19

Расчеты *ab initio* термодинамических параметров оксидов лития, натрия, калия под давлением

© Ю.Н. Журавлев, Д.В. Корабельников, М.В. Алейникова

Кемеровский государственный университет, Кемерово, Россия E-mail: zhur@kemsu.ru

(Поступила в Редакцию 18 октября 2011 г.)

В градиентном приближении теории функционала плотности методом линейной комбинации атомных орбиталей программного пакета CRYSTAL09 для оксидов лития, натрия, калия рассчитаны параметры уравнения состояния и параметры Грюнайзена. Вычислены частоты нормальных длинноволновых колебаний и установлена их зависимость от давления. На основе упругих характеристик определена температура Дебая. В квазигармонической модели Дебая вычислены зависимости температуры Дебая, сжимаемости, термодинамических потенциалов, энтропии, теплоемкости, коэффициентов теплового расширения и теплопроводности от давления в интервале -3-15 GPa и температуры. Полученные результаты находятся в удовлетворительном согласии с имеющимися справочными и экспериментальными данными.

Работа выполнена в рамках ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009-2013 гг.

1. Введение

В последнее время число работ, посвященных изучению оксидов щелочных металлов, постоянно растет. Это связано с широким практическим применением этих соединений, особенно оксида лития. Его применяют в качестве добавки к смесям реагентов при твердофазном синтезе двойных и тройных оксидов для понижения температуры процесса, а также в качестве компонента при производстве специальных рентгенопрозрачных стекол с небольшим температурным коэффициентом линейного расширения. Благодаря высокой подвижности лития оксид обнаруживает высокую ионную проводимость и принадлежит к классу супериоников, который используется при создании миниатюрных литиевых аккумуляторов. Он также может использоваться при создании теплоаккумулирующих сплавов в реакторах. Оксиды щелочных металлов играют важную роль в изготовлении фотокатодов, усиливая каталитические реакции и окисление полупроводниковых поверхностей.

Термодинамические свойства оксидов щелочных металлов экспериментально изучались во многих работах; основные результаты суммированы в [1,2]. Оксид Li₂O тугоплавкий и при нагревании не разлагается. Это единственный оксид, который образуется путем нагревания металла на воздухе при температуре выше 473 К. Оксид и пероксид лития активно поглощают CO₂ из воздуха, что и используется в регенерационных установках. Оксид натрия термически устойчивый, тугоплавкий, разлагается при температуре выше 973 К. Оксид калия также термически устойчив и разлагается в интервале 623-703 К.

Упругие свойства и теплоемкость Li₂O изучались в [3] методом молекулярной динамики и динамики решетки в квазигармоническом приближении. Показано, что под

давлением в интервале 0-100 GPa изменяется дисперсия фононных ветвей, сжимаемость увеличивается с ростом температуры, также увеличивается изобарическая теплоемкость в согласии с экспериментальными данными [4,5]. Упругие и термодинамические свойства Li₂O при высоких температурах 0-1100 К и давлениях изучены в [6] *ab initio* методом Хартри–Фока (HF) в базисе ЛКАО. Установлено, что упругий модуль и температура Дебая уменьшаются монотонно с ростом температуры. В работе [7] методами теории функционала плотности в квазигармонической модели Дебая показано, что теплоемкость при различных давлениях увеличивается с ростом температуры; температура Дебая возрастает с ростом давления; коэффициент теплового расширения возрастает очень быстро с ростом температуры, а затем слабо изменяется. Теоретические исследования термодинамических свойств оксидов натрия и калия отсутствуют.

2. Метод расчета

Термодинамическое состояние вещества характеризуется действующим давлением P, плотностью ρ или удельным объемом V, температурой T или удельной внутренней энергией E_T . Соотношение, определяющее связь между этими параметрами, называют уравнением состояния вещества. В настоящее время теоретические модели вещества позволяют проводить расчет уравнений состояния (EOS) лишь в ограниченных областях фазовой диаграммы. Наиболее разработаны простые модели твердого тела, основанные на квазигармоническом приближении, в рамках которого кристалл представляет собой совокупность независимых гармонических осцилляторов. Основная задача при этом состоит в определении конкретного распределения частот в спектре колебаний. Реальный вид этого распределения достаточно сложен, поэтому часто используются модельные представления. Наибольшее распространение получила теория Дебая [8], которая достаточно хорошо описывает тепловые свойства твердых тел во всем температурном диапазоне. Из дебаевской модели следует, в частности, калорическое уравнение состояния в форме Ми-Грюнайзена $P(V, E) = P_C(V) + \gamma(V)(E - E_C)/V$, где $P_C(V)$ — кривая холодного сжатия, $E_C(V) = E(V) - E(V_0)$ — упругая энергия кристалла при T = 0 K, γ — коэффициент Грюнайзена.

Теоретически кривая холодного сжатия может быть определена в результате детального рассмотрения межатомных взаимодействий в кристаллах. Такой подход для определения кривой $P_C(V)$ был предложен Берчем [9] на основании феноменологической теории конечных деформаций Мурнагана. Используя разложение свободной энергии в ряд по степеням деформации с точностью до членов третьего порядка, можно получить следующее выражение для энергии, известное как уравнение Берча третьего порядка (EOSB):

$$E(V) = E_0 + \frac{9V_0B_0}{16} \{ (x^{-2} - 1)^3 B_1 + (x^{-2} - 1)^2 (6 - 4x^{-2}) \}.$$
 (1)

Здесь $x = (V/V_0)^{1/3}$, $B = -V(dP/dV)_T$ — изотермический модуль объемного сжатия, B' = dB/dP — его первая производная по давлению. В равновесии $E_0 = -E(x = 1) > 0$, $P_0 = P(x = 1) = 0$, $B_0 = B(x = 1)$, $B_1 = B'(x = 1)$.

Экспоненциальные зависимости давления от объема записываются в общей форме как [10]

$$P(V) = 3B_0 x^{-n} (1-x) \exp\{\eta(1-x)\}, \ \eta = \frac{3}{2}B_1 + \frac{1}{2} - n.$$
(2)

При n = 2 имеем хорошо известное уравнение Виньета [11] (EOSV), которое получено исходя из аппроксимации энергии. Оно является универсальным, поскольку выполняется для большого класса соединений: аморфных, ионных, металлов и благородных газов. При n = 5получается уравнение Хольцапфеля [12] (EOSH). Существуют и другие формы уравнения холодного состояния, которые можно найти в [13–16]. Четыре параметра, необходимые для задания уравнения состояния, имеют следующий смысл: V_0 есть объем при энергетическом минимуме, E_0 , определяет глубину кривой E(V), а B_0 и B_1 — ее форму.

Безразмерный параметр Грюнайзена медленно меняется при изменении давления и температуры. Он имеет микроскопическое и макроскопическое определение. Первое связано с колебательными частотами атомов в кристалле, а второе — с термодинамическими свойствами, такими как теплоемкость и тепловое расширение. С помощью параметров Грюнайзена можно связать различные термодинамические величины. Зависимость параметра Грюнайзена от объема определяется соотношением

$$\gamma(V) = \frac{B'(V)}{2} - \frac{t(B(V) - B'(V)P(V))}{3B(V) - 2tP(V)} - \frac{1}{6} + \delta.$$
 (3)

Здесь δ — постоянная, нормирующая γ на термодинамическое значение при нормальных условиях. Параметр t = 0 в (3) соответствует теории Ландау [17]–Слэтера [18], t = 1 — теории Дугдейла–Макдональда [19], t = 2 — теории свободного объема Зубарева–Ващенко [20]. Величина и знак t определяются характером зависимости коэффициента Пуассона от давления.

Коэффициент Пуассона μ выражается через модули объемного сжатия и сдвига, которые в свою очередь вычисляются с помощью упругих постоянных [21]. Коэффициент Пуассона также связан с акустическим параметром Грюнайзена [22] $\gamma_{\rm ac} = 1.5(1 + \mu)/(2 - 3\mu)$.

При температуре $T \neq 0$ К атомы в твердом теле приобретают дополнительную кинетическую энергию, которая соответствует их колебательному движению около узлов кристаллической решетки. Энергия и амплитуда колебаний увеличиваются с повышением температуры. Спектр колебаний твердого тела также зависит от объема тела, и его уменьшение при постоянной T может привести к увеличению роли ангармонических эффектов. Однако здесь считается, что изменение объема тела приводит лишь к изменению спектра колебаний, тогда как сами колебания остаются гармоническими. В этом и состоит смысл квазигармонического приближения.

Описание равновесных термодинамических процессов может быть выполнено с помощью метода термодинамических потенциалов. Основное уравнение термодинамики равновесных процессов $TdS = dE_T + PdV$, уравнение состояния P = P(T, V) и выражение для внутренней энергии $E_T = E_T(T, V)$ образуют систему из трех уравнений, связывающую между собой пять функций состояния: T, P, V, E_T и энтропию S. Можно также ввести другие термодинамические потенциалы, дифференцирование которых дает возможность определить иные, неизвестные параметры состояния. В качестве последних используются свободная энергия F(T, V), энтальпия H(T, V) и потенциал Гиббса G(T, V). Между термодинамическими потенциалами могут быть установлены соотношения, позволяющие выразить одни через другие: $F = E_T - TS$, G = F + PV, $H = E_T + PV$. Термодинамический потенциал свободной энергии является наиболее подходящим для описания системы. Зная свободную энергию однородной системы при условиях термодинамического равновесия, можно определить ее частные производные, которые позволят получить другие термодинамические функции [23,24].

Наиболее просто и вместе с тем корректно задача определения термодинамического уравнения состояния P(T, V) решается в квазигармоническом приближении, где свободная энергия кристалла помимо упругой энергии $E_C(V)$ включает статическую фононную свобод-

ную энергию, рассчитываемую стандартными методами теории функционала плотности, а ангармоничность учитывается посредством зависимости фононных частот от объема. Квазигармоническое приближение в модели Дебая широко применяется в теории твердого тела, основные формулы и примеры приложения можно найти в [25–27].

Ключевым параметром модели является температура Дебая, для которой в [28] предложена формула, включающая адиабатический модуль B_S и коэффициент Пуассона μ ,

$$\Theta_{\rm D} = \frac{\hbar}{k_{\rm B}} \left(6\pi^2 V^{1/2} N_a \right)^{1/3} f(\mu) \sqrt{\frac{B_S}{M}},$$
$$f(\mu) = \left\{ 3 \left[2 \left(\frac{2}{3} \frac{1+\mu}{1-2\mu} \right)^{3/2} + \left(\frac{1}{3} \frac{1+\mu}{1-\mu} \right)^{3/2} \right]^{-1} \right\}^{1/3}.$$
(4)

Здесь N_a — число атомов в формульной единице, \hbar — приведенная постоянная Планка, $k_{\rm B}$ — постоянная Больцмана, M — молярная масса.

Зависимость Θ_D от объема и температуры определяется посредством дебаевского параметра Грюнайзена, который вычисляется через среднюю частоту колебаний

$$\gamma_{\rm D}(V) = -\frac{d\ln\omega_{\rm av}}{d\ln V},\tag{5}$$

следующим образом [29,30]:

$$\Theta_{\rm D}(V) = \Theta_{\rm D}(V_0) \exp\left\{-\int_{V_0}^V \frac{\gamma_{\rm D}(V)}{V} dV\right\},$$
$$\Theta_{\rm D}(T) = \Theta_{\rm D}(0) \exp\left(-\int_{T_0}^T \gamma_{\rm D}(V)\alpha(T) dT\right), \qquad (6)$$

α — коэффициент объемного теплового расширения,

$$\alpha(V,T) = \frac{3N_a k_{\rm B} \gamma_{\rm D}}{B_T V} \left(4D\left(\frac{\Theta_{\rm D}}{T}\right) - 3\frac{\Theta_{\rm D}/T}{\exp(\Theta_{\rm D}/T) - 1} \right),$$
$$D(x) = \frac{3}{x} \int_0^x \frac{y^3}{e^y - 1} \, dy. \tag{7}$$

В свою очередь коэффициент теплового расширения позволяет рассчитать зависимость объема от температуры

$$V(T) = V_0(0) \int_0^1 \alpha(V, T) dT$$

В квазигармонической модели Дебая свободная энергия определяется как

$$F(T, V) = E_C(V) + \frac{9}{8} N_a k_B \Theta_D(V) + 3N_a k_B T$$
$$\times \left[\ln \left(1 - \exp\left(-\frac{\Theta_D(V)}{T}\right) \right) - \frac{1}{3} D\left(\frac{\Theta_D(V)}{T}\right) \right]. \quad (8)$$

Физика твердого тела, 2012, том 54, вып. 7

Подобным образом вычисляются внутренняя (тепловая) энергия, энтропия и теплоемкость при постоянном объеме C_V

$$E_T(T, V) = E_C(V) + \frac{9}{8} N_a k_B \Theta_D(V) + 3N_a k_B T D\left(\frac{\Theta_D(V)}{T}\right),$$

$$S(T, V) = 3N_a k_B \left\{\frac{4}{3} D\left(\frac{\Theta_D(V)}{T}\right) - \ln\left(1 - \exp\left(-\frac{\Theta_D(V)}{T}\right)\right)\right\},$$

$$C_V(T, V) = 3N_a k_B \left[4D\left(\frac{\Theta_D(V)}{T}\right) - \frac{3(\Theta_D(V)/T)}{\exp(\Theta_D(V)/T) - 1}\right].$$
(9)

Теплоемкость при постоянном давлении тогда находится как $C_P = C_V + \alpha^2 T V B_T$.

Для определения термодинамического параметра Грюнайзена мы воспользовались полученной в [31] универсальной формулой, не связанной со свойствами конкретного материала,

$$\gamma_{\rm th}(V,T) = \frac{2}{3} - \frac{2}{1 - aV_0/V},$$
$$a = 1 + \frac{2}{\gamma_S - 2/3} + 2\frac{E_T(V,T)}{B_S V},$$
(10)

где $\gamma_S = \alpha B_S V/C_P$, адиабатический модуль упругости $B_S(V,T) = B_T + VT(\alpha B_T)^2/C_V$. Выбор такой формы величины $\gamma_{\rm th}(V,T)$ обусловлен ее стремлением к конечному значению 2/3 при $P \to \infty$ ($V \to 0$) [32].

Фононная теплопроводность является основным механизмом теплопроводности. Как известно, при температурах выше температуры Дебая в кристаллических диэлектриках основным механизмом теплового сопротивления являются трехфононные процессы переброса акустических фононов. Фононная теплопроводность с температурой должна уменьшаться по закону T^{-1} и зависеть от упругих параметров решетки (параметр Грюнайзена, температура Дебая), а также от объема элементарной ячейки кристалла. Коэффициент теплопроводности мы определили формулой, подобной использованной в [33]

$$\chi = A \, \frac{MV^{1/3}}{\gamma_{\rm th} N_a^2} \left(\frac{K_{\rm B}}{h} \, \Theta_{\rm D} \right)^3 \left(\frac{1}{T} \right).$$

где A — физическая константа ~ $1.228 \cdot 10^{-4}$ (если χ измеряется в W · m⁻¹ · K⁻¹), которая получена из известного значения для оксида лития $11.29 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$ при 373 К. Поскольку колебательные частоты увеличиваются при сжатии, групповая скорость (и скорость звука Дебая) также возрастает. Поэтому при относительно умеренном изменении времени жизни фонона решеточная теплопроводность, как ожидается [34], будет

увеличиваться с давлением

$$\left(\frac{\partial \ln \chi}{\partial \ln \rho}\right)_T = g = 3\gamma_{\rm th} + 2q - \frac{1}{3}, \ q = -\left(\frac{\partial \ln \gamma_{\rm th}}{\partial \ln \rho}\right)_T. \ (11)$$

Термическая диффузия выражается через коэффициент теплопроводности как $D = \chi / \rho \cdot C_P$.

В настоящей работе кристаллическая структура, механические и термодинамические свойства изучаются в рамках *ab initio* метода линейных комбинаций атомных орбиталей, основанного на приближении НF и реализованного в комплексе программ CRYSTAL09 [35]. Одно из достоинств этой программы заключается в возможности проводить расчеты как в рамках HF-приближения, так и на основе теории функционала электронной плотности (DFT). В DFT-вычислениях использовалось градиентное приближение (GGA) для обмена и корреляции в варианте [36].

Базисные наборы выбирались согласно [37] из соображений наилучшего согласования полученных из первых принципов кристаллографических данных значений. И экспериментальных Для кислорода $(8s)^2(4sp)^6(1sp)^0(1sp)^0(1d)^0;$ использовался базис $(6s)^2(1sp)^0(1sp)^0$, для натрия для лития $(8s)^2(5sp)^8(1sp)^0(1sp)^0$, калия для $(8s)^2(6sp)^8(5sp)^8(1sp)^0(1sp)^0(1d)^0.$ Здесь цифра в скобках обозначает число локализованных атомных орбиталей гауссова типа, используемых для разложения s-, sp- и d-оболочек с числами заполнения, указанными в верхнем индексе.

Определение из первых принципов кристаллической структуры проводилось с помощью минимизации полной энергии (точность 10^{-8} a.u.) и межатомных сил по известной схеме BFGS [38]. Использовалась стандартная процедура OPTGEOM с параметрами по умолчанию. Зависимость структуры кристаллов от внешнего давления *P* определялась с помощью процедуры EXTSTRESS.

3. Уравнение состояния

Оксиды имеют структуру антифлюорита, пространственная группа симметрии $Fm\bar{3}m$ [39]. При температуре выше 1023 К Na₂O переходит в другую кубическую фазу, а K₂O выше 645 К — в гексагональную. Влияние давления на структуру Li₂O изучалось в [40,41]; было показано, что при 50(±5) GPa имеет место фазовый переход из структуры антифлюорита в орторомбическую (*Pnma*) β -фазу. Все возможные фазовые состояния оксидов под давлением изучены с помощью гибридного функционала B3LYP в [42], где было показано, что структуру антифлюорита оксиды имеют в следующих интервалах давлений: Li₂O — от –10 до 50 GPa; Na₂O от –6.50 до 5.96 GPa; K₂O — от –5.366 до 0.17 GPa.

В структуре антифлюорита определены следующие значения параметра решетки a: для Li₂O — 4.620 Å (эксперимент 4.619 Å), для Na₂O — 5.502 (5.560) Å, для K₂O — 6.328 (6.449) Å. Равновесный объем эле-

Таблица 1. Параметры EOSB

Оксид	V_0 , Å ³	<i>E</i> ₀ , a.u.	B ₀ , GPa	B_1		
Li ₂ O	24.653	-90.4378	82.78	4.05		
Na ₂ O	41.642	-399.8787	57.74	3.94		
K ₂ O	63.198	-1275.0876	39.35	4.44		

Таблица 2. Параметры трехпараметрической зависимости P(V) и параметры Грюнайзена в модели Зубарева–Ващенко

Оксид	Тип EOS	V_0 , Å ³	B ₀ , GPa	B_1	γzv
Li ₂ O	EOSB	24.645	82.39	4.03	1.181
	EOSV	24.644	82.34	4.11	1.223
	EOSH	24.645	82.37	4.06	1.197
Na ₂ O	EOSB	41.635	57.25	4.07	1.201
	EOSV	41.631	57.22	4.18	1.257
	EOSH	41.634	57.24	4.11	1.224
K_2O	EOSB	63.404	38.8	3.75	1.042
	EOSV	63.392	38.84	3.83	1.084
	EOSH	63.394	38.84	3.82	1.041

ментарной ячейки (T = 0 K) вычисляется как $V_0 = a^3/4$. Расчетная плотность в оксидах равна 2.023 (2.013), 2.471 (2.37), 2.463 (2.32) g/cm³. Здесь и далее численные значения приводятся в последовательности: Li₂O, Na₂O, K₂O. Справочные данные записываются в скобках.

Параметры EOS определялись по четырехпараметрической зависимости E(V) (1) и трехпараметрической зависимости P(V) (2). В первом случае использовалась стандартная процедура EOS пакета CRYSTAL09, а во втором зависимость P(V) интерполировалась "вручную". Соответствующие значения параметров оксидов вместе со параметром Грюнайзена в модели Зубарева-Ващенко приведены в табл. 1 и 2. Данные табл. 1 позволяют определить аналитическую зависимость $E_C(V)$, а табл. 2 — $P_C(V)$.

Объемный модуль B(P) увеличивается с ростом давления, и при 15 GPa для EOSH он равен 139, 113.2, 88.6 GPa. Производная B'(P) уменьшается и при 15 GPa равна 3.56, 3.49, 3.10; параметр Грюнайзена также уменьшается: 1.14, 1.14, 0.97.

Объемный модуль B_0 измерен экспериментально только для оксида лития, где он равен 89 GPa [5]. Экспериментальные значения параметров EOS для Li₂O по данным [40] равны $V_0 = 24.24$ Å³, $B_0 = 90$ GPa, $B_1 = 3.51$. Рассчитанные в [43] в LDA¹ (GGA)приближениях DFT значения равны: для Li₂O $V_0 = 23.117 (25.023)$ Å³, $B_0 = 101.4 (80.25)$ GPa, $B_1 =$ = 4.60 (5.03); для Na₂O $V_0 = 39.541 (43.716)$ Å³, $B_0 = 57.79 (47.1)$ GPa, $B_1 = 4.20 (4.71)$; для K₂O $V_0 = 59.438 (68.182)$ Å³, $B_0 = 38.92 (26.29)$ GPa, $B_1 =$ = 4.85 (4.84). Таким образом, полученные нами результаты находятся в разумном согласии с имеющимися

¹ LDA — приближение локальной плотности.

в литературе экспериментальными и теоретическими данными.

Упругие постоянные рассчитаны стандартным способом с использованием второй производной полной энергии по объему. Получены следующие значения C_{11} , *C*₁₂, *C*₄₄ соответственно: для Li₂O – 212.1, 20.4, 55.6 GPa; для Na₂O — 121.4, 26.8, 32.9 GPa; для K_2O — 90.2, 19.6, 14.1 GPa. Рассчитанный по ним объемный модуль в ряду оксидов убывает: 84.2, 58.3, 43.1 GPa. В Li₂O по данным [3] (в скобках — данные эксперимента) $C_{11} = 213 (202.0)$ GPa, $C_{12} = 56 (21.5)$ GPa, $C_{44} = 52 (58.7)$ GPa. Согласно расчетам [44], объемный модуль равен 93.6 GPa, а упругие постоянные $C_{11} = 236.5$ GPa, $C_{12} = 27.5$ GPa, $C_{44} = 68.0$ GPa. С помощью упругих модулей нами найдены коэффициент Пуассона µ, который в ряду оксидов возрастает (0.168, 0.233, 0.295), акустический параметр Грюнайзена γ_{ac} (также возрастает: 1.173, 1.421, 1.739) и температура Дебая, которая убывает (969, 538, 347 К). Исследование упругих свойств Li2O под давлением [44] свидетельствует о том, что упругие постоянные, объемный модуль и температура Дебая увеличиваются с ростом давления и температуры. При T = 0 К, P = 0 температура Дебая равна 1100 К, а при T = 0 К и P = 15 GPa она составляет уже 1532 К. При использовании экспериментальных значений упругих постоянных [5] температура Дебая равна 1080 К.

4. Частоты длинноволновых колебаний

Вычисление частот нормальных длинноволновых колебаний ($\mathbf{k} = 0$) проводилось с помощью процедуры FREQCALC программного пакета CRYSTAL09 [35]. Использовались предусмотренные по умолчанию вычислительные параметры. Точность вычисления для всех давлений в интервале от -3 до 15 GPa составляет $\sim 1.0 \, {\rm cm}^{-1}$.

Элементарная ячейка оксидов содержит три атома, поэтому колебательный спектр состоит из девяти фундаментальных колебаний, три из которых являются акустическими (трехкратно вырожденная мода симметрии F_{1u}), а шесть — оптическими. Трехкратно вырожденная мода симметрии F_{1u} активна в спектре инфракрасного погло-

Таблица 3. Частоты колебаний атомов в кристаллической решетке, коэффициенты полинома (12) a_i и модовый параметр Грюнайзена γ_i

Оксид	Мода	$\omega_i(0), \mathrm{cm}^{-1}$	a_1	a_2	$\gamma_i(V_0)$
Li ₂ O	F_{1u} F_{2a}	427.8 527.1	10.198 7.058	$-0.159 \\ -0.092$	1.978 1.116
Na ₂ O	F_{1u} F_{2a}	298.4 252.8	10.255 5.127	-0.148 -0.067	2.037 1.188
K ₂ O	F_{1u} F_{2g}	228.4 173.4	12.547 5.726	-0.314 -0.103	2.535 1.460

Температурные зависимости теплоемкости при постоянном давлении $C_P(a)$ и сжимаемости $V/V_0(b)$ для Li₂O, полученные в настоящей работе (штриховая линия) и рассчитанные в [3] (сплошная линия), а также экспериментальные данные [5,46] (точки).

щения, трехкратно вырожденная мода симметрии F_{2g} активна в спектре комбинационного рассеяния. Она отвечает колебаниям атомов в металлической подрешетке.

В табл. 3 приведены рассчитанные в длинноволновом приближении частоты колебаний атомов в кристаллической решетке оксидов и коэффициенты полиномиальной зависимости

$$f(P) = f(0) + a_1 P + a_2 P^2,$$
(12)

а также определяемый формулой $\gamma_i = -d \ln \omega_i(V)/d \ln V$ модовый параметр Грюнайзена.

<i>Т</i> , К	Параметр	P = -3 GPa		P = 0 GPa			$P = 10 \mathrm{GPa}$			$P = 15 \mathrm{GPa}$			
		Li ₂ O	Na ₂ O	K ₂ O	Li ₂ O	Na ₂ O	K_2O	Li ₂ O	Na ₂ O	K ₂ O	Li ₂ O	Na ₂ O	K ₂ O
100	$egin{array}{c} \Theta_{ m D} \ V/V_0 \ C_V \end{array}$	908 1.04 7.4	485 1.062 28.9	289 1.098 50.9	969 1.000 6.2	537 1.001 24.4	345 1.002 43.8	1115 0.905 4.2	663 0.875 16.1	459 0.833 31.4	1174 0.871 3.6	716 0.835 13.5	504 0.785 27.2
300	$egin{array}{c} \Theta_{ m D} \ V/V_0 \ C_V \end{array}$	872 1.064 49.2	472 1.078 65.9	288 1.102 71.5	958 1.008 46.7	527 1.012 64.1	330 1.024 70.1	1109 0.909 40.9	656 0.881 59.3	456 0.837 66.7	1169 0.874 38.6	710 0.839 57.2	499 0.789 65.2
500	$\Theta_{ m D} onumber V/V_0 onumber C_V$	807 1.11 63.8	455 1.099 71.4	287 1.107 73.6	936 1.023 62.5	514 1.028 70.7	314 1.049 73.1	1096 0.917 59.1	647 0.889 68.6	452 0.843 71.8	1157 0.881 57.7	700 0.846 67.7	494 0.794 71.2
700	$\Theta_{ m D} onumber V/V_0 onumber C_V$	738 1.165 68.9	438 1.122 73.1	285 1.112 74.2	912 1.041 68.1	500 1.045 72.7	298 1.075 73.9	1081 0.927 66.1	636 0.898 71.6	447 0.849 73.2	1142 0.89 65.3	689 0.854 71.1	4881 0.799 72.9

Таблица 4. Зависимость температуры Дебая $\Theta_D(K)$, сжимаемости V/V_0 и теплоемкости при постоянном объеме C_V ($J \cdot mol^{-1} \cdot K^{-1}$) для ряда давлений и температур

Частоты для равновесного объема тем больше, чем меньше масса катиона. С ростом давления (уменьшением объема) они увеличиваются. Их зависимость от давления близка к линейной, поскольку коэффициент a_1 больше, чем a_2 , почти на два порядка. Модовый параметр Грюнайзена для F_{2g} -моды меньше, чем для F_{1u} .

Вычисленные в [3] для Li₂O частоты мод T_{1u} (423 cm⁻¹) и T_{2g} (539 cm⁻¹) согласуются с экспериментальными [45]: 425 и 523 cm⁻¹. Значение частоты T_{2g} моды при низких давлениях в [40] равно 575 cm⁻¹, а при давлении 50 GPa — уже 758 cm⁻¹. Коэффициент Грюнайзена для нее равен 1.3. Предсказываемое нами значение в соответствии с формулой (12) при 50 GPa дает 649 cm⁻¹.

5. Термодинамические параметры

Ключевым параметром модели является температура Дебая; определяемые ею теплоемкость и коэффициент объемного теплового расширения, с помощью которого вычисляется сжимаемость, — одни из немногих экспериментально измеряемых параметров. Соответствующие зависимости для ряда давлений и температур приведены в табл. 4.

Температура Дебая при каждой фиксированной температуре увеличивается с ростом давления и для каждого фиксированного P уменьшается с ростом T; таким образом, ее максимальные значения приходятся на область низких температур и высоких давлений. Сжимаемость для каждой температуры уменьшается с ростом P, ее наименьшее значение приходится на низкие температуры и высокие давления. Теплоемкость резко возрастает с ростом температуры до определенного значения, а затем плавно увеличивается до предельного значения $9k_{\rm B}$. Температура, при которой $C_V(C_P)$ отличается от предельного значения не более чем на 5%, определена нами как 951 (846), 528 (380), 340 (237) К. С ростом давления теплоемкость $C_V(C_P)$ уменьшается по закону, близкому к линейному, со скоростью -0.718(-1.119), -0.540(-0.774), -0.415(-0.486) J · mol⁻¹ · K⁻¹ · GPa⁻¹. Скорость убывания соответствующей величины определялась как коэффициент *a*₁ в формуле (12). Рассчитанные значения молярной теплоемкости при постоянном давлении и температуре 298.15 К C_P^0 в ряду оксидов равны 48.5 (справочное значение 54.1), 66.8 (69.1), 75.0 $(72.0)\,J\cdot mol^{-1}\cdot K^{-1}\cdot GPa^{-1}.$ На рисунке приведены для сравнения температурные зависимости сжимаемости и теплоемкости, полученные нами (штриховая линия) и рассчитанные в [3] (сплошная линия), а также экспериментальные данные [5,46] (точки). Заметим, что в [3] для расчета функций использовался в квазигармоническом приближении весь фононный спектр Li₂O, тогда как в нашем случае — только длинноволновая его часть. Таким образом, в достаточно простой модели Дебая удается получить в целом неплохие результаты.

Коэффициент теплового расширения при P=0 $T = 300 \, \text{K}$ равен $6.297 \cdot 10^{-5}$, $7.261 \cdot 10^{-5}$, И $1.17 \cdot 10^{-4} \, K^{-1}$. В Li₂O, Na₂O он увеличивается при расширении (P < 0)и уменьшается при сжатии (P > 0) со скоростью $a_1 = 1.393 \cdot 10^{-5}$, $-5.318 \cdot 10^{-6} \text{ K}^{-1} \cdot \text{GPa}^{-1}$ при значении коэффициента $a_2 = 7.711 \cdot 10^{-7}, \quad 2.076 \cdot 10^{-7} \text{ K}^{-1} \cdot \text{GPa}^{-2}. \text{ B} \text{ K}_2\text{O}$ при 300 К кривая $\alpha(P)$ имеет максимум $1.19 \cdot 10^{-4} \, \mathrm{K}^{-1}$ при P = 1 GPa, положение которого не смещается с ростом температуры. Наличие особенности для $\alpha(P)$, $C_P(P)$ и сжимаемости свидетельствует о возможности фазового перехода второго рода в этом соединении.

Термодинамический потенциал свободной энергии F убывает с ростом температуры и возрастает при повышении давления. Внутренняя энергия E_T возрастает в обоих случаях. Энтропия увеличивается с ростом температуры и уменьшается с ростом давления. Для

Оксид	Функция f , kJ · mol ⁻¹	$f(P_0,T_0)$	a_1	<i>a</i> ₂	b_1	$b_2 \cdot 10^5$	$b_3 \cdot 10^8$
Li ₂ O	$F(P, T) \ E_T(P, V)$	24.018 32.751	0.636 0.328	0.043 0.052	-0.03 0.043	-6.845 4.146	1.459 -1.752
Na ₂ O	$F(P, T) \ E_T(P, V)$	6.963 25.893	0.650 0.074	0.104 0.119	$-0.060 \\ 0.057$	-9.413 3.281	2.891 -1.837
K ₂ O	$F(P, T) \ E_T(P, V)$	-4.314 24.164	1.007 0.048	0.178 0.206	$-0.087 \\ 0.065$	-12.012 3.261	5.846 -3.135

Таблица 5. Коэффициенты a_i, b_j полиномиальной интерполяции (12), (13) термодинамических потенциалов свободной *F* и внутренней E_T энергии

количественных характеристик этих изменений для зависимости от давления мы использовали формулу (12), а для зависимости от температуры — следующее соотношение:

$$f(T) = f(T_0, P_0) + b_1(T - T_0) + b_2(T - T_0)^2 + b_3(T - T_0)^3,$$
(13)

где величину T_0 положили равной 300 К. Соответствующие коэффициенты полиномиальной зависимости приведены в табл. 5. Термодинамические потенциалы Гиббса и энтальпии можно получить из данных табл. 5 и теплового давления, найденного как производная потенциала свободной энергии $P(T, V) = -(dF/dV)_T$. Увеличение $H_{298}^0 - H_0^0$ в оксидах равно 5.66 (7.23), 10.71 (12.39), 14.06 kJ · mol⁻¹ · K⁻¹.

Рассчитанная нами по формуле (9) стандартная молярная энтропия S⁰ при 298.15 К равна 28.8 (37.6), 62.7 (75.1). 94.4 (94.1) $J \cdot mol^{-1} \cdot K^{-1}$. Максимальное отклонение от справочных данных (значения в скобках) не превышает 23%. Исходя из экспериментальных значений энтропии можно, решая обратную задачу, определить температуру Дебая: 799, 437, 331 К. По величинам стандартной молярной энтропии химических соединений можно судить об особенностях их внутренней структуры. Поскольку в ряду оксидов значения S⁰ возрастают с ростом атомного номера катиона, Li₂O имеет более упорядоченную структуру. Убывание энтропии с ростом давления при фиксированной температуре сопровождается упрочнением материала, о чем свидетельствует увеличение модулей упругости. Адиабатический модуль B_S, который при 300 К в оксидах равен 77.2, 60.0, 34.9 GPa, при давлении 15 GPa составляет уже 123.3, 120.3, 131.5 GPa, а при температуре 700 К он уже больше исходного в 1.68, 2.11, 3.91 раза.

Под давлением вещество нагревается. В случае плавного адиабатического сжатия произвольного тела имеется квадратурная формула для вычисления его температуры [47], которая следует из уравнения Ми–Грюнайзена,

$$T_h = T_0 \exp\left[-\int_{V_0}^{V} \frac{\gamma_{\rm th}(V)}{V} \, dV\right]$$

Здесь зависимость термодинамического параметра Грюнайзена от объема и температуры относительно слабая: коэффициенты формулы (12) равны $a_1 = -0.017$, -0.028, -0.067 GPa^{-1} ; $a_2 = 4.411 \cdot 10^{-4}$, $7.778 \cdot 10^{-4}$, $2.041 \cdot 10^{-4} \text{ GPa}^{-2}$ при равновесном (T_0, V_0) значении γ_{th} , равном 1.532, 1.707, 2.250. Скорость нагревания оксидов с давлением увеличивается с ростом атомного номера катиона (5.469, 8.661, 16.418 K \cdot GPa⁻¹), и при давлении 15 GPa величина T_h равна 366, 398, 477 K. В свою очередь возрастание температуры приводит к увеличению энтропии, и поэтому при давлении 15 GPa она будет уже в 1.024, 1.012, 1.084 раза больше исходной.

Температуру плавления можно найти из термоупругих свойств по формуле $T_m = (2\alpha_0(B_1 + 1))^{-1}$ [48]. Для B_1 , согласно из EOSH, она равна 1573 (1726), 1348 (1405), 904 (1013) К, т.е. экспериментальные значения больше расчетных на 15.1, 5.6, 10.8%. Известный термодинамический метод [49] для оценки температуры плавления при высоких давлениях состоит в вычислении $d \ln T_m/d \ln V = f(\gamma)$, и наилучшим приближением для функции f в соответствии с правилом Гилвари является $f(\gamma) = -2(\gamma_{\rm th} - 0.333)$. С повышением давления температура плавления возрастает со скоростью 45.0, 62.8, 84.9 К · GPa⁻¹, и при давлении 15 GPa она равна 2138, 2104, 1947 К.

Коэффициент теплопроводности уменьшается с увеличением температуры и возрастает с ростом давления. Его значения при нормальных условиях (P_0, T_0) равны 14.04, 4.82, $1.35 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$, а скорость возрастания с давлением составляет 0.446, 0.243, $0.131 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$. Коэффициент диффузии равен при нормальных условиях $1.732 \cdot 10^{-6}$, $3.531 \cdot 10^{-7}$, $8.747 \cdot 10^{-8} \text{ m}^2 \cdot \text{s}^{-1}$, скорость его возрастания с давлением составляет $7.339 \cdot 10^{-8}$, $1.579 \cdot 10^{-8}$, $7.127 \cdot 10^{-9} \text{ m}^2 \cdot \text{s}^{-1} \cdot \text{GPa}^{-1}$. Тепловая диффузия тем больше, чем меньше ионный радиус катиона.

6. Заключение

Термодинамические потенциалы Гиббса и свободной энергии уменьшаются с увеличением температуры и увеличиваются с ростом давления. Скорость изменения этих величин с ростом давления максимальна для оксида калия и минимальна для оксида лития. Скорость убывания с увеличением температуры имеет такую же зависимость в ряду оксидов. Потенциалы внутренней энергии и энтальпии возрастают с ростом давления и температуры. Энтропия монотонно возрастает с ростом температуры и убывает с ростом давления. Теплоемкость при постоянном объеме быстро возрастает как T^3 в области малых температур, а затем плавно увеличивается до предельного значения. С ростом давления она монотонно уменьшается практически по линейному закону. Скорость убывания в зависимости от давления и возрастания в зависимости от температуры максимальна для оксида лития и минимальна для оксида калия. В этом теплоемкость принципиально отличается от энтропии. Подобным образом ведет себя и изобарическая теплоемкость. Коэффициент теплового расширения также сначала резко возрастает в области малых температур, а затем стремится к некоторому постоянному значению, он уменьшается с ростом давления. Коэффициент убывания по давлению возрастает с ростом атомного номера катиона, а коэффициент возрастания по температуре убывает. Параметр Грюнайзена увеличивается с ростом температуры и убывает с ростом давлением.

Список литературы

- [1] И.И. Вольнов Перекисные соединения щелочных металлов. Наука, М. (1980). 160 с.
- [2] R.H. Lamoreaux, D.L. Hildenbrand. J. Phys. Chem. Ref. Data. 13, 151 (1984).
- [3] P. Goel, N. Choudhury, L. Chaplot. Phys. Rev. B 70, 174 307 (2004).
- [4] T. Kurusawa, T. Takahashi, K. Noda, H. Takeshita, S. Nasu, H. Watanbe, J. Nucl. Mater. 107, 334 (1982).
- [5] S. Hull, T.W.D. Farley, W. Hayes, M.T. Hutchings. J. Nucl. Mater. 160, 125 (1988).
- [6] X.-F. Li, X.-R. Chen, C.-M. Meng, G.-F. Ji. Solid State Commun. 139, 197 (2006).
- [7] R. Weiyi, W.F.Z. Zhou, X. Pingchuan, S. Weiguo. J. Nucl. Mater. 404, 116 (2010).
- [8] В.Н. Жарков, В.А. Калинин. Уравнения состояния твердых тел при высоких давлениях и температурах. Наука, М. (1968). 314 с.
- [9] F. Birch. J. Geophys. Res. 57, 227 (1952).
- [10] K. Kunc, I. Loa, K. Syassen. Phys. Rev. B 68, 094 107 (2003).
- [11] P. Vinet, J.H. Rose, J. Ferrante, J.R. Smith. J. Phys.: Cond. Matter 1, 1941 (1989)
- [12] W.B. Holzapfel. Rep. Progr. Phys. 59, 29 (1996).
- [13] S.S. Kushwah1, J. Shanker. Physica B 253, 90 (1998).
- [14] R.E. Cohen, O. Gülseren, R.J. Hemley. Am. Mineralog. 85, 338 (2000).
- [15] A.B. Alchagirov, J.P. Perdew, J.C. Boettger, J.C. Albers, R.C. Fiolhais. Phys. Rev. B 63, 224 115 (2001).
- [16] A.K. Pandey. Pharma Chem. 1, 78 (2009).
- [17] Л.Д. Ландау, К.П. Станюкович. ДАН СССР 46, 399 (1945).
- [18] I.C. Slater. Introduction in the chemical physics. McGraw Book Company, Inc., N.Y.–London (1935). 239 p.
- [19] J.S. Dugdale, D. McDonald. Phys. Rev. 89, 832 (1953).
- [20] В.Н. Зубарев, В.Я. Ващенко. ФТТ. 5, 886 (1963).
- [21] Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, J. Meng. Phys. Rev. B 76, 054115 (2007).
- [22] В.Н. Беломестных. Письма в ЖТФ 30, 3, 14 (2004).
- [23] В.Л. Панков. Науки о Земле 1, 1, 11 (1998).

- [24] V.E. Fortov, I.V. Lomonosov. Open Plasma Phys. J. 3, 122 (2010).
- [25] A.R. Oganov, J.P. Brodholt, G.D. Price. Phys. Earth Planetary Interiors **122**, 277 (2000).
- [26] D. Chen, Q.-M. Xiao, Y.-L. Zhao, B.-K. Xiong, B.-H. Yu, D.-H. Shi. Chin. Phys. Lett. 25, 4352 (2008).
- [27] H. Fu, W. Liu, T. Gao. Can. J. Phys. 87, 169 (2009).
- [28] M.A. Blanco, A.M. Pendas, E. Francisco, J.M. Recio, R. Franco. J. Mol. Struct. (Theochem.) 368, 245 (1996).
- [29] S.-N. Luo, T.J. Ahrens. J. Geophys. Res. 108, 2421 (2003).
- [30] В.Ю. Бодряков, А.А. Повзнер, О.Г. Зелюкова. ФТТ **40**, 1581 (1998).
- [31] А.М. Молодец. Физика горения и взрыва 31, 5, 132 (1995).
- [32] L. Burakovsky, D.L. Preston, Y. Wang. Solid State Commun. 132, 151 (2004).
- [33] D.T. Morelli, J.P. Heremans. Appl. Phys. Lett. 81, 5126 (2002).
- [34] N. Koker. Earth Planetary Sci. Lett. 292, 392 (2010).
- [35] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison. CRYSTAL09 User's Manual. University of Torino, Torino (2009).
- [36] J.P. Perdew, Y. Wang. Phys. Rev. B 45, 13 244 (1992).
- [37] www.crystal.initio.it/Basic_Set/ptable.html.
- [38] C.G. Broyden. J. Appl. Math. 6, 222 (1970).
- [39] R. Wyckoff. Crystal structure. Interscience, N.Y. (1963). 420 p.
- [40] A. Lazicki, C.-S. Yoo, W.J. Evans, W.E. Pickett. Phys. Rev. B 73, 184 120 (2006).
- [41] Y. Duan, D.C. Soerescu. Phys. Rev. B 79, 014 301 (2009).
- [42] Z. Cancarevic, J.C. Schon, M. Jansen. Phys. Rev. B 73, 224114 (2006).
- [43] M. Moakafi, R. Khenata, A. Bouhemadou. Eur. Phys. J. B 64, 35 (2008).
- [44] X.-F. Li, X. Chen, G. Ji, C. Meng. Chin. Phys. Lett. 23, 925 (2006).
- [45] M.M. Elcombe, W. Pryor. J. Phys. C 3, 492 (1970).
- [46] T. Tanifugi, K. Shiozawa, S. Nasu. J. Nucl. Mater. 78, 422 (1978).
- [47] М.Ф. Сарры. ЖТФ, **68**, *10*, 1 (1998).
- [48] M. Kumar, M. Kumar. Ind. J. Pure Appl. Phys. 45, 256 (2007).
- [49] Z.-Y. Zeng, C.-E. Hu, X.-R. Chen, X.-L. Zhang, L.-C. Cai, F.-Q. Jing. Phys. Chem. Chem. Phys. 13, 1669 (2011).