^{10,12} Упругие и акустические характеристики углеродного 3D-супракристалла (C)_{СТО}

© Р.А. Браже, А.И. Кочаев

Ульяновский государственный технический университет, Ульяновск, Россия E-mail: a.kochaev@gmail.com

(Поступила в Редакцию 11 января 2012 г.)

С использованием методов *ab initio* и связывающих орбиталей Харрисона вычислены силовые константы центрального и нецентрального взаимодействий атомов углерода в 3D-супракристалле (С)_{СТО}. Вычислены компоненты тензора упругих жесткостей и скорости распространения упругих волн в этом супракристалле. Полученные результаты близки по своим значениям к соответствующим характеристикам алмаза.

Работа поддержана правительством Ульяновской области.

Наноаллотропные формы углерода: фуллерены, нанотрубки, графен и др. привлекают внимание исследователей в связи с их необычными механическими, электрическими и термическими свойствами, имеющими практическое применение [1]. В работе [2] показана возможность существования нового класса 2D- и 3D-наноаллотропов — так называемых супракристаллов, в узлах кристаллической решетки которых атомы замещены на их симметрично организованные комплексы. В частности, в узлах кубической супраячейки 3D-супракристалла атомы могут образовывать октаэдр, усеченный октаэдр и ромбокубооктаэдр. Из атомов углерода может быть построен лишь один тип 3D-супракристалла — (С)_{СТО} (рис. 1). Здесь первый индекс "С" за скобками определяет вид супраячейки (cubic — кубическая). Последующие индексы обозначают вид многогранника, образующего узловой элемент (truncated octahedron — усеченный октаэдр). Для образования химических связей в других 3D-супракристаллах требуются атомы, могущие принимать валентность, равную пяти и шести.

В работах [3,4] нами были исследованы упругие и акустические характеристики 2D-супракристаллов, составленных из атомов углерода, находящихся в состояниях с sp^2 или sp^3 гибридизацией. Здесь мы распространяем предложенную методику на 3D-супракристаллы. Ее основы были заложены в работах[5–9] и в модифицированном варианте использованы в [3,4] для расчета упругих свойств 2D-супракристаллов.

В супракристалле $(C)_{CTO}$ каждый атом углерода имеет четыре ближайших соседа (*sp*³-гибридизация), и его ковалентная энергия может быть вычислена по формуле [7]

$$V_2 = -3.22 \,\frac{\hbar^2}{m_0 l^2},\tag{1}$$

где \hbar — приведенная постоянная Планка, m_0 — масса свободного электрона, l — длина связи. Энергия метал-

лизации [7] находилась как

$$|V_1| = \sqrt{\frac{1}{15}} \left[|V_2| (3|E_{\text{atom}}| - 4|V_2|) \right]^{\frac{1}{2}},$$
 (2)

где E_{atom} — энергия на один атом, вычисленная для структуры (C)_{СТО} в [2] на основе теории функционала плотности с использованием программного пакета Abinit-5.8.4.

Силовые константы для центрального (α) и нецентрального (β) взаимодействий атомов углерода можно найти как в [7]

$$\alpha = \frac{2}{l^2} |V_2| \left[1 - \frac{15}{4} \left(\frac{V_1}{V_2} \right)^2 \right], \tag{3}$$

$$\beta = \frac{\lambda}{3} \, \alpha, \tag{4}$$

где параметр λ выражается через матричные элементы оператора ковалентной энергии между соответствующи-

Рис. 1. Пространственная структура супракристалла (С)_{СТО}.

Рис. 2. Поверхности фазовых скоростей для квазипродольной (*a*) и квазипоперечных (*b*, *c*) упругих волн в супракристалле (С)_{СТО}.

ми атомными волновыми функциями *s*- и *p*-состояний. Его вычисление для супракристаллических структур вызывает значительные трудности, поэтому для углеродного кубического супракристалла (C)_{СТО} в данной работе мы воспользовались отношением $\beta/\alpha = 0.66$ для алмаза [10].

Выражения для компонент тензора упругих жесткостей в случае кристаллов кубической сингонии имеют вид [10]

$$c_{11} = \frac{\alpha + 3\beta}{4a}, \quad c_{12} = \frac{\alpha - \beta}{4a}, \quad c_{44} = \frac{\alpha\beta}{a(\alpha + \beta)}, \quad (5)$$

где 4а — постоянная решетки.

В табл. 1 приведены расчетные значения параметров, определяемых выражениями (1)–(5), для супракристал-

ла (C)_{СТО} в сравнении с алмазом (C). Из нее следует, что рассчитанные по нашей модели значения упругих жесткостей алмаза близки к своим экспериментально найденным значениям [11] и значениям, вычисленным Китингом [10] на основе констант α и β , определенных Киттелем [12] из экспериментальных данных. Значения упругих жесткостей для исследуемого супракристалла (C)_{СТО} несколько меньше в силу более слабого межатомного взаимодействия в этой структуре.

Зная упругие жесткости и плотность кристалла, можно рассчитать его акустические характеристики. На рис. 2 представлены поверхности фазовых скоростей, в общем случае, для одной квазипродольной и двух квазипоперечных упругих волн в супракристалле (С)_{СТО}. Построение проводилось на основе модели, описанной

Таблица 1. Результаты расчета упругих характеристик (С)_{СТО} в сравнении с алмазом

Параметр	С(алмаз)	(C) _{CTO}	
l, Å	1.54 [7]	1.69 [2]	
4 <i>a</i> , Å	3.57	2.90 [2]	
$ E_{\text{atom}} , eV$	15.9 [7]	13.0 [2]	
$ V_2 , eV$	10.35 [7]	8.61	
$ V_1 $, eV	2.08 [7]	1.62	
α , N/m	119 [7]; 129 [10]	83.6	
β , N/m	78.5; 85 [10]	55.2	
$c_{11}, 10^{11}$ Pa	9.93; 10.73 [10,11]	8.59	
c_{12} , 10^{11} Pa	1.13; 1.25 [10,11]	0.98	
c_{44} , 10^{11} Pa	5.30; 5.76 [10,11]	4.59	

Таблица 2. Скорости распространения чистых мод упругих волн в супракристалле (С)_{СТО} в сравнении с алмазом

Мода Т во.	Тип	Сэфф	$c_{3\phi\phi}, \ 10^{11} \text{Pa}$		$v, 10^3 \text{m/s}$	
	волны		С	$(\mathbf{C})_{\mathrm{CTO}}$	С	(C) _{CTO}
β	L	$(c_{11}+2c_{12}+4c_{44})/3$	12.10	9.64	18.6	19.7
$\gamma \qquad \begin{bmatrix} T_2, T_3 \\ L \\ T_2 \end{bmatrix}$	$(c_{11}+c_{44}-c_{12})/3$	5.09	4.07	12.0	12.8	
	$(c_{11}+c_{12}+2c_{44})/2$	11.77	9.38	18.3	19.4	
	$(c_{11} - c_{12})/2$	4.76	3.81	11.6	12.3	
$\begin{array}{c} \alpha \\ \alpha \\ T_2, T_3 \end{array} \begin{array}{c} T_3 \\ L \\ T_2, T_3 \end{array}$	С 44	5.76	4.59	12.8	13.6	
	L	c ₁₁	10.76	8.59	17.5	18.6
	T_2, T_3	C 44	5.76	4.59	12.8	13.6

нами в работе [13], основанной на решении уравнения Грина-Кристоффеля [14].

Чисто продольные и чисто поперечные моды отвечают направлениям, проходящим через точки экстремумов уравнений изображенных поверхностей. Это кристаллофизические направления (001) (α -мода), (011) (γ -мода) и (111) (β -мода). Значения соответствующих скоростей чисто продольных и чисто поперечных волн можно вычислить по формулам, приведенным в [15], либо численно по методике, предложенной нами в [16,17]. Соответствующие результаты приведены в табл. 2. Значение плотности 3.51 g/cm³ для алмаза взято из [11] и для супракристалла (C)_{СТО} 2.48 g/cm³ — из [18].

То обстоятельство, что скорости распространения упругих волн в супракристалле $(C)_{CTO}$ оказываются даже выше, чем в алмазе, не должно вызывать удивления. Дело в том, что при соизмеримой по сравнению с алмазом жесткости кристаллического каркаса он имеет гораздо меньшую плотность (является более рыхлым).

Отметим, что найденные значения упругих и акустических характеристик супракристалла (С)_{СТО} являются оценочными и приведены здесь для того, чтобы стимулировать интерес исследователей к синтезу этого перспективного материала.

Список литературы

- Е.А. Беленков, В.В. Ивановская, А.Л. Ивановский. Наноалмазы и родственные углеродные наноматериалы. Компьютерное материаловедение. УрО РАН, Екатеринбург (2008). 169 с.
- [2] Р.А. Браже, А.А. Каренин. Изв. вузов. Поволжский регион. Физ.-мат. науки 18, 105 (2011).
- [3] Р.А. Браже, А.А. Каренин, А. И. Кочаев, Р.М. Мефтахутдинов. ФТТ **53**, 1406 (2011).
- [4] Р.А. Браже, А.И. Кочаев, Р.М. Мефтахутдинов. ФТТ 53, 1614 (2011).
- [5] С.Ю. Давыдов, А.А. Лебедев, Н.Ю. Смирнова. ФТТ 51, 452 (2009).
- [6] С.Ю. Давыдов. ФТТ 51, 2041 (2009).
- [7] С.Ю. Давыдов. ФТТ **52**, 172 (2010).
- [8] С.Ю. Давыдов. ФТТ 52, 756 (2010).
- [9] У. Харрисон. Электронная структура и свойства твердых тел. Т. 1. Мир, М. (1983). 381 с.
- [10] P.N. Keating. Phys. Rev. 145, 637 (1966).
- [11] H.J. McSkimin, W.L. Bond. Phys. Rev. 105, 116 (1957).
- [12] C. Kittel. Introduction to Solid State Physics. John Wiley & Sons, N.Y. (1956).
- [13] A.I. Kochaev, R.A. Brazhe. Acta Mechan. 222, 193 (2011).
- [14] E.B. Christoffel. Ann. di matematica pura ed applicata. 8, 193 (1877).
- [15] K. Brugger. J. Appl. Phys. 36, 759 (1965).
- [16] A.I. Kochaev, R.A. Brazhe. Acta Mechan. 220, 199 (2011).
- [17] А.И. Кочаев. Свидетельство о государственной регистрации программы для ЭВМ № 2011614305 от 31.05.2011 г.
- [18] Р.А. Браже, А. А. Каренин, И.С. Оленин. Радиоэлектронная техника. Межвуз. сб. науч. тр. УлГТУ, Ульяновск (2010). С.156.