂O₃ templates is demonstrated.