Реконструкция зависимостей туннельного тока от напряжения на окисле по динамическим вольт-амперным характеристикам гетероструктур *n*⁺-Si–SiO₂–*n*-Si

© А.Г. Ждан, Н.Ф. Кухарская, В.Г. Нарышкина, Г.В. Чучева¶

Институт радиотехники и электроники Российской академии наук, 141190 Фрязино, Россия

(Получена 30 ноября 2006 г. Принята к печати 18 декабря 2006 г.)

Прецизионные измерения динамических вольт-амперных характеристик структуры Al- n^+ -Si-SiO₂-n-Si с тонким (< 50 Å) окислом позволяют выделить из полного тока его активную (I_a) и емкостную (I_c) составляющие. Развит алгоритм анализа последней, обеспечивающий определение в едином эксперименте уровня легирования n-Si, "емкости окисла" C_i , а также плотности и знака фиксированного в нем заряда. На основании этих данных без привлечения каких-либо подгоночных параметров в поперечных полях $|F| \le 10 \text{ MB/cm}$ рассчитаны зависимости поверхностного потенциала n-Si и падения напряжения на окисле V_i от потенциала затвора V_g . При максимальных |F| слоевая плотность электронов (дырок) в n-Si превышает 10^{13} см^{-2} , свидетельствуя о вырождении и размерном квантовании электронного тока $I_t(V_g)$ и $V_i(V_g)$ реконструированы вольт-амперные характеристики туннельного тока $I_t(V_i) \equiv I_a(V_i)$, представленные более чем на 10 порядках величины его изменения, как в режиме обогащения поверхности n-Si, так и в режиме инверсии. Наблюдавшиеся характеристики $I_t(V_i)$ количественно не описываются в рамках существующих представлений о туннельном эффекте.

PACS: 73.40.Gk, 73.40.Qv, 85.30.Mn

Своеобразие субмикрометровых полевых транзисторов с изолированным затвором на основе гетеросистемы SiO₂/Si определяется двумя обстоятельствами: сверхтонким туннельно-проницаемым окислом с толщиной *h* < 50 Å и наличием между металлическим полевым электродом и поверхностью SiO₂ прослойки из вырожденного поликремния [1]. Значительная проводимость столь тонких окисных слоев (плотность тока до 10 A/см²) стимулировала интенсивные исследования туннельного эффекта в подобных структурах [1-5] и поиск новых изолирующих материалов в пару к кремнию с высокой диэлектрической проницаемостью, позволяющей сохранять инжекционную способность затвора при пониженных токах утечки за счет увеличения толщины изолятора [1,6,7]. Между тем независимо от толщины, природы и механизма электропроводности изолирующего слоя вольт-амперные характеристики (ВАХ) структур полевой электрод-диэлектрик-полупроводник, как правило, резко суперлинейны [8]. Поэтому принципиально важно измерять ток сквозной проводимости не как функцию потенциала затвора V_g, а как функцию величины падения напряжения на изоляторе V_i . В противном случае ошибки в качественной и тем более в количественной интерпретации результатов эксперимента будут неизбежны. К сожалению, на практике данное обстоятельство чаще всего игнорируется [1,8].

Рассмотрим чисто экспериментальную возможность идентификации ВАХ сквозного (туннельного) тока в терминах $I_t(V_i)$. Пусть для определенности туннельные переходы электронов сквозь окисел происходят в структуре Me $-n^+$ -Si-SiO $_2-n$ -Si (МП $^+$ ОП). Тогда независимо

от их направления $(n-Si \rightarrow n^+-Si, n^+-Si \rightarrow n-Si)$ падение напряжения на окисле есть

$$V_i(V_g) = V_g + V_c + \Delta V_{\text{ox}} - \Psi_s(V_g) = -Q_s(V_g)/C_i.$$
 (1)

Здесь V_c — контактная разность потенциалов n^+ -Si/n-Si, $\Delta V_{\rm ox} = q N_{\rm ox} / C_i$ — сдвиг напряжения "плоских зон", вызванный присутствием в окисле фиксированного заряда со слоевой плотностью $N_{\rm ox}$, q — элементарный заряд, $C_i = \varepsilon_0 \varepsilon_i / h$ — удельная "емкость окисла", ε_i и ε_0 — диэлектрические проницаемости окисла и вакуума, $Q_s(V_g)$ — поверхностный заряд на полупроводниковых обкладках МП+ОП конденсатора, $\Psi_{s}(V_{o})$ — выраженный в вольтах эффективный поверхностный потенциал: $\Psi_s(V_g) = \Psi_{sn}(V_g) - \Psi_{sn^+}(V_g)$, $\Psi_{sn}(V_g)$ и $\Psi_{sn^+}(V_g)$ — поверхностные потенциалы n-Si и n^+ -Si, отсчитываемые от дна их зон проводимости E_{cn}/q и E_{cn^+}/q соответственно. Знаки $\Psi_{sn}(V_g)$, $\Psi_{sn^+}(V_g)$ в общем случае противоположны: при обогащении поверхности *n*-Si $\Psi_{sn}(V_g) > 0$, $\Psi_{sn^+}(V_g) < 0$, а при обеднении наоборот. Ток зарядки/разрядки конденсатора $I = dQ_s/dt = (dQ_s/dV_g)(dV_g/dt) = C(V_g)(dV_g/dt),$ и

$$-\mathcal{Q}_{s}(V_{g}) = C_{i}V_{i}(V_{g}) = \int_{V_{gFB}}^{V_{g}} C(V_{g})dV_{g}, \qquad (2)$$

где $V_{gFB} = -(V_c + \Delta V_{\text{ox}})$ — напряжение "плоских зон" (при $V_g = V_{gFB}$ $\Psi_s = 0$, $V_i = 0$, $Q_s = 0$)¹ [8,9], $C(V_g)$ — квазиравновесная вольт-фарадная характеристика (ВФХ) МП⁺ОП структуры.

[¶] E-mail: gvc@ms.ire.rssi.ru

¹ Тем самым считается, что условие "плоских зон" распространяется и на прослойку n^+ -Si.

Рис. 1. Начальные области динамических ВАХ МП⁺ОП структуры $I(V_g) \equiv I^+(V_g)$ и $I(V_g) \equiv I^-(V_g)$ соответственно при линейном нарастании (1) и спаде (2) потенциала полевого электрода V_g с $|\beta| = 8 \cdot 10^{-3} \text{ B} \cdot \text{c}^{-1}$. 3 — емкостные компоненты полного тока $I(V_g) \equiv I_c(V_g) = C\beta$ (*C* — емкость МП⁺ОП структуры), определяемые как полуразности токов $I^+(V_g)$, $I^-(V_g)$. *a* — темновые характеристики (стрелкой отмечена область перехода к периферическому каналу генерации дырок); *b* — характеристики, полученные при слабой подсветке периферии затвора.

При анализе квазиравновесных ВФХ физически значимые результаты достигаются только при достаточно низкой погрешности определения квазиравновесной ВФХ, V_{gFB} , $C_i(h)$ и уровней легирования *n*-Si, n^+ Si (концентраций доноров N_d, N⁺_d) [10–12]. Однако соответствующие данные получить непросто. Обычно величину N_d находят по ВФХ диодов Шоттки [8], сформированных на Si-пластинах, в дальнейшем используемых в тестовых и приборных МП⁺ОП структурах. Однако при этом исчезает уверенность в сохранении найденных таким путем значений N_d , N_d^+ в конечном продукте, подвергавшемся многочисленным радиационным и термическим обработкам. Определение V_{eFB} и $C_i(h)$ базируется на сопоставлении экспериментальной и идеальной квазиравновесных ВФХ [8-12] (для вычисления последней, собственно говоря, и необходимо точное знание N_d). Такое сопоставление в случае "толстых" окислов (h > 500 Å) проводится в областях инверсии и обогащения, в которых емкость пограничных состояний (ПС) много меньше емкости области пространственного заряда (ОПЗ) полупроводника, $C_{ss} \ll C_s$, так что присутствием ПС на межфазной границе SiO₂/Si можно пренебрегать [8-12]. Идеальные квазиравновесные ВФХ традиционно рассчитываются по классической теории ОПЗ [13], не адекватной условиям сильного обогащения или глубокой инверсии n-Si вследствие эффектов вырождения и размерного квантования электронного газа, проявляющихся, очевидно, тем сильнее, чем тоньше окисел. Поэтому в отношении рассматриваемых объектов традиционная методология анализа квазиравновесных ВФХ неприемлема, в том числе из-за необходимости учета зависимости $\Psi_{sn^+}(V_g)$, к описанию ОПЗ которой формализм [13], сторого говоря, неприменим. Из (1) видно: при данном поверхностном заряде $Q_s(V_g) = \text{const}$ на полупроводниковых обкладках МП⁺ОП структуры с уменьшением h и ростом C_i управляющее напряжение Vg падает. В случае сверхтонкого окисла C_i чрезвычайно велика, а V_g достаточно мало, так что требования к точности определения параметров, фигурирующих в уравнениях (1), (2), с уменьшением hстановятся все более жесткими.² Поэтому измерения квазиравновесных ВФХ должны выполняться с применением прецизионной техники, которая обеспечивала бы выделение из полного тока $I(V_{g})$ его емкостной, $I_{c}(V_{g})$, и активной (в частности туннельной) компоненты, $I_a(V_g) \equiv I_t(V_g)$, в том числе в практически наиболее вероятной ситуации, когда $I_c(V_g) \ll I_t(V_g)$. Отмеченные обстоятельства обусловливают необходимость развития нового подхода к измерениям и анализу квазиравновесных ВФХ МП⁺ОП структур с туннельно-проницаемым окислом.

С этой целью при температуре $T = (293 \pm 0.1)$ К были измерены динамические ВАХ МП⁺ОП структуры с полевым электродом Al $-n^+$ -Si:Р ($N_d^+ \approx 10^{20}$ см $^{-3}$), изолированным от подложки *n*-Si (КЭФ-4.5) ориен-

 $^{^{2}}$ С уменьшением *h* зависимость $\Psi_{s}(V_{g})$ ослабляется вследствие вырождения и квантования электронного газа [14].

тации (100) слоем пирогенного окисла с оптической толщиной 40 Å. Полный ток $I(V_g)$ в цепи затвора-*n*-Si (площадь затвора $S = 1.6 \cdot 10^{-3}$ см²) регистрировался с цифровой точностью ~ 0.1% на установке [15] в режиме линейной развертки по напряжению $V_g = V_{0g} + \beta t \ (V_{0g} = V_g|_{t=0}, |\beta| \ge 8 \cdot 10^{-3} \text{ B} \cdot \text{c}^{-1}$ скорость развертки, t — время). Каждый измерительный цикл содержал до $2 \cdot 10^3$ пар точек I, V_g . Как показано в [10], усреднение динамических ВАХ, полученных при нарастании $V_g \ (\beta > 0)$ и его спаде $(\beta < 0) \ V_g \ (I^+(V_g), I^-(V_g)$ соответственно), позволяет выделить из полного тока $I(V_g)$ его активную и емкостную компоненты: $I_a(V_g) = [I^+(V_g) + I^-(V_g)]/2$, $I_c(V_g) = [I^+(V_g) - I^-(V_g)]/2$. Непосредственно измеренные зависимости $I^+(V_g), I^-(V_g)$ и результаты их усреднения приведены на рис. 1, 2.

Представленные на рис. 1, а динамические ВАХ (кривая 1, $\beta > 0$; кривая 2, $\beta < 0$) и выделенный из них емкостной ток (кривая 3) получены в полной темноте. При $\beta < 0$ на кривой 2 ($V_g < 0$) прорабатывается лишь начало инверсии, далее ток $I(V_g)$ испытывает резкий перегиб (отмечен вертикальной стрелкой) и переходит к квазинасыщению на уровне $\sim (-10^{-12}) \, \mathrm{A}$ в независимости от знака β и величины V_g . Перегиб связан с резким замедлением темпа рождения электронно-дырочных пар через поверхностные центры генерации вследствие установления квазиравновесия между электронным заполнением этих центров и валентной зоной *n*-Si; за областью перегиба очень низкий, слабо зависящий от V_g темп рождения дырок обусловлен исключительно их термогенерацией по периферии полевого электрода [16,17]. В течение достаточно длительного времени (>100 с) структура находится в состоянии сильного неравновесного обеднения, напряжение Vg падает в основном на *n*-Si, $V_i(V_g) \approx 0$, ток через окисел практически отсутствует [17]. При некотором $V_{o} < 0$ ($\beta > 0$) на кривой 1 возникает пик тока, связанный с переходом от безрекомбинационного режима периферической термогенерации дырок к квазиравновесному режиму инверсии. Процесс перехода существенно нестационарен и не может быть описан на основе используемых здесь представлений о квазиравновесных ВФХ. В итоге емкостной ток (кривая 3) определен в области $V_g \gtrsim -0.8\,\mathrm{B}$, а наблюдения ВАХ $I(V_g)$ в темноте при инверсии поверхности *n*-Si оказались невозможными. Поэтому соответствующие измерения проводились при подсветке периферии затвора слабым (за счет пониженного напряжения питания) излучением светодиода АЛ-310А. Результаты приведены на рис. 1, b. Подстветка не влияет на характеристики (рис. 1, *a*) при $V_{g} > -0.4 \,\mathrm{B}$ и позволяет по описанному выше алгоритму выделить и в режиме инверсии из полного тока его активную и емкостную составляющие. Последняя удовлетворительно стыкуется с кривой 3 вблизи $V_g = -0.4 \,\mathrm{B}$ (рис. 1).

На рис. 2 точки отвечают статическим ВАХ $I_a(V_g)$, наблюдавшимся при ступенчатом изменении V_g (см. встав-

Рис. 2. Динамическая (сплошная линия, активная компонента полного тока $I(V_g) \equiv I_a(V_g)$) и статическая (точки) ВАХ МП⁺ОП структуры. Фрагменты статических ("ступенчатых") ВАХ приведены на вставках: вверху — $I(V_g) > 0$, V_g нарастает в последовательности 1.004 (нижняя ступенька), 1.104, 1.204, 1.304, 1.404 В; внизу — $I(V_g) < 0$, V_g уменьшается в последовательности –1.4 (верхняя ступенька), –1.5, –1.6, –1.7, –1.8, –1.9 В.

ки на рис. 2). Независимость тока от времени на каждой из ступенек свидетельствует о его стационарности. Полное совпадение "динамических" (сплошная линия) и статических (точки) ВАХ — подтверждение эффективности методики [10], позволяющей различать емкостную компоненту тока на фоне активной при их отношении ~ 0.01. Наблюдения тока $I_c(V_g)$ в диапазоне $|V_g| > 2$ В возможны только при повышении $|\beta|$. Однако предельно достижимое при этом значение — $V_g \approx \pm 3$ В, оно лимитируется разрядностью цифровых измерителей тока и нарушением режима квазиравновесия при высоких $|\beta|$. Выделенная из полного тока квазиравновесная ВФХ $C(V_g) = I_c(V_g)/\beta S$ — сплошная линия на рис. 3.

Для последующих оценок экспериментальная ВФХ экстраполировалась в недоступные для прямых наблюдений области V_g по следующей схеме. На наиболее пологих участках измеренной ВФХ ($1.5 < V_g < 3$ В, $-3 < V_g < -2$ В) с использованием адаптивного ти-

Рис. 3. Квазиравновесная ВФХ МП⁺ОП структуры $C(V_g) = I_c(V_g)/\beta S$. Емкостной ток $I_c(V_g)$ выделен из динамической ВАХ полного тока усреднением зависимостей $I^+(V_g)$ и $I^-(V_g)$. На вставке — иллюстрация метода экстраполяции квазиравновесной ВФХ в недоступный для непосредственных измерений диапазон V_g : I (сплошная линия) — квазиравновесная ВФХ $C(V_g)$ в области измерений; 2 (точки) — производная ВФХ в области $I \ dC(V_g)/dV_g$; 2 (сплошная линия и пунктир) — квазигиперболическая аппроксимация производной $dC(V_g)/dV_g$; 3 (штриховая линия) — экстраполированный участок квазиравновесной ВФХ, полученный интегрированием производной 2 (пунктир). Шум на ВФХ в диапазоне $-3 \le V_g \le 3$ В сглажен посредством цифровой фильтрации [18].

хоновского алгоритма [18] находились производные $dC(V_g)/dV_g$. Затем подбиралась аналитическая функция $f(V_g)$, максимально точно описывающая зависимости $dC(V_g)/dV_g$ от V_g в избранных интервалах изменения V_g, что устанавливалось посредством регрессионного анализа. Интегрирование уравнения $dC(V_g) = f(V_g) dV_g$ до предпробойных полей $(F \approx V_g/h)$ $\approx 1 \cdot 10^7 \,\mathrm{B/cm})$ позволяло оценить ход квазиравновесной ВФХ вплоть до его естественного предела (электрического пробоя окисла). Экстраполированные участки ВФХ изображены на рис. З штриховой линией. Наилучшие результаты дают квазигиперболические функции вида: $f(V_g) = D/V_g^{\gamma}$, $D = -1.321 \cdot 10^{-8} \, \Phi \cdot \mathrm{cm}^{-2} \cdot \mathrm{B}^{0.5}$, $\gamma = 1.5$ (обогащение); $D = -2.722 \cdot 10^{-7} \, \Phi \cdot \mathrm{cm}^{-2} \cdot \mathrm{B}^{1.95}$, $\gamma = 2.95$ (инверсия). Пример реализации данной процедуры показан на вставке к рис. 3. Идентификация ВАХ активного тока $I_a(V_g) \ge 10^{-8}$ А не вызывала затруднений, так как при минимальной | в емкостной ток $I_c(V_o) \ll 10^{-8} \,\mathrm{A}.$

Заслуживает внимания весьма наглядный факт: обычно емкость структур в области квазинасыщения квазиравновесной ВФХ отличается от "емкости окисла" C_i лишь на несколько процентов или даже на десятые доли процента [9,10,12]. Емкость же исследуемой структуры в сильных поперечных полях (рис. 3) оказывается меньше $C_i(h = 40 \text{ Å}) = 8.620 \cdot 10^{-7} \, \Phi \cdot \text{сm}^{-2}$ на ~ 10%. Этот факт — прямое следствие пиннинга уровня Ферми

n-Si у краев разрешенных зон, обусловленного вырождением и размерным квантованием электронного газа (см. сноску²), а также существования ОПЗ у поверхности n^+ -Si, емкость которой $C_{sn^+} = C_{sn^+}(V_g) \neq \infty$. Развиваемые далее алгоритмы анализа квазиравновесных ВФХ, определения функции $V_i(V_g)$ и установления ряда базовых электронных характеристик МП⁺ОП структуры не зависят ни от состояния электронного газа в слоях сильного обогащения или глубокой инверсии *n*-Si, ни от других отмечавшихся выше факторов.

При низкой плотности ПС на контакте SiO₂/Si и потенциалах V_g , отвечающих переходу от напряжения "плоских зон" к началу инверсии, у поверхности *n*-Si возникает слой обеднения, емкость которого $C_{sn}(\Psi_{sn})$ корректно описывается теорией [13]. В этом случае легко убедиться, используя уравнение $d\Psi_s/dV_g = 1 - C(V_g)/C_i = C(V_g)/C_{sn}(\Psi_{sn})$ [8,9], соотношение $C^{-1}(V_g) = C_{sn}^{-1}(\Psi_{sn}) + C_i^{-1}$ и производную $dC(V_g)/dV_g = [dC(V_g)/d\Psi_{sn}](d\Psi_{sn}/dV_g)$, что

$$\frac{dC^{-2}(V_g)}{dV_g}\Big|_{V_g=\tilde{V}_g} = \frac{dC_{sn}^{-2}(\Psi_{sn})}{d\Psi_{sn}}\Big|_{\Psi_{sn}=\tilde{\Psi}_{sn}}.$$
 (3)

(Значения \tilde{V}_g и $\tilde{\Psi}_{sn}$ при этом, разумеется, всегда однозначно коррелированы). Следовательно, в режиме обеднения зависимости $C^{-2}(V_g)$ и $C_{sn}^{-2}(\Psi_{sn})$ должны описывать прямые линии с одинаковыми угловыми коэффициентами (3), определяющими уровень легирования *n*-Si:

$$N_{d} = \frac{2}{q\varepsilon_{0}\varepsilon_{s}} \left[-\frac{1}{dC^{-2}(V_{g})/dV_{g}} \right]$$
$$= \frac{2}{q\varepsilon_{0}\varepsilon_{s}} \left[-\frac{1}{dC_{sn}^{-2}(\Psi_{sn})/d\Psi_{sn}} \right], \tag{4}$$

где ε_s — диэлектрическая проницаемость Si. На рис. 4 приведены экспериментальная (точки, зависимость построена по темновой ВФХ — рис. 1, *a*, кривая 3) и идеальная (сплошная кривая 2) зависимости — $C^{-2}(V_g)$ и $C_{sn}^{-2}(\Psi_{sn})$ соответственно. Сплошная прямая *I* проведена с использованием метода наименыших квадратов. По ее угловому коэффициенту $\varkappa_{\rm ex} = -(8.187\pm0.003)\cdot10^{15}\,\Phi^{-2}\cdot{\rm B}^{-1}\cdot{\rm cm}^4$ находим $N_d = 1.449\cdot10^{15}\,{\rm cm}^{-3}$. Данное значение N_d использовано при расчете по [13] зависимости $C_{sn}(\Psi_{sn}) = dQ_{sn}(\Psi_{sn})/d\Psi_{sn}$, где

$$Q_{sn}(\Psi_{sn}) = \operatorname{sgn}\left(-\Psi_{sn}\right) \frac{\sqrt{2}\,\varepsilon_{0}\varepsilon_{s}kT}{qL_{D}} \\ \times \left[e^{\theta} - \theta - 1 + \left(\frac{n_{i}}{N_{d}}\right)^{2}\left(e^{-\theta} + \theta - 1\right)\right]^{1/2}, \quad (5)$$

k — постоянная Больцмана, $L_D = (\varepsilon_0 \varepsilon_s kT/q^2 N_d)^{1/2}$ — дебаевская длина, $\theta = q \Psi_{sn}/kT$, $n_i = 8.34 \cdot 10^9 \text{ см}^{-3}$ — собственная концентрация носителей заряда в *n*-Si. Угловой коэффициент прямой 2 $\kappa =$

Рис. 4. Емкость МП⁺ОП структуры (точки) и идеальной ОПЗ *n*-Si (2) в координатах Шоттки $C^{-2}(V_g)$ и $C_{sn}^{-2}(\Psi_{sn})$ соответственно при обеднении поверхности *n*-Si основными носителями заряда. Сплошная линия 1 — приближение экспериментальных данных (рис. 1, *a*, кривая 3) с использованием метода наименыших квадратов. Функция $C_{sn}(\Psi_{sn})$ рассчитана согласно [13]. Параметры расчета: T = 293 K, $N_d = 1.449 \cdot 10^{15}$ см⁻³, собственная концентрация носителей заряда в *n*-Si $n_i = 8.34 \cdot 10^9$ см⁻³.

= $-8.186 \cdot 10^{15} \Phi^{-2} \cdot B^{-1} \cdot cm^4$, т.е. весьма близок к \varkappa_{ex} . Нарушения линейности $C^{-2}(V_g)$, $C_{sn}^{-2}(\Psi_{sn})$ обусловлены переходом структуры в режим инверсии (уменьшение V_g , Ψ_{sn}) или в режим обогащения (увеличение V_g , Ψ_{sn}). Малая средняя квадратичная ошибка линейной аппроксимации экспериментальной зависимости $C^{-2}(V_g)$ на достаточно протяженном по V_g интервале, параллельность прямых $C^{-2}(V_g)$ и $C_{sn}^{-2}(\Psi_{sn})$ и разумная для кремния марки КЭФ-4.5 концентрация доноров свидетельствуют об отсутствии градиента их концентрации вдоль нормали к гетерогранице Si/SiO₂, а также о несущественной роли ПС и ОПЗ слоя n^+ -Si в области обеднения n-Si.

Среднее расстояние по оси Ψ_{sn} , V_g между прямыми 1 и 2 на рис. 4 равно напряжению "плоских зон" $V_{gFB} = V_g - \Psi_{sn} = -(0.193 \pm 0.003)$ В, так как $C_{sn}^{-2}(\Psi_{sn}) = C^{-2}(V_g)$ только при $C_i = \infty$, когда уравнение (1) удовлетворяется лишь при условиях $Q_s = 0$, $\Psi_s = 0$, $V_{gFB} + V_c + \Delta V_{ox} = 0$. Следовательно, если V_{gFB}

8* Физика и техника полупроводников, 2007, том 41, вып. 9

известно, то интегрирование экспериментальной квазиравновесной ВФХ (уравнение (2)) позволяет непосредственно найти зависимость от V_g поверхностного заряда на полупроводниковых обкладках МП⁺ОП конденсатора $Q_{sn}(V_g) = -Q_{sn^+}(V_g) = \text{sgn}(-Q_{sn})C_iV_i(V_g)$ (рис. 5, кривая 1).

Определение функции $V_i(V_o)$ требует "емкости эффективного установления значения окисла" С_i. Замечая, что при "плоских зонах" $C_i = C(V_{gFB}C_{sn}(V_{gFB}) / [C_{sn}(V_{gFB}) - C(V_{gFB})], \ C(V_{gFB}) =$ $= 0.833 \cdot 10^{-7} \, \Phi \cdot \mathrm{cm}^{-2}$, учитывая погрешность определения $C(V_{a})$, равную ~ (± 0.1) %, и рассчитывая $C_{sn}(V_{gFB})$ для *n*-Si по известной формуле [8,9] $C_{sn}(V_{gFB}) = \varepsilon_0 \varepsilon_s / L_D = 0.983 \cdot 10^{-7} \, \Phi \cdot \mathrm{cm}^{-2},$ находим $C_i = (8.70 \pm 0.09) \cdot 10^{-7} \, \Phi \cdot \mathrm{см}^{-2}$ и $h = (39.6 \pm 0.4) \, \mathrm{\AA}.$

Как следует из соотношений (1), (2), значения V_{gFB} и С_i существенно определяют количественные результаты анализа квазиравновесных ВФХ, так что приведенные выше напряжение "плоских волн" и "емкость окисла" нуждаются в независимом подтверждении. Найдем его, приравнивая емкости $C_{sn}(\Psi_{sn})$ и $C(V_g)$ в областях линейности зависимостей $C_{sn}^{-2}(\Psi_{sn})$ и $C^{-2}(V_g)$. Выберем в середине данных областей (рис. 4) некоторую произвольную например точку $C_{sn^*}^{-2}(\Psi_{sn^*}) = C_*^{-2}(V_{e^*}) =$ точку, = 2.184 · 10¹⁵ Φ^{-2} · cm⁴, T.e. $C_{sn^*}(\Psi_{sn^*}) = C_*(V_{g^*}) =$ = 2.140 · 10⁻⁸ Φ · cm⁻², $\Psi_{sn^*} = -0.292$ B, $V_{g^*} = -0.476$ B. При $C_i \neq \infty$ такие равенства, очевидно, невозможны, и емкости $C_*(V_{g^*})$ должны отвечать иные $C_{sn} = \widetilde{C}_{sn}$ и $\Psi_{sn} = \widetilde{\Psi}_{sn}$. Рассчитаем $\widetilde{C}_{sn}(\widetilde{\Psi}_{sn})$ по формуле $\widetilde{C}_{sn}(\widetilde{\Psi}_{sn}) = C_i C / (C_i - C)$, где $C_i = 8.70 \cdot 10^{-7} \, \Phi \cdot \mathrm{cm}^{-2}$, а $C = C_* (V_{g^*}) = 2.140 \cdot 10^{-8} \, \Phi \cdot \mathrm{cm}^{-2}$. Имеем: $\widetilde{C}_{sn}(\widetilde{\Psi}_{sn}) =$ $= 2.194 \cdot 10^{-8} \Phi \cdot cm^{-2}, \qquad \tilde{\Psi}_{sn} = -0.281 \text{ B}.$ Разность $V_{g^*} - \widetilde{\Psi}_{sn} = -0.476 + 0.281 = -0.195 \,\mathrm{B}$ есть не что

Рис. 5. Зависимости от потенциала полевого электрода V_g поверхностного заряда $Q_{sn}(V_g)$ *n*-Si (1) и обобщенного поверхностного потенциала $\Psi_s(V_g)$ МП⁺ОП структуры (2), рассчитанные по экспериментальной квазиравновесной ВФХ (рис. 3) на основании уравнений (1), (2). Падение напряжения на окисле $V_i(V_g) = -Q_{sn}(V_g)/C_i$ идентифицирует ось ординат $-V_i$.

иное как V_{gFB} , поскольку $\widetilde{\Psi}_{sn}$ — поверхностный потенциал *n*-Si при обеднении (рассчитывается по величине \widetilde{C}_{sn} , отвечающей идеальной зависимости $C_{sn}(\Psi_{sn})$) жестко коррелирован с величиной V_{g^*} ввиду однозначной связи $\widetilde{C}_{sn}(\widetilde{\Psi}_{sn})$ и $C_*(V_{g^*})$. Близость полученных из различных соображений значений V_{gFB} и отсутствие заметной зависимости величины $\widetilde{C}_{sn}(\widetilde{\Psi}_{sn})$ от погрешности определения C_i (~1%) свидетельствуют о приемлемости использованной ранее методики установления V_{gFB} и C_i .

Согласно (2), искомая функция $V_i(V_g)$ отличается от произведения $C_iV_i(V_g)$ только коэффициентом $C_i = \text{const}$, что позволяет найти ее простым масштабированием кривой I на рис. 5. Соответствующая ось V_i вынесена за пределы рис. 5, на котором (кривая 2) представлена и зависимость $\Psi_s(V_g) = \Psi_{sn}(V_g) - \Psi_{sn^+}(V_g)$, полученная по уравнениям (1), (2) с известными значениями C_i , V_{gFB} и $V_c + \Delta V_{ox}$.

Данные рис. 5 позволяют в приближении теории [13] оценить поверхностный потенциал n-Si в состояниях максимального обогащения (Ψ^n_{snm}) и инверсии (Ψ^p_{snm}) . При предельных значениях V_g (рис. 5) словые плотности электронов $n_{sn} = Q_{snm}^n/q = 2.14 \cdot 10^{13} \,\mathrm{cm}^{-2}$ и дырок $p_{sn} \approx Q_{snm}^p/q = 2.00 \cdot 10^{13} \,\mathrm{cm}^{-2}$ отвечают условиям сильного размерного квантования, при которых края разрешенных зон n-Si оказываются под (обогащение) или над (инверсия) уровнем Ферми E_{Fn} на расстояниях до ~ 0.1 эВ [14]; $E_{Fn} = kT \ln(N_c/N_d) = 0.248 \text{ B}, N_c = 2.7 \cdot 10^{19} \text{ cm}^{-3}$ эффективная плотность состояний в зоне проводимости *n*-Si. Поверхностные заряды на полупроводниковых обкладках $M\Pi^+O\Pi$ конденсатора при любых фиксированных V; всегда равны по величине и противоположны по знаку, так что $Q_{snm}^m(V_{im}^n) = -Q_{sn^+m}^p(V_{im}^n) =$ = -3.434 · 10⁻⁶ Кл · см⁻² и $Q_{snm}^p(V_{im}^p) = -Q_{sn^+m}^n(V_{im}^p) =$ = 3.212 · 10⁻⁶ Кл · см⁻², $V_{im}^n = 3.94$ В, $V_{im}^p = -3.692$ В максимальное и минимальное значения V_i при обогащении и инверсии поверхности n-Si. Из уравнения (5) при $Q_{sn}(\Psi_{sn}) = Q_{snm}^p(V_{im}^p) = Q_{snm}^p(\Psi_{snm}^p) =$ = 3.212 · 10⁻⁶ Кл · см⁻², $N_d = 1.449 \cdot 10^{15}$ см⁻³, $n_i =$ $= 8.34 \cdot 10^9$ см⁻³ находим величину $\Psi^p_{snm} = -0.95$ В, которой отвечают минимальные значения $V_o = -4.900 \,\mathrm{B}$ $\Psi^p_s = -1.015$ В. Поскольку $\Psi^p_s = \breve{\Psi}^p_{snm} - \Psi^n_{sn^+m},$ И имеем: $\Psi_{sn^+m}^n = 0.065$ В. Это значение максимального поверхностного потенциала *n*⁺-Si удовлетворяет соотношению $Q_{sn^+m}^n(\Psi_{sn^+m}^n) = -Q_{snm}^p(V_{im}^p)$. Далее по уравнению (5) при $Q_{sn}(\Psi_{sn}) = 3.212 \cdot 10^{-6} \,\mathrm{Kn} \cdot \mathrm{cm}^{-2}$ и $\Psi_{sn^+m}^n = 0.065 \,\mathrm{B}$ оцениваем величину $N_d^+ = N_{d^*}^+ =$ $= 1.24 \cdot 10^{20}$ см⁻³. Аналогичным путем при $Q_{sn}(\Psi_{sn}) =$ $= Q_{snm}^n(V_{im}^n) = Q_{snm}^n(\Psi_{snm}^n) = -3.434 \cdot 10^{-6} \text{ Кл} \cdot \text{см}^{-2} \quad \text{и}$ $N_{d^*}^+ = 1.24 \cdot 10^{20} \text{ см}^{-3} \quad \text{определяем} \quad \Psi_{snm}^n = 0.337 \text{ B} \quad \text{и}$ $\Psi^p_{sn^+m} = -0.307 \,\mathrm{B}$ — поверхностный потенциал n^+ -Si при обеднении. Таким образом, при максимальных значениях $|V_{g}|$ края зоны проводимости E_{c} и валентной зоны E_v пересекают уровень Ферми n-Si как при обогащении, так и при инверсии. В первом случае дно

Рис. 6. Поверхностный заряд Q_{sn} при обеднении и инверсии *n*-Si как функция поверхностного потенциала Ψ_{sn} : 1 — экспериментальная зависимость, полученная по данным рис. 5 с учетом поверхностного потенциала n^+ -Si ($\Psi_{sn^+} > 0$), рассчитанного по [13]; 2 — зависимость, рассчитанная по [13] с параметрами исследованной МП⁺ОП структуры.

зоны проводимости на поверхности n-Si оказывается ниже уровня Ферми на 0.089 эВ $(q\Psi_{snm}^n - E_{Fn})$, а во втором — выше E_{Fn} на 0.078 эВ $(-q\Psi_{snm}^p + (E_g - E_{Fn}));$ $E_{g} = 1.12 \, \text{эВ}$ — ширина щели *n*-Si. Эти расстояния вполне отвечают теоретическим представлениям [14]. Небольшое различие между рассчитанным и "технологическим" значениями N_d^+ и весьма малые изгибы зон в слое n⁺-Si в режиме обогащения $(\Psi^n_{sn^+m} \ll |\Psi^p_s|)$ допускают возможность использования приближения [13] для определения Ψ_{sn}^p в функции от $= \Psi_s$, $\Psi_{sn^+}^n$ в диапазонах инверсии и обеднения n-Si. Точная теория проникновения поля в вырожденный полупроводник в рассматриваемом случае, по-видимому, ограничится поправками к Ψ_{sn}^p 2-го порядка малости. На рис. 6 (кривая 1) приведена зависимость заряда в слое обеднения и инверсии n-Si от поверхностного потенциала, $Q_{sn}^{p}(\Psi_{sn}^{p})$, построенная путем преобразования кривых 1, 2 на рис. 5, позволяющего представить функцию $Q_{sn}^p(V_o)$ в диапазоне $\Psi_s < 0$ в координатах $Q_{sn}^p(\Psi_s)$, а затем с учетом зависимости $Q_{sn^+}^n(\Psi_{sn^+}^n)$, рассчитанной согласно [13], и в виде $Q_{sn}^n(\Psi_{sn}^p)$. Безмодельная, чисто экспериментальная, функция $Q_{sn}^p(\Psi_{sn}^p)$ отражает реальное состояние дырочного газа в инверсионном слое n-Si, в том числе в условиях его вырождения и размерного квантования. Стоит подчеркнуть, что

Рис. 7. ВАХ туннельного тока: I — в координатах $\lg I_t - V_g$; 2 — в координатах $\lg I_t - V_i$. a — обогащение *n*-Si, b — инверсия. Шум ВАХ в диапазоне малых токов сглажен цифровой фильтрацией [18]. Преобразование координат $V_g \rightarrow V_i$ осуществлено по данным рис. 5.

развитый алгоритм определения функции $Q_{sn}^{p}(\Psi_{sn}^{p})$ при наличии количественной теории ОПЗ вырожденного полупроводника несложно распространить и на область обогащения *n*-Si. Более того, данный алгоритм в случае структур, не содержащих П⁺-прослойки между металлом и окислом, обеспечивает точное восстановление зависимости $Q_{sn}(\Psi_{sn})$ во всем доступном для наблюдений диапазоне изменения поверхностного потенциала полупроводника, т. е. как при $\Psi_{sn} > 0$, так и при $\Psi_{sn} < 0$. Кривая 2 на рис. 6 рассчитана по [13] с параметрами исследованной МП⁺ОП структуры. Экспериментальная кривая $Q_{sn}^{p}(\Psi_{sn}^{p})$ оказывается гораздо выше теоретической, что непосредственно свидетельствует о характере проявления эффектов вырождения и квантования электронного газа.

Зная V_{gFB} и V_c , легко установить знак и величину фиксированного в окисле заряда; V_c определяется разностью положений уровней Ферми в *n*-Si ($E_{Fn}/q = 0.248$ B) и в n^+ -Si (E_{Fn^+}/q). Последний найдем, следуя [19]:

$$E_{Fn^+} = -\frac{(3\pi^2)^{2/3}\hbar^2 n^{2/3}}{2m^*}$$

где \hbar — постоянная Планка, n — объемная концентрация электронов в вырожденном полупроводнике, m^* — их эффективная масса. Принимая $n \approx N_{d*}^+ =$ $= 1.24 \cdot 10^{20} \text{ см}^{-3}, m^* = m_0 = 9.1 \cdot 10^{-28} \text{ г}$ [19], получаем $E_{Fn^+}/q = -0.11 \text{ B}, V_c = 0.358 \text{ B}, \Delta V_{\text{ox}} = -V_{gFB} - V_c =$ = -0.165 В и $N_{\text{ox}} \approx 9 \cdot 10^{11} \text{ см}^{-2}$, т.е. в окисле фиксирован отрицательный заряд ($\Delta V_{\text{ox}} < 0$) с достаточно высокой плотностью, который должен существенно влиять на потенциальный барьер, определяющий вероятность туннельных переходов электронов сквозь окисел. Данный фактор невозможно учесть в теории без надежных сведений о пространственном распределении заряда по окислу.

Теперь имеются все сведения, необходимые для построения, реконструкции (на основании зависимости $V_i(V_p)$ — рис. 5) и обсуждения полномасштабных ВАХ туннельного тока $I_t(V_g)$, $I_t(V_i)$, измеренных более чем на 10 порядках величины изменения I_t как в режиме эмиссии электронов из *n*-Si $(V_g, V_i > 0)$, так и в режиме их туннелирования из полевого электрода ($V_g, V_i < 0$). Непосредственно измеренные $(\lg I_t - V_g)$ и реконструированные $(\lg I_t - V_i)$ ВАХ приведены на рис. 7. Штриховые линии на рис. 7, как и на рис. 5, 6, соответствуют экстраполированным областям квазиравновесных ВФХ (рис. 3). Отсутствие сколь-нибудь заметных особенностей вблизи переходов от сплошных к штриховым линиям и монотонность последних в известной степени аргументируют разумность использованной процедуры экстраполяции квазиравновесных ВФХ за пределы измерительного диапазона. Реконструкция ВАХ $I_t(V_a) \rightarrow I_t(V_i)$ сопровождается их прогрессирующим с ростом V_i сдвигом по оси напряжений без кардинальной модификации формы. ВАХ чрезвычайно сложны и ни частично, ни тем более полномасштабно не описываются в рамках представлений о прямом туннелировании или о туннелировании по Фаулеру-Нордгейму. Приведенные на рис. 7 кривые $\lg I_t - V_g$ весьма (вплоть до деталей) качественно аналогичны ВАХ туннельных МДП диодов [8], однако и эти ВАХ так и не имеют до сих пор адекватной количественной интерпретации. Вместе с тем известен ряд работ по туннельному эффекту в МП⁺ОП структурах со сверхтонким окислом, демонстрирующих количественное согласие между экспериментальными туннельными ВАХ и теоретическими ВАХ, численно рассчитанными как с учетом вырождения и размерного квантования электронного газа в поверхностном эмиттирующем слое кремния, так и с учетом падения части внешнего напряжения V_{ρ} в прослойке n^+ -Si [2,20,21]. По-видимому, такое согласие следует квалифицировать лишь как кажущееся, поскольку численные расчеты базировались на вариации нескольких фундаментальных, фактически плохо известных, параметров. К их числу относятся: высота и форма туннельного барьера, определяемые не только силами изображения на обеих границах окисла [22], но и присутствием на них переходных слоев, эффективная масса туннелирующих электронов и ее зависимость от толщины окисла, свойства прослойки n⁺-Si и пр. Нельзя также не отметить, что существенный вклад в модификацию классического барьера вносит фиксированный в окисле заряд и заряд, образующийся в нем вследствие взаимодействия туннелирующих электронов с локализованными состояниями окисного слоя.

Таким образом, полученные без какой-либо подгонки туннельные ВАХ $I_i(V_i)$ и довольно реалистическая зависимость поверхностного заряда *n*-Si от V_i и Ψ_{sn}^p , базирующиеся исключительно на установленных в рамках единого эксперимента важнейших феноменологических характеристиках объекта исследований $(N_d, N_d^+, V_{gFB}, C_i, h, N_{ox})$, — определенные ориентиры для корректной теории туннельного эффекта в МП⁺ОП структурах.

Поскольку развитый здесь метод наблюдения зависимостей $I_t(V_i)$ не опирается на сопоставление идеальной и реальной квазиравновесных ВФХ в областях сильного обогащения и глубокой инверсии, в экспериментальных квазиравновесных ВФХ и ВАХ объективно отражаются как фактические параметры туннельного барьера, так и специфические свойства электронного газа в поверхностном слое *n*-Si.

Подчеркнем в заключение, что рассмотренный алгоритм анализа квазиравновесных ВФХ применим и в отношении высокочастотных ВФХ МП⁺ОП структур со сверхтонкими окислами, требующих решения аналогичных задач, — в частности, независимого определения эффективной толщины окисла. Об актуальности таких задач свидетельствуют интенсивные поиски их оптимального решения [23–25].

Авторы признательны Е.И. Гольдману за стимуляцию экспериментов и детальные дискуссии.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 06-08-01649-а).

Список литературы

- Г.Я. Красников. Конструктивно-технологические особенности субмикронных МОП-транзисторов (М., Техносфера, 2002) ч. 1.
- [2] Khairurrijal, W. Mizubayashi, S. Miyazaki, M. Hirose. Appl. Phys. Lett., 77 (22), 3580 (2000).
- [3] E.P. Nakhmedov, C. Radehaus, K. Wieczorek. J. Appl. Phys., 97, 064 107 (2005).
- [4] A. Aziz, K. Kassmi, R. Maimouni, F. Olivie' et al. Eur. Phys. J. Appl. Phys., 31, 169 (2005).
- [5] М.И. Векслер, И.В. Грехов, А.Ф. Шулекин. ФТП, 39, 1430 (2005).
- [6] G. Bersuker, P. Zeitzoff, G. Brown, H.R. Huff. Materials Today, 7 (1), 26 (2004).
- [7] O. Blank, H. Reisinger, R. Stengl, M. Gutsche, F. Wiest, V. Capodieci, J. Schulze, I. Eisele. J. Appl. Phys., 97, 044 107 (2005).
- [8] С. Зн. Физика полупроводниковых приборов (М., Мир, 1984).
- [9] E.N. Nicollian, I.R. Brews. MOS, Physics and Technology (N.Y., John Willey @ Sons, 1982).
- [10] А.Г. Ждан, Н.Ф. Кухарская, Г.В. Чучева. ПТЭ, № 2, 120 (2002).
- [11] А.Г. Ждан, Н.Ф. Кухарская, Г.В. Чучева. ФТП, **37**, 686 (2003).
- [12] И.Б. Гуляев, А.Г. Ждан, Н.Ф. Кухарская, Р.Д. Тихонов, Г.В. Чучева. Микроэлектроника, 33 (4), 227 (2004).
- [13] C.G.B. Garrett, W.H. Brattain. Phys. Rev., 99 (2), 376 (1955).
- [14] Т. Андо, А. Фаулер, Ф. Стерн. Электронные свойства двумерных систем (М., Мир, 1985).
- [15] Е.И. Гольдман, А.Г. Ждан, Г.В. Чучева. ПТЭ, № 6, 110 (1997).
- [16] А.Г. Ждан, Е.И. Гольдман, Ю.В. Гуляев, Г.В. Чучева. ФТП, 39, 697 (2005).

- [17] А.Г. Ждан, Г.В. Чучева, Е.И. Гольдман. ФТП, **40**, 195 (2006).
- [18] Е.И. Гольдман, В.А. Иванов. Препринт ИРЭ РАН № 22 [551] (М., 1990).
- [19] В.Л. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников (М., Наука, 1977).
- [20] M. Fukuda, W. Mizubayashi, A. Kohno, S. Miyazaki, M. Hirose. Jap. J. Appl. Phys., **37**, pt 2 (12 B), 1534 (1998).
- [21] E. Cassan, P. Dollfus, S. Galdin. J. Non-Cryst. Sol., 280, 63 (2001).
- [22] E.I. Goldman, N.F. Kukharskaya, A.G. Zhdan. Sol. St. Electron., 48, 831 (2004).
- [23] K.J. Yang, C. Hu. IEEE Trans. Electron. Dev., 46 (7), 1500 (1999).
- [24] O. Simonetti, T. Maurel, M. Jourdain. J. Non-Cryst. Sol., 280, 110 (2001).
- [25] F. Pellizzer, G. Pavia. J. Non-Cryst. Sol., 280, 235 (2001).

Редактор Л.В. Шаронова

The reconstruction of tunnel current dependencies on oxide voltage using dynamic current-voltage characteristics of n^+ -Si-SiO₂-n-Si geterostructures

A.G. Zhdan, N.F. Kukharskaya, V.G. Naryshkina, G.V. Chucheva

Institute of the Radio Engineering and Electronics, Russian Academy of Sciences, 141190 Fryazino, Russia

Abstract Precision measurements of the dynamic current-voltage characteristics of the $Al-n^+-Si-SiO_2-n-Si$ structure with the thin oxide (< 50 Å) allow to select from a full current its active (I_a) and capacitive (I_c) components. The analysis algorithm of the last component is developed. This algorithm provides the determination in a unified experiment of the *n*-Si doping level, "the oxide capacity" C_i , as well as of the density and sign of fixed charge in the oxide. Dependencies of the *n*-Si surface potential and the voltage drop on the oxide V_i on the gate potential V_g are calculated on the base of experimental data obtained, without some fitted parameters in transversal electric fields |F| < 10 MV/cm. Under maximum |F| the layered density of electrons (holes) in *n*-Si exceeds 10^{13} cm⁻², being indicative of the electronic gas degeneration and quantum confinement effects. From the dependencies $I_t(V_g)$ and $V_i(V_g)$, reconstructed are the current-voltage characteristics for tunnel current $I_t(V_i) \equiv I_a(V_i)$, presented more than on ten orders of the value of its change in the regimes of *n*-Si surface enrichment and inversion. The $I_t(V_i)$ characteristics are not described quantitatively within the framework of existing concepts about the tunnel effect.