07,18

Изгибные волны в графене и 2D-супракристаллах

© Р.А. Браже, А.И. Кочаев

Ульяновский государственный технический университет, Ульяновск, Россия

E-mail: a.kochaev@gmail.com

(Поступила в Редакцию 30 января 2012 г.)

Предложен метод расчета фазовой и групповой скоростей изгибных волн в графеноподобных структурах одноатомной толщины, основанный на выражении модуля изгиба через двумерный модуль Юнга. Метод применим также для исследования характеристик волн "вздутия" в одностенных нанотрубках достаточно большого диаметра.

Работа поддержана правительством Ульяновской области.

В работах [1,2] нами были рассчитаны упругие характеристики углеродных 2D-супракристаллов в сравнении с частным случаем — графеном — и исследованы особенности распространения в них продольных и поперечных (сдвиговых) упругих волн. Однако в графеноподобных планарных наноразмерных структурах наряду с деформациями растяжения/сжатия и деформациями сдвига возможны также упругие деформации изгиба, обусловливающие существование изгибных волн. Такие деформации необходимо учитывать при разработке устройств гибкой наноэлектроники, а сами изгибные волны могут найти применение в устройствах наноакустоэлектроники.

Волновое уравнение, описывающее изгибные волны в оболочке одноатомной толщины, можно получить из уравнения равновесия такой оболочки, изгибаемой действующей на нее внешней силой,

$$D_2 \Delta^2 u = F/S, \tag{1}$$

где D_2 — двумерный модуль изгиба, Δ — оператор Лапласа по координатам x_1 и x_2 (в плоскости оболочки), u — смещение частиц, F/S — сила, действующая на единицу площади оболочки. Уравнение (1) аналогично уравнению равновесия пластинки конечной толщины, изгибаемой внешней силой [3]. Заменяя в (1) F/S произведением двумерной плотности ρ_2 на ускорение \ddot{u} , получаем искомое волновое уравнение

$$\rho_2 \frac{\partial^2 u}{\partial t^2} + D_2 \Delta^2 u = 0. \tag{2}$$

Будем искать решение (2) в виде монохроматической изгибной волны с прямолинейным фронтом

$$u = A \exp[i(\omega t - \mathbf{kr})], \tag{3}$$

где волновой вектор $\mathbf{k} = \mathbf{i} k_{x_1} + \mathbf{j} k_{x_2}$, т. е. $k = \sqrt{i k_{x_1}^2 + j k_{x_2}^2}$. Подстановка (3) в (2) приводит к следующему дисперсионному уравнению для изгибных волн в оболочках одноатомной толщины:

$$\omega = k^2 \left(\frac{D_2}{\rho_2}\right)^{1/2}.\tag{4}$$

Из (4) легко найти фазовую v_f и групповую U_f скорости распространения изгибных (flexural) волн

$$v_f = \left(\frac{D_2}{\rho_2}\right)^{1/4} \omega^{1/2},\tag{5}$$

$$U_f = 2\left(\frac{D_2}{\rho_2}\right)^{1/2} k. {(6)}$$

Отсюда видно, что изгибные волны в планарных супракристаллических структурах в отличие от продольных и поперечных упругих волн [2] обладают дисперсией: их скорость распространения зависит от частоты (волнового числа).

Двумерный модуль изгиба D_2 , так же как и для пластин конечной толщины [3–5], можно определить как производную момента M изгибающей силы F, действующей на единицу поперечной длины W изгибаемого слоя, по кривизне κ изгиба

$$D_2 = \frac{dM}{d\kappa}. (7)$$

Поскольку dM = FdR/W, $\kappa = 1/R$, где R — радиус инерции оболочки относительно оси, перпендикулярной плоскости изгиба (рис. 1), выражение (7) можно переписать в виде

$$D_2 = \frac{FR^2}{W} = E_2 \frac{\Delta l}{l} R^2,$$

где E_2 — введенный в [6] двумерный модуль Юнга, а $\Delta l/l = \Delta R/R$ — относительное удлинение оболочки, вызванное ее деформацией растяжения/сжатия, обусловленной изгибом.

Пусть изгибная волна распространяется вдоль произвольной оси x_1' в плоскости (x_1,x_2) , соответствующей оболочке, с фазовой скоростью v_f . Тогда, переходя к подвижной системе отсчета, связанной с фронтом волны, замечаем, что частицы оболочки вращаются по окружностям с радиусом R, равным амплитуде волны A. Абсолютная величина изменения радиуса

$$\Delta R = \int_{0}^{R} dr = R,$$

Параметр	(C) ₆	$(C)_{44}$	$(C)_{63(6)}$	$(C)_{63(12)}$	$(C)_{664}$	$(C)_{634}$
E ₂ , N/m [6]	327	187, 63.0	6.00	46.4	220	6.45
s, $10^6 \mathrm{m^2/kg}$ [2] $v_f/\sqrt{2\pi f A}$, $\mathrm{m^{1/2} \cdot s^{-1/2}}$	2.63 171	2.99 152, 117	4.01 69.8	5.79 155	3.94 172	5.09 75.5
$v_f/\sqrt{2\pi f A}$, in v_s	1/1	132, 117	09.8	155	1/2	73.3

Характеристики изгибных волн в графене и углеродных 2D-супракристаллах

Пр и ме чан и е. Для структуры $(C)_{44}$ левые значения соответствуют направлению $\langle 11 \rangle$, а правые — направлению $\langle 10 \rangle$.

таким образом, для изгибных волн в однослойных оболочках

$$D_2 = E_2 R^2 = E_2 A^2. (8)$$

С учетом (8) выражения (5), (6) для фазовой и групповой скоростей принимают вид

$$v_f = \sqrt[4]{E_2 s} \sqrt{2\pi f A},\tag{9}$$

$$U_f = 2\sqrt{E_{2}s}kA. \tag{10}$$

Здесь $s=1/\rho_2$ — удельная поверхность оболочки [2], f — частота волны.

В 2D-супракристаллах двумерный модуль Юнга E_2 является двумерным тензором четвертого ранга. Его эффективное значение в направлении x_1' выражается через компоненты тензора упругих податливостей s_{ijkl} [6]

$$E_2 = 1/s'_{1111},$$

где $s'_{1111} = a_{1i}a_{1j}a_{1k}a_{1l}s_{ijkl}$ (i,j,k,l=1,2), (a_{1n}) — матрица направляющих косинусов системы координат x'_1 , x'_2 относительно кристаллофизических осей x_1 , x_2 . Выражения для компонент s_{ijkl} и E_2 в случае 2D-супракристаллов приведены в [6].

Значения E_2 , s для графена и углеродных супракристаллов, а также величины $v_f/\sqrt{2\pi f A}$ приведены в таблице. На рис. 2 представлены результаты расчета по формуле (9) фазовой скорости изгибной волны в графене как функции частоты и амплитуды. Как следует из таблицы, близкие значения скорости распространения имеют изгибные волны и в других двумерных sp^2 -наноаллотропах. В sp^3 -наноаллотропах, к которым принадлежат структуры $(C)_{63(6)}$ и $(C)_{634}$, эти скорости более чем в 2 раза меньше. В целом фазовая скорость

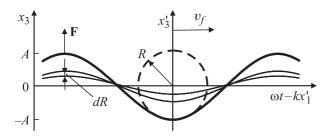


Рис. 1. Деформация оболочки одноатомной толщины в изгибной волне.

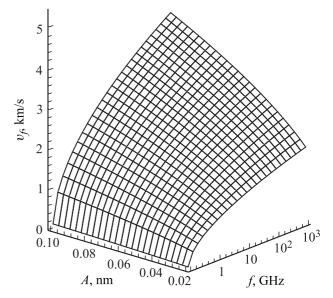


Рис. 2. Зависимость фазовой скорости изгибной волны в графене от ее частоты и амплитуды.

изгибных волн в 2D-супракристаллах в несколько раз меньше фазовой скорости продольных и поперечных упругих волн в этих же структурах.

Предлагаемый в настоящей работе подход к описанию изгибных волн в графеноподобных структурах на основе выражения модуля изгиба через двумерный модуль Юнга представляется нам более перспективным, чем попытки введения "эффективной толщины" пластины [7]. Во-первых, он более корректен с физической точки зрения. Во-вторых, он последователен, так как сводит задачу нахождения модуля изгиба к вычислению компонент двумерного тензора упругих жесткостей [6], методика отыскания которых была предложена и описана ранее [2]. Наконец, в-третьих, такой подход позволяет решать обратную задачу: по измеренным значениям фазовой скорости изгибной волны находить двумерные модули Юнга планарных структур одноатомной толщины.

Отметим в заключение, что формулы (2), (9), (10) можно использовать и для исследования волн "вздутия" в одностенных нанотубулярных структурах достаточно большого диаметра, когда взаимодействием атомов, расположенных на противоположных (по диаметру) сторонах нанотрубки, можно пренебречь.

Список литературы

- [1] Р.А. Браже, А.А. Каренин, А.И. Кочаев, Р.М. Мефтахутдинов. ФТТ **53**, *7*, 1406 (2011).
- [2] Р.А. Браже, А.И. Кочаев, Р.М. Мефтахутдинов. ФТТ **53**, *8*, 1614 (2011).
- [3] Л.Д. Ландау, Е.М. Лифшиц. Теория упругости. Наука, М. (1987). 248 с.
- [4] П.А. Жилин. Прикладная механика. Основы теории оболочек. Изд-во СПбГПУ, СПб. (2006). 167 с.
- [5] Q. Lu, M. Arroyo, R. Huang. J. Appl. Phys. 42, 102 002 (2009).
- [6] Р.А. Браже, А.И. Кочаев, В.С. Нефёдов. ФТТ 54, 7, 1347 (2012).
- [7] S.Y. Kim, H.S. Park. J. Appl. Phys. 110, 054324 (2011).