Об электронном сродстве политипов карбида кремния

© С.Ю. Давыдов¶

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 26 октября 2006 г. Принята к печати 1 ноября 2006 г.)

Значения электронного сродства рассчитаны двумя различными способами с помощью представления разрывов зон в гетеропереходах, образованных контактом 3C-SiC с некубическим политипом, в виде линейных функций от степени гексагональности.

PACS: 73.20.At, 73.30.+y

Для того чтобы построить энергетическую схему барьера Шоттки (БШ) или гетероперехода (ГП), необходимо знать значения электронного сродства χ входящих в контакт полупроводников [1]. Несмотря на интенсивные исследования карбида кремния и сформированных на его основе БШ и ГП [2], данные о величине χ для различных политипов SiC достаточно противоречивы. В работе [3] на основании анализа экспериментальных данных была предпринята попытка представить электронное сродство гексагональных политипов *NH*-SiC в виде

$$\chi(NH) = \chi(3C) - aD, \tag{1}$$

где $\chi(3C)$ — электронное сродство для кубического политипа, $D = n_h/(n_k + n_h)$ — степень гексагональности $(n_k$ и n_h — числа занятых атомами кубических и гексагональных узлов), a — коэффициент. В рамках модели Шокли–Андерсона для ГП [1] в [3] было показано, что

$$\Delta E_C = aD, \qquad (2)$$

где ΔE_C — величина разрыва зон проводимости на контакте политипов 3C/NH. Значение $\Delta E_C = 0.55$ эВ, определенное в работе [4] для контакта 3C/6H, дает a = 1.67 эВ. Разрывы валентных зон ΔE_V вычислялись как

$$\Delta E_V = \Delta E_g - \Delta E_C, \tag{3}$$

где разность ширин запрещенных зон $\Delta E_g = E_g(NH) - E_g(3C)$. Аппроксимацию электронного сродства в виде (1), основанную на соотношении (2), будем в дальнейшем обозначать аббревиатурой CBOA (coduction band offset approximation). В настоящей работе мы дополним такой подход аппроксимацией, основанной на разрыве валентных зон (VBOA — valence band offset аpproximation), включив в рассмотрение также ромбоэдрические политипы (*R*).

В табл. 1 представлены значения степени гексагональности [5] и ширины запрещенной зоны E_g для ряда политипов SiC (для всех политипов, кроме 27*R*, данные брались из [6], для 27*R* — из [7]). Следует отметить, что

 E_g является практически линейной функцией D вплоть до значения D = 0.5, отвечающего политипу 4*H*-SiC. Для разрывов зон в рамках CBOA получим результаты, представленные на рис. 1. Ясно видно, что при $D \le 0.5$ разрывы валентных зон крайне малы ($\Delta E_V \le 0.08$ эВ) и положительны. Таким образом, при контакте 3*C*-SiC с некубическими политипами реализуется ГП первого рода, или охватывающий. Для контакта 3C/2H значение $\Delta E_V = -0.74$ эВ, т.е. имеем ГП второго рода, или смещенный. Хотя какие-либо экспериментальные данные по такому контакту, насколько известно автору, отсутствуют, подобная "аномалия" настораживает и требует дополнительного рассмотрения.

По данным теоретической работы [8], для ГП между политипами 3*C* и 2*H* максимальное значение $\Delta E_V = 0.13$ эВ, т.е. имеет место ГП первого типа. Положим

$$\Delta E_V = bD, \tag{4}$$

где b = 0.13 эВ. Тогда для разрывов зон в рамках VBOA получим результаты, представленные на рис. 2. Обращают на себя внимание близкий к линейному рост ΔE_C вплоть до D = 0.5 и резко выпадающее из этой зависимости значение $\Delta E_C = 0.80$ эВ для контакта 3C/2H.

Сопоставим численные значения ΔE_C и ΔE_V , полученные методами СВОА и VBOA, введя отношения

$$\eta_{c,v} = \Delta E_{C,V} (\text{CBOA}) / \Delta E_{C,V} (\text{VBOA}), \quad (5)$$

где в числителе (знаменателе) стоит величина, полученная в рамках СВОА (VBOA). Результаты расчета приведены в табл. 2. Из табл. 2 следует, что, за исключением контакта 3C/2H, расхождения значений ΔE_C , полученных различными методами, т. е. η_c , не превосходят 10%. Для ΔE_V значения η_v для контактов 3C-SiC

Таблица 1. Степень гексагональности D и ширина запрещенной зоны E_g политипов SiC.

Политип	3 <i>C</i>	8 <i>H</i>	21 <i>R</i>	6 <i>H</i>	15R	27 <i>R</i>	4 <i>H</i>	2 <i>H</i>
D E aB	0 2 40	0.25	0.29 2.96	0.33	0.40	0.44	0.50	1

[¶] E-mail: Sergei.Davydov@mail.ioffe.ru

некубическими политипами, обладающими степенями гексагональности $D \leq 0.4$ (не говоря уже о 3C/2H), значительно выше. Необходимо, однако, учесть, что и СВОА, и VBOA дают малые по абсолютной величине разрывы ΔE_V . Сопоставление полученных нами в рамках СВОА абсолютных значений ΔE_C и ΔE_V с данными расчетов других авторов, проведеное в работе [3], по-казывает вполне удовлетворительное согласие (вновь за исключением контакта 3C/2H).

Перейдем теперь к оценкам электронного сродства. В рамках СВОА величина χ определяется выражением (1). В модели Шокли–Андерсона можно показать, что при использовании VBOA выражение для электронного

Рис. 1. Зависимость разрывов зон ΔE_C и ΔE_V на контактах 3C/(NH, R) в рамках СВОА от степени гексагональности D.

Рис. 2. То же, что на рис. 1, но в рамках VBOA.

Таблица 2. Отношения $\eta_{c,v} = \Delta E_{C,V}(\text{CBOA}) / \Delta E_{C,V}(\text{VBOA})$ для контактов 3C/(NH, R)

Политип	8 <i>H</i>	21 <i>R</i>	6 <i>H</i>	15 <i>R</i>	27 <i>R</i>	4 <i>H</i>	2 <i>H</i>
$\eta_c \ \eta_v$	0.98 1.33	0.92 2.00	0.98 1.25	$1.10 \\ -0.2$	1.09 0	1.09 0	2.09 -5.69

Таблица 3. Значения электронного сродства χ политипов SiC в аппроксимациях СВОА и VBOA

Политип	8 <i>H</i>	21 <i>R</i>	6 <i>H</i>	15R	27 <i>R</i>	4 <i>H</i>	2H
CBOA	3.58	3.52	3.45	3.33	3.27	3.17	2.33
VBOA	3.57	3.48	3.44	3.39	3.33	3.24	3.20

Примечание. $\chi(3C) = 4$ эВ. Все значения электронного сродства приведены в эВ.

сродства некубических политипов SiC имеет вид

$$\chi(NH, R) = \chi(3C) + bD - \Delta E_g. \tag{6}$$

Из (1) и (6) следует, что для расчета $\chi(NH, R)$ необходимо знать величину сродства для кубического политипа. К сожалению, и в этом случае экспериментальные данные противоречивы (см. обсуждение в [3]). Значения χ при $\chi(3C) = 4$ эВ [9], полученные с помощью СВОА и VBOA, представлены в табл. 3. Во всех случаях (кроме контакта 3C/2H) наблюдается очень хорошее соответствие значений электронного сродства, полученных обоими методами.

Проведенные расчеты показывают, таким образом, что разрывы зон для политипов, обладающих степенью гексагональности $D \leq 0.5$, одинаково хорошо описываются линейными аппроксимациями вида (2) и (4). Этот результат позволяет надеяться, что значения электронного сродства χ , предстваленные в табл. 3 для таких политипов, по-видимому, достаточно достоверны. Что же касается политипа 2*H*-SiC, то здесь требуются дополнительные экспериментальные исследования.

Автор признателен В.С. Сорокину, обратившему его внимание на вопросы, изложенные в настоящей публикации.

Работа выполнена при поддержке грантов РФФИ № 03-02-16054 и 04-02-16632.

Список литературы

- [1] Ф. Бехштедт, Р. Эндерлейн. Поверхности и границы раздела полупроводников (М., Мир, 1990).
- [2] A. Fissel. Phys. Reports, **379** (1), 149 (2003).
- [3] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник. ФТП, 39 (12), 1440 (2005).
- [4] А.А. Лебедев, А.М. Стрельчук, Н.С. Савкина, Е.В. Богданова, А.С. Трегубова, А.Н. Кузнецов, Л.М. Сорокин. Письма ЖТФ, 28 (23), 78 (2002).

- [5] Н.Д. Сорокин, Ю.М. Таиров, В.Ф. Цветков, М.А. Чернов. Кристаллография, **28**, 910 (1983).
- [6] В.И. Гавриленко, А.М. Грехов, Д.В. Корбутяк, В.Г. Литовченко. Оптические свойства полупроводников. Справочник (Киев, Наук. думка, 1987).
- [7] W.R.L. Lambrecht, S. Limpijumnog, B. Segall. Inst. Phys. Conf. Ser., № 142, chap. 2 (Silicon Carbide and Related Materials) (1996) p. 263.
- [8] A. Qteich, V. Heine, R.J. Needs. Phys. Rev. B, 45 (12), 6534 (1992).
- [9] M.J. Bazack. Phys. Status. Solidi B, 202 (2), 549 (1997).

Редактор Л.В. Шаронова

On the electron affinity of silicon carbide polytypes

S.Yu. Davydov

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Electron affinity values are calculated by two different methods using the description of the band offsets at the hetero-juctions of 3*C*-SiC with a noncubic polytype as linear functions of the degree of hexagonality.