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Представлена методика оценки прозрачности атмосферы Земли в темное время суток с помощью

камер всего неба с узким спектральным диапазоном, предназначенных для регистрации пространственного

распределения интенсивности эмиссий верхней атмосферы Земли. Камеры работают в мониторинговом

режиме в Геофизической обсерватории Института солнечно-земной физики (п. Торы, Бурятия, 51◦48′ с.ш.,
103◦04′ в.д.). Предлагаемая методика реализована в три этапа. На первом этапе проведна процедура

идентификации звезд на кадрах. Произведен поиск групп пикселов, интерпретируемых как звезды. Далее, по

рассчитанным ранее зависимостям, для каждой найденной группы определены азимут и угол места. Затем

произведено сопоставление времени, азимута и угла места центра группы пикселов на кадре и звезды из

каталога PyEphem. На следующем этапе рассчитана интенсивность звезды в отсчетах АЦП ПЗС-камеры.

На третьем этапе проведена оценка полной атмосферной оптической толщи. С помощью разработанной

методики в настоящее время решается ряд задач, таких, как оценка прозрачности атмосферы в темное время

суток; относительная калибровка камер всего неба по
”
эталонным“ ясным ночам; получение дополнительной

информации для интерпретации данных о пространственном распределении интенсивности атмосферных

эмиссий; оценка критериев для идентификации перемещающихся волновых возмущений.
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Введение

Существование аэрозольных частиц на различных

высотах атмосферы оказывает влияние на спектраль-

ное распределение сумеречного и ночного свечения

атмосферы. При проведении исследований собственного

излучения верхней атмосферы Земли и при астрономи-

ческих наблюдениях в темное время суток необходимо

учитывать прозрачность атмосферы, а также другие

параметры астроклимата и оптической погоды, так как

интенсивности свечения верхних слоев, полученные при

различных прозрачностях атмосферы, могут сильно от-

личаться друг от друга [1]. В работе [2] с использованием
ранее полученных спектральных характеристик аэро-

зольной оптической толщи (АОТ) и влагосодержания

атмосферы проведен анализ влияния атмосферного аэро-

золя на результаты наземных наблюдений собственного

излучения верхней атмосферы в эмиссионных линиях

атомарного кислорода [OI] 557.7 и 630.0 nm. Отме-

чается зависимость коэффициентов корреляции между

интенсивностями эмиссий 557.7, 630.0 nm и АОТ, вы-

явлен ее нелинейный характер. В работах [1,2] данные

прозрачности атмосферы были получены с помощью

солнечного фотометра и, в общем случае, могут не

отражать динамики аэрозоля в темное время суток.

В ряде работ с помощью ПЗС-камер со сверхширо-

коугольными объективами проведена оценка некоторых

параметров ночного неба, таких как прозрачность ат-

мосферы, яркость ночного неба, наличие облачности,

ее процентное отношение и т. д. Например, в рабо-

те [3] были использованы данные наблюдений за период

2010−2015 гг. в Геофизической обсерватории (ГФО) Ин-

ститута солнечно-земной физики (ИСЗФ) СО РАН, рас-

положенной в п. Торы, Бурятия (51◦48′ с.ш., 103◦04′ в.д.).
Получена оценка средней светимости ночного неба в

спектральных диапазонах RGB каналов цветной ПЗС-

камеры для региона Восточной Сибири. В работе [4]
предложена система для быстрого измерения яркости

ночного неба с использованием мозаики изображений

ПЗС-камер, полученных с помощью недорогой автома-

тизированной системы. Авторы работы [5] описывают

использование камер всего неба в сети астрономических

обсерваторий Лас-Кумбрес для автоматической оценки

прозрачности атмосферы. Полученные карты облаков

позволяют улучшить точность определения условий для

наблюдений. В работах [6,7] представлены системы

измерения яркости ночного неба с помощью камер

всего неба. Результаты показывают, что для точных

астрометрических измерений яркости необходимо учи-

тывать спектральные характеристики источников излу-
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чения. В работе [8] проведен анализ влияния различных

типов аэрозолей как естественного, так и антропогенно-

го происхождения, на яркость свечения ночного неба на

юге Польши. Результаты показывают, что аэрозольные

частицы оказывают значительное влияние, особенно в

условиях низкого светового загрязнения. В [9] пред-

ложена процедура построения карт зональной и мери-

диональной скорости перемещения, средней высоты и

размера частиц серебристых облаков на основе фото-

метрии идентичными RGB-камерами всего неба, разне-

сенными на 115 km в близкомеридиональном направле-

нии. Обнаружено существенное различие в параметрах

серебристых облаков в вечерние и утренние сумерки.

В работе [10] предложена методика определения АОТ

на основе данных RGB-камер всего неба. Результаты

показывают, что значения AOT, полученные с помощью

данной методики, в целом коррелируют с данными

лунных фотометров, достигая коэффициента корреляции

выше 0.9.

Представленные выше исследования основаны на ис-

пользовании камер всего неба с широким спектральным

диапазоном. Не менее перспективным в решении подоб-

ных задач мы считаем использование камер всего неба

со светофильтрами с узким спектральным диапазоном.

Это позволяет регистрировать практически монохрома-

тический поток излучения, что облегчает расчет атмо-

сферной экстинкции и повышает его точность [11].

В 2021 г. были запущены в опытную эксплуатацию

оптические инструменты Национального Гелиогеофизи-

ческого Комплекса (НГК) РАН [12], расположенные в

ГФО ИСЗФ СО РАН, позволяющие проводить мони-

торинговые измерения свечения ночного неба в спек-

тральном диапазоне 400−1650 nm. В настоящей работе

мы показываем еще одну, помимо измерений собствен-

ного свечения атмосферы, возможность использования

этих инструментов. А именно предлагается методика

оценки прозрачности атмосферы в темное время суток

по данным камер всего неба с узким спектральным

диапазоном, входящих в состав оптических инстру-

ментов НГК РАН. Кроме этого, представляются ре-

зультаты сравнения полученных значений прозрачности

атмосферы с данными солнечного фотометра CE-318,

входящего в состав мировой наземной сети станций

”
Аэронет“ [13], который был установлен в ГФО ИСЗФ

СО РАН в 2004−2021 гг. Измерения собственного све-

чения атмосферы с помощью узкоспектральных камер

имеют в настоящее время достаточно широкое распро-

странение. Такие измерения проводятся, например, в

рамках проекта
”
Меридиан“ (Meridian Space Weather

Monitoring Project) по мониторингу космической погоды,

поддерживаемого правительством КНР [14]. Подобными

оптическими инструментами оборудован и ряд других

исследовательских центров. Поэтому предлагаемая ме-

тодика оценки прозрачности атмосферы может представ-

лять интерес для многих научных организаций.

Характеристики фильтров камер всего неба

№

ASI0 ASI1

Центр полосы Полуши- Центр полосы Полуши-

пропускания, nm рина, nm пропускания, nm рина, nm

1 557.7 2 557.7 2

2 630.0 2 630.0 2

3 840.0 1.8 427.8 2

4 846.5 1.8 589.3 2

5 857.0 1.8 865.0 10

1. Инструменты, данные и методика

В настоящей работе используются данные камер все-

го неба (All Sky Imager) KEO Sentry 4 (далее ASI0

и ASI1) из состава объекта
”
Оптические инструменты“

НГК РАН, предназначенные для регистрации простран-

ственного распределение основных эмиссий верхней

атмосферы Земли. Поле зрения камер 180◦, направление

визирования — зенит. Выбор спектрального диапазона

обеспечивается автоматически сменяемыми интерферен-

ционными фильтрами. Камеры имеют разный набор

интерференционных светофильтров, характеристики ко-

торых приведены в таблице.

Кроме узкополосных фильтров, на обеих камерах

установлены широкополосные фильтры 715−930 nm

с блокированием спектрального интервала с цен-

тром 865 nm и полушириной 18 nm. На рис. 1 по-

казаны спектральные каналы камер всего неба на

фоне усредненного спектра свечения ночного неба в

диапазоне 400−900 nm за 23 января 2023 г., получен-

ного с помощью спектрометра видимого диапазона

KEO Spectrograph: VISIBLE, также входящего в ком-

плекс оптических инструментов НГК РАН. Время экс-

позиции для каналов с узким спектральным диапазо-

ном — 55 s. Для широкополосного канала гидроксила

OH (715−930 nm) — 7s.

Предлагаемая нами методика реализуется в три этапа.

На первом этапе проводится процедура идентификации

звезд на кадрах. Для камер ASI0 и ASI1 мы адап-

тировали методику выделения и идентификации звезд,

разработанную для широкоугольной оптической систе-

мы KEO Sentinel [15,16]. Производится поиск групп

пикселов, интерпретируемых как звезды. Далее по рас-

считанным ранее зависимостям для каждой найденной

группы определяется азимут и угол места. Затем про-

изводится сопоставление времени, азимута и угла места

центра группы пикселов на кадре и звезды из каталога

PyEphem [17]. На следующем этапе рассчитывается

интенсивность звезды в отсчетах АЦП ПЗС-камеры

по формуле

I =
N∑

0

Inp − N · Ibckgr , (1)
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Рис. 1. Спектр свечения ночного неба в диапазоне 400−900 nm (усредненный спектр за 23.01.2023 г.), полученный с помощью

спектрометра KEO Spectrograph:VISIBLE. Цветом показаны спектральные каналы камер всего неба ASI0 и ASI1.

где N — количество пикселов в группе, интерпретиру-

емой как звезда; Inp — отсчеты АЦП одного пиксела в

группе; Ibckgr — среднее значение пикселов в окрестно-

сти звезды в отсчетах АЦП.

Для каналов с узким спектральным диапазоном камер

всего неба НГК РАН производителем были проведе-

ны работы по абсолютной калибровке. В дальнейшем

для спектральных каналов 557.7 и 630 nm приводятся

данные в энергетических единицах. На третьем этапе

проводится оценка полной атмосферной оптической тол-

щи τ (λ)total . Расчет производится для каждого кадра

камеры и для каждой идентифицированной звезды, вне-

атмосферные яркости которых приведены в катало-

ге [18]. Среднее количество звезд на кадре, использу-

емых для расчета, — 9. Полная атмосферная оптиче-

ская толща τ (λ)total для каждой звезды рассчитывается

по формуле [19]

τ (λ)total =
− ln E

E0

M
, (2)

где E — зарегистрированная яркость идентифицирован-

ной звезды, E0 — внеатмосферная яркость звезды для

выбранного спектрального канала [18], M — оптическая

воздушная масса, равная секансу зенитного угла звезды.

Спектральные характеристики звезд E0 взяты из ката-

лога [18], в котором приведено распределение энергии

в спектрах 602 звезд, создаваемых звездами на границе

земной атмосферы. Для дальнейшего анализа были

выбраны спектральные каналы камер 557.7 и 630 nm,

которые регистрируются камерами всего неба НГК

РАН с высоким временным разрешением и попадают

в спектральный диапазон, приведенный в каталоге [18].
Например, значения внеатмосферной яркости Полярной

звезды для длин волн 577.7 и 630 nm, согласно

каталогу, составляют 5.78 · 10−2 erg · cm−2
· s−1

· cm−1

и 5.02 · 10−2 erg · cm−2
· s−1

· cm−1 соответственно.

С учетом полуширины пропускания 2 nm интерферен-

ционных фильтров 557.7 и 630 nm освещенности

для каналов камер 557.7 и 630 nm составят

5.78 · 10−9 erg · cm−2
· s−1 и 5.02 · 10−9 erg · cm−2

· s−1

соответственно.

Для сравнения с результатами обработки данных

камер ASI0 и ASI1, полученными по описанной выше

методике, в настоящей работе мы используем данные

о полной атмосферной оптической толще, полученные

с помощью автоматизированного солнечного фотометра

CE-318, расположенного в ГФО ИСЗФ СО РАН и

входящего в состав мировой наземной сети станций

”
Аэронет“ [13]. Фотометр регистрирует прямое солнеч-

ное излучение в 8 спектральных каналах: 340, 380,

440, 500, 670, 870, 940 и 1020 nm [19]. Для сравнения

были использованы средние дневные значения полной

атмосферной оптической толщи на длине волны 500

и 675 nm за период март−ноябрь 2021 г. (уровень об-

работки данных 2.0, включающий фильтрацию облачно-

сти [13]). Конечно, данные о прозрачности атмосферы,
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Рис. 2. Временно́й ход интенсивности Полярной звезды 01.01.2022 г, рассчитанный по данным камеры ASI0 (панель a), в

спектральных каналах 557.7 nm (зеленая кривая) и 630 nm (красная кривая). Темно-зеленая и темно-красная кривые — временно́й

ход интенсивности, рассчитанный в окрестности Полярной звезды (±5◦), в спектральных каналах 557.7 и 630 nm соответственно.

На панели b показан временной ход захронометрированной интенсивности Полярной звезды, нормированной на значение ее

внеатмосферной яркости в соответствующих спектральных диапазонах [18].

полученные с помощью солнечного фотометра в дневное

время суток, и данные с камер всего неба, полученные в

ночное время суток, могут иметь различия во внутрису-

точной динамике, но они должны иметь общие черты в

отражении процессов на больших временных масштабах.

2. Результаты и обсуждение

Нами была проведена апробация вышеизложенной

методики на данных камер всего неба НГК РАН.

На рис. 2, a приведен временной ход интенсивности

Полярной звезды 1 января 2022 г. в спектральных диапа-

зонах 557.7 и 630 nm, рассчитанный по вышеизложенной

методике. Кроме того, приведен временной ход интен-

сивности, усредненной в окрестности Полярной звезды

в соответствующих спектральных каналах. На рис. 2, b

показан временной ход отношения интенсивности По-

лярной звезды, зарегистрированной в каналах 557.7

и 630 nm камеры ASI0 (Estar) к освещенности, созда-

ваемой Полярной звездой на границе земной атмосферы

(E0) [18]. Результаты, представленные на рис. 2, демон-

стрируют применимость методики для интерпретации

наблюдений собственного свечения верхней атмосферы.

Локальные максимумы в 14:00, 18:30 и 21:40UT отра-

жают вариации атмосферной эмиссии 557.7 nm. Умень-

шение рассчитанной интенсивности Полярной звезды

на временном промежутке 13−17:30UT совпадает с

минимумом средней интенсивности эмиссии 557.7 nm

в 16UT. Это уменьшение ниже, чем остальные ми-

нимумы за рассматриваемый период, что может быть

связано с прохождением слабой облачности или дымки.

Уменьшение интенсивности Полярной звезды более чем

в три раза может быть связано с недостатками алгоритма

выделения звезды на кадре камеры вследствие размытия

ее изображения под действием облачности.

На рис. 3 показан временной ход интенсивности

нескольких звезд (Estar), нормированной на их внеат-

мосферные яркости (E0). Экспериментальные данные

получены с помощью камеры ASI0 01 января 2022 г.

Можно отметить некоторые значения относительной

интенсивности звезд, превышающие или равные единице

(рис. 3, a). Это может быть связано как с неточностями

в звездном каталоге [18], так и с ошибками алгорит-

ма определения звездных интенсивностей. Камеры с

узкими светофильтрами имеют свои преимущества и

недостатки для задач оценки атмосферного поглощения

в темное время суток. С одной стороны, регистрируется

практически монохроматический поток излучения, что

облегчает расчет атмосферной экстинкции и повышает

его точность [11]. С другой стороны, спектральные

каналы таких камер настроены на линии высвечивания

атмосферных эмиссий, интенсивности которых даже в

геомагнитно спокойные ночи сравнимы, в узком спек-

тральном диапазоне, с интенсивностями звезд (рис. 1).
Это ухудшает отношение сигнал/шум при процедуре

выделения звезды по сравнению с системами с широким

спектральным диапазоном или диапазоном вне эмисси-

онных линий и полос верхней атмосферы. Кроме того,

каналы камер работают в спектральных диапазонах с

выраженным поглощением, в отличие от солнечного

фотометра, спектральные каналы которого подобраны с

учетом окон прозрачности атмосферы [20].

В 2021 г. камеры всего неба (темное время суток) и

солнечный фотометр AERONET (светлое время суток)
работали совместно, что позволило провести некоторое

сравнение. На рис. 4 и 5 показаны вариации полной

атмосферной оптической толщи по данным фотометра

сети AERONET и вариации по данным камеры всего

неба ASI0 в период совместной работы этих приборов.

Были подобраны наиболее близкие спектральные диа-
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Рис. 3. Временно́й ход относительной интенсивности звезд Кохаб (a), Мирфак (b), Альхена (c) и Денеб (d) 01.01.2022 г.,

рассчитанный по данным камеры ASI0 в спектральных каналах 557.7 nm (зеленый цвет) и 630 nm (красный цвет).

пазоны приборов: рис. 4 — 557.7 nm (ASI0) и 500 nm

(AERONET), рис. 5 — 630.0 nm (ASI0) и 675 nm

(AERONET).
Значения полной атмосферной толщи, полученные

различными методами с помощью фотометра CIMEL в

светлое время суток и с помощью камеры всего неба

в темное время суток, довольно хорошо согласуются

между собой (рис. 4, 5). Выделяется максимум в авгу-

сте 2021 г., связанный с большим количеством лесных

пожаров, действовавших в этот период.

На рис. 6 показаны результаты расчета полной ат-

мосферной толщи по данным камер всего неба НГК в

спектральных линиях 557.7 и 630 nm за период с апреля

2021 г. по декабрь 2023 г. Приведены значения суточного

(тонкие линии) и месячного (толстые линии) усред-

нения. Заметен тренд медленного понижения значений

полной атмосферной оптической толщи и резкое умень-

шение разности поглощения в спектральных линиях

557.7 и 630 nm.

На рис. 7 приведен сезонный ход полной атмосферной

толщи за 2021−2023 гг., измеренный камерами всего

неба НГК. Как видно из рисунка, для спектральных диа-

пазонов 557.7 и 630 nm максимум полной атмосферной

толщи наблюдается в августе месяце для 2021 и 2023 гг.

В 2022 г. характерного максимума не прослеживается.

Минимальные значения полной атмосферной толщи

наблюдаются в весенние и осенние месяцы. В рабо-

тах [21,22] приведен средний годовой ход среднеме-

сячных значений АОТ, отражающий сезонные вариации

АОТ для длин волн 380, 500 и 870 nm по данным

фотометра CIMEL CE-318, установленном в ГФО ИСЗФ

СО РАН. Было получено, что максимальные значения

АОТ для длин волн 380 и 500 nm наблюдаются в июне,

тогда как в длинноволновой области спектра 870 nm

максимальные значения АОТ приходятся на август ме-

сяц. В общем случае, вариации общей атмосферной

толщи атмосферы могут отличаться от вариаций АОТ,

так как, помимо аэрозольного ослабления, на общую
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Рис. 4. Полная атмосферная оптическая толща для длины волны 500 nm по данным фотометра CIMEL (черный цвет) и по данным

спектрального канала 557.7 nm камеры всего неба (зеленый цвет).
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Рис. 5. Полная атмосферная оптическая толща для длины волны 675 nm по данным фотометра CIMEL (черный цвет) и по данным

спектрального канала 630 nm камеры всего неба (красный цвет).

атмосферную толщу влияют молекулярное (рэлеевское)
рассеяние и молекулярное поглощение (водяной пар,

озон и другие газы).

Заключение

Полученные в работе результаты демонстрируют воз-

можность оценки атмосферного поглощения с помощью

данных камер всего неба с узким спектральным диапазо-

ном, предназначенных для регистрации пространствен-

ного распределения интенсивности атмосферных эмис-

сий верхней атмосферы Земли. Камеры всего неба НГК

работают в мониторинговом режиме и могут использо-

ваться не только в исследованиях верхней атмосферы, но

и для экологического мониторинга, а также для дополне-

ния информации о вариациях параметров нижней атмо-
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Рис. 7. Сезонный ход полной атмосферной толщи атмосферы в 2021−2023 гг. для спектральных диапазонов 557.7 (слева) и 630 nm

(справа) по данным камеры всего неба НГК.

сферы. С помощью разработанной методики решаются

следующие задачи: оценка прозрачности атмосферы в

темное время суток; относительная калибровка камер

всего неба по
”
эталонным“ ясным ночам; получение

дополнительной информации для интерпретации данных

о пространственном распределении интенсивности атмо-

сферных эмиссий; оценка критериев для идентификации

перемещающихся волновых возмущений (отсев слабой

облачности, дымки и т. п.). На данном этапе мы показы-

ваем возможность оценки прозрачности атмосферы по

данным камер всего неба с узким спектральным диапазо-

ном, не претендуя при этом на точность измерений. Для

повышения точности методики необходимо улучшение

алгоритма выделения и расчета интенсивности звезд

на кадре, а также использование более современных

звездных каталогов и соответственно более точных

данных о внеатмосферной интенсивности звезд. Кроме

того, необходима поверка (абсолютная и относительная

калибровка) используемых камер всего неба.
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[10] R. Roman, D. González-Fernández, J.C. Antuna Sánchez,

C. Herrero del Barrio, S. Herrero-Anta, Á. Barreto,
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