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Исследована морфология тонких слоев субфталоцианина хлорида бора (SubPc) в диапазоне температур от

70 ◦C до −35 ◦C. Оптические и рентгеновские исследования, а также данные о морфологии пленок выявили

признаки аномальной смены механизма роста. Вероятнее всего, это связано с термической активацией

подвижности молекулярных агрегатов, состоящих из двух молекул SubPc (димеров), обладающих бо́льшим

сродством к поверхности подложки, чем одиночная молекула (мономер). Изготовлены многослойные

структуры c молекулярным гетеропереходом p-SubPc/n-C60 — прототипы органических фотодиодов, где слой

SubPc осаждался при различных температурах. Наилучший образец с выпрямлением ∼ 9 · 103 и кратностью

фототок/темновой ток ∼ 3 · 104 получен cо слоем SubPc, осажденным при температуре подложки 0 ◦C,

обладающим кристаллической структурой.
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Введение

Оптоэлектронные устройства на основе малых орга-

нических молекул вызывают интерес при решении таких

задач, как расширение спектрального диапазона или

снижение веса устройств, неинвазивная медицинская

диагностика [1–4], освоение космоса и др. По сравнению

с полимерами, малые органические молекулы с цикличе-

ской системой π-сопряженных связей привлекают своей

фотоактивностью, возможностью выбора диапазона длин

волн поглощаемого/излучаемого света и способа изго-

товления компонентов устройств.

Регулярно синтезируются новые соединения в поис-

ках наиболее выгодной молекулярной структуры для

оптоэлектронных приложений. Но это не означает, что

потенциал уже известных молекул был исчерпан. Во-

первых, они, как правило, более доступны и имеют

предсказуемые эксплуатационные характеристики. Во-

вторых, основные параметры устройства, определяющие

эффективность его работы, такие как подвижность но-

сителей заряда и длина диффузии экситона, зависят от

межмолекулярных процессов внутри конденсированной

фазы иногда в большей степени, чем от внутримоле-

кулярной структуры [5]. Широко известные низкомоле-

кулярные полупроводники, фталоцианин и родственные

соединения, пентацен, фуллерены идеально подходят для

изготовления устройств, поскольку термически стабиль-

ны и могут осаждаться из паровой фазы в вакууме

(PVD, physical vapor deposition) в виде сплошных по-

крытий [1,3–22]. При этом морфология тонкой пленки,

включая фазовый состав и рельеф поверхности, зависит

от сродства молекул к подложке и толщины, или моди-

фицируется ex situ с помощью отжига [22]. Ее настройка

под конкретное устройство позволяет кратно улучшить

его выходные параметры [1,4,6,8,10,12,17,18,20].
Наиболее технологически обоснованный способ такой

настройки — соблюдение определенных условий PVD-

процесса с помощью скорости осаждения (кинетический
контроль) или температуры подложки Tg (термодина-
мический контроль) [6,8–10,12,23]. Для анизотропных

плоских или конических молекул, например, фталоци-

анинов переходных металлов, чем выше температура

подложки и медленнее скорость осаждения, тем выше

кристалличность и шероховатость пленок, вплоть до по-

тери сплошности и роста отдельных монокристаллов [7].
Однако для субфталоцианина хлорида бора (SubPc) в

литературе описана более сложная зависимость моле-

кулярной упаковки от скорости осаждения и Tg [8,12].
SubPc — перспективный материал для гибридных тонко-

пленочных оптоэлектронных устройств [1,4,8,12,15–18].
Теоретическое описание ростовых процессов может

быть сложнее в случаях, когда не только мономер, но

также димер и даже тример способны к диффузии вдоль

поверхности подложки [9,23].
Чтобы лучше понять влияние температуры подложек

на морфологию и проводимость слоев SubPc, получае-

602



Влияние температуры подложки на морфологию и фотоэлектрические свойства тонких пленок... 603

Рис. 1. Схема многослойной ячейки с донорным слоем SubPc.

мых в PVD-процессе, в настоящей работе проводился

рост при различной Tg . Было обнаружено, что в отли-

чие от фталоцианинов нагрев подложки действительно

приводит к потере детектируемой стандартными рентге-

новскими методами кристалличности, снижению шеро-

ховатости и пошаговому переходу от несплошной ост-

ровковой морфологии к более сплошной и однородной.

1. Эксперимент

В настоящей работе применялись коммерчески до-

ступные реактивы (Merck): субфталоцианин хлорида

бора (SubPc), фуллерен С60, батокупроин (BCP), оксид
молибдена MoO3.

Пластины кремния (100), стекла с покрытием из

двойного оксида индий-олова ITO, аморфного кварца

с литографически нанесенными золотыми встречно-

штыревыми электродами с зазором 30 µm, высотой

150 nm и суммарной длиной канала 105.8mm подверга-

лись ультразвуковой обработке с ацетоном и изопропи-

ловым спиртом и высушиванию в потоке высокочистого

аргона.

Вакуумное осаждение слоев модельных фотоабсор-

беров SubPc и С60, буферных слоев и верхнего алю-

миниевого электрода для прототипов тонкопленочных

устройств проводили на модернизированной установке

ВУП-5М при остаточном давлении не выше 10−4 Pa

с самодельной приставкой для контроля температуры

подложек Tg в диапазоне −35 ◦C− 70 ◦C [7] и контроля

толщины с помощью кварцевого толщиномера QCM

(Quartz Crystal Microbalance).

Рельеф поверхности, оптические спектры, кристал-

лическая структура и электрические свойства ис-

следовались с помощью атомно-силовой микроско-

пии (АСМ) (прибор СММ 2000, Протон-МИЭТ) и

интерферометрии белого света WLI — white light

interferometry (TalySurf CCI 2000), спектрофотометра

Genesys-50 (ThermoScientific), рентгеновского дифрак-

тометра D8 Discover Bruker, характериографа Keithley

4200-SCS соответственно. Медленная скорость осажде-

ния SubPc< 0.03 nm/s была выбрана для минимизации

влияния кинетических аспектов на рост пленок [8]. Для
многослойных структур на подложках ITO толщина

снижена до (14 ± 1) nm, чтобы быть ближе к извест-

ным из литературы оптимальным значениям [12,24].
Прототипы устройств сделаны по схеме: ITO/Буферный

слой/SubPc 14 nm/C60 40 nm/BCP 8 nm/Al 80 nm, где

буферный слой либо 5 nm оксида молибдена MoOx , либо

7 nm иодида меди CuI, либо отсутствует (рис. 1).

2. Результаты

Номинальная толщина пленок SubPc, осажденных

на кремниевые пластины для анализа рельефа АСМ

(рис. 2), составляла 30 nm — измерена с помощью

рентгеновской рефлектометрии и WLI на пленках 40 ◦C

и 70 ◦C. Измерение толщины пленок при пониженных

Tg становится неточным из-за слишком высокой ше-

роховатости (табл. 1, рис. 3), но для их осаждения,

согласно QCM, было затрачено абсолютно такое же

количество вещества по массе. Перепад высот на карте

АСМ превышает номинальную толщину в 3−26 раз

(рис. 2), и чем ниже температура роста, тем больше.

Наблюдаемый рельеф можно разделить на три типа

в соответствии с картиной роста: островки с неза-

полненными пробелами (−35 ◦C− 0 ◦C), заполненная

поверхность с выраженными островками (20 ◦C−40 ◦C),
практически гомогенная поверхность (70 ◦C). В прин-

ципе все три типа наблюдались ранее при росте фта-

лоцианиновых пленок [25,26], но никогда одновременно

на одном и том же материале, и на той же самой

ростовой поверхности. Преимуществом выбранного диа-

пазона Tg является и то, что он может быть обеспечен

несложной по конструкции приставкой с элементами

Пельтье [7]. Картины АСМ ультратонких слоев SubPc,

где масса осажденного вещества была в 20 раз меньше

массы слоя с H = 30 nm, указывают на образование на

поверхности кремния зародышей SubPc разной формы,

размеров и плотности расположения в зависимости от

Tg (рис. 4). В кадрах АСМ пленок, осажденных при

нагреве подложки (рис. 2, d, f), помещается не более

одного центра роста на ширине поля 4.5µm, расстояние
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Рис. 2. АСМ рельеф поверхности пленок SubPc, осажденных при температурах подложки: a — −35 ◦C, b — −20 ◦C, c — 0 ◦C,

d — 20 ◦C, e — 40 ◦C, f — 70 ◦C.

между зародышами составляет 10−20µm (рис. 5). Уже
из анализа АСМ на рис. 2 становится очевидно — кар-

тина заполнения органическим материалом поверхности

подложки после зародышеобразования сильно меняется

с температурой, как будто изменилось их сродство γ∗

(см. уравнение (1)): от роста в основном на зародышах

при Tg ≤ 0 ◦C до роста в основном на поверхности

при Tg ≥ 40 ◦C. К сожалению, разрешающей способно-

сти АСМ в полуконтактном режиме недостаточно для

точного установления наличия или отсутствия на по-

верхности смачивающего слоя (в контактном — острие

кантилевера механически срывает органический слой),
это не позволяет сделать точный вывод о механизмах

роста пленок.

Проблема применимости классических моделей роста

в том, что они изначально создавались для эпитаксии

неорганических ковалентно-связанных кристаллических

пленок [23]. В самом общем виде взаимодействие опи-

сывается формулой [9]:

γs = γ∗ + γd cos θ, (1)

где γs — энергия поверхности подложки, γ∗ — энер-

гия интерфейса молекула-подложка, γd — энергия по-

верхности осажденного материала, энергия поверхно-

сти= поверхностное натяжение в более ранних источ-

никах [23], θ — контактный угол, образованный между

Таблица 1. Данные АСМ анализа рельефа поверхности пле-

нок SubPc на кремнии. Расчет выполнен для кадров площадью

9× 9 µm

Tg, ◦C RMS, nm A/H∗ S/S∗∗

LF , %

−35 107.7 26 20

−20 43.9 10 8

0 52.8 13 23

20 16.8 5.2 0

40 7.0 3.8 0

70 9.7 3 0

Примечание. ∗A/H — отношение амплитуды рельефа к номинальной

толщине слоя SubPc H = 30 nm; ∗∗S/SLF — доля площади подложки

с низким уровнем заполнения материалом.

плоскостью подложки и касательной к зародышу в

тройной линии.

Несмотря на низкую применимость к вакуумному

росту молекулярных пленок, данная формула верно

отражает принцип управления морфологией, для кар-

динальной смены механизма роста требуется изменить

либо энергию поверхности подложки γs , либо осажден-

ного материала γd , либо повлиять на их сродство γ∗.
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Рис. 3. Измерение толщины и рельефа методом интерферометрии белого света WLI. Карты рельефа поверхностей пленок

SubPc, изготовленных при Tg = −35 ◦C на поверхности кварца (a) и при Tg = 70 ◦C на поверхности подложек со встречно-

штыревыми электродами (b). Площадки пониженного рельефа были затенены фиксаторами подложек при напылении; c, d —

профили поверхностей соответствующих пленок.

При этом выбранный для исследования узкий интервал

Tg вдали от температуры сублимации SubPc (250 ◦C) не

предполагает достижения термодинамически равновес-

ного роста.

Для органических кристаллических фаз, сформиро-

ванных за счет ван-дер-ваальсовых сил, энергия взаи-

модействия молекул с поверхностью не всегда жестко

детерминирована. Это связано с тем, что молекулы зна-

чительно больше по объему и имеют сложную форму,

т. е. сами по себе анизотропны. Для них, и особенно

их агрегатов, сродство к подложке может значительно

изменяться в зависимости от ориентации относительно

ростовой поверхности. В частности, молекула SubPc

может быть представлена как трехсторонняя пирамидка

с шириной основания 11.9�A и высотой 4.2�A а с учетом

ван-дер-ваальсовых радиусов (≈ 1.5�A) — около 15 и 7�A

соответственно. Максимальный линейный размер бинар-

ного агрегата, согласно данным рентгеноструктурного

анализа CCDC 2363922 [18], составит 20.3�A. Молекулы

фталоцианина и порфирина, родственные SubPc, на мно-

гих технических (специально не подготовленных) под-

ложках предпочитают стоять
”
на цыпочках“, когда плос-

кости молекул ориентированы вертикально или же на-

клонены под некоторым углом к подложке [10,27]. SubPc

не исключение, в дифрактограммах пленок наблюдают

сигналы при 20.7 и 22◦, отражения от плоскостей (221)

и (122), где молекула наклонена относительно подложки

на 65.67 и 39.37◦ соответственно [12]. Похожие углы

45 и 74◦ наклона молекул в пленках встречаются у

фталоцианина цинка [11,27].

Сценарии роста слоев с ориентацией молекул Pc или

SubPc параллельно подложке также известны, так бы-

вает при осаждении молекул на поверхностно-активный

слой, например Cu(111) [14,28] или CuI [13], т. е. за
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Рис. 4. АСМ ультратонких пленок SubPc, полученных путем осаждения 5% массы субфталоцианина хлорида бора, взятой для

пленок с номинальной толщиной 30 nm, при температурах подложки: a — −35 ◦C, b — −20 ◦C, c — 0 ◦C, d — 20 ◦C, e — 40 ◦C,

f — 70 ◦C.

счет увеличения γs . В случае осаждения на поверхность,

например, монокристаллического металла сила взаимо-

действия молекула-поверхность такова, что от приро-

ды конусообразный макроцикл SubPc уплощается [14],
шарообразные молекулы фуллерена C60 тоже подвер-

жены трансформации [22]. Еще один вариант измене-

ния ориентации молекул — это приложение мощного

электрического поля в зоне осаждения [15]. Молекулы

SubPc имеют постоянный электрический дипольный мо-

мент PDM (permanent dipole moment), направленный

вертикально от условной плоскости макроцикла к атому

хлора, величина которого оценивается в 5.5D [29].
Ориентационное взаимодействие между полярными мо-

лекулами, так называемый диполь-дипольный эффект

Кеезома наиболее сильный из трех классических типов

ван-дер-ваальсовой связи. Соответственно он определяет

и способ упаковки молекул в объеме кристалла и ани-

зотропию тонких слоев [1]. PDM становится особенно

важным при рассмотрении процессов поляризации и ло-

кальной трансформации молекулярных слоев при прило-

жении потенциала в работающих устройствах. Поэтому

в работе [15] молекулы при осаждении упаковываются

в текстурированную пленку, ориентируясь параллельно

подложке, а в рентгеновской дифрактограмме наблюда-

ется характерный сигнал 17.01◦ отражения от плоскости

(002). Похожий, но очень слабый сигнал, наблюдаем и

мы в дифрактограммах пленок SubPc, осажденных при

−35 ◦C−20 ◦C (рис. 6, a). Он указывает на то, что при

пониженных температурах в зародышевых кристалли-

тах, сформированных на кремниевой пластине, моле-

кулы расположены параллельно подложке (рис. 6, b, c).
На плотность расположения зародышей (ND) и макси-

мальную площадь граней кристаллов (6Ai) наложены

термодинамические ограничения [9]: чем меньше тем-

пература, тем выше плотность, но меньше предельный

размер кристаллитов (рис. 2, 4, 5). Следует подчеркнуть,

что в исследуемом температурном диапазоне не удается

установить прямое влияние какого-либо кинетического

ограничения, например, длины диффузии [23] на сплош-

ность и кристалличность слоя: даже при Tg − 35 ◦C вре-

мя свободного нахождения молекул на поверхности (τs )
оказывается достаточным для преодоления расстояния

не менее 250 nm, из-за чего на подложке остаются

незаполненные пробелы (рис. 2, табл. 1).

Как было сказано, в АСМ изображениях пленок

−35 ◦C−0 ◦C наблюдаются участки чистой подложки

(рис. 2, a−c). После заполнения поверхности подложки

островками SubPc рост новых кристаллов начинается

от свободных граней зародыша, и направлен таким

образом, чтобы по возможности избегать контакта с

подложкой. В результате, островковая морфология пле-

нок сохраняется на больших дистанциях от поверхности
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и обусловлена только силами межмолекулярного вза-

имодействия и термодинамическим контролем размера

зерен [9].

При Tg = 0 ◦C пленка имеет самое уникальное стро-

ение (рис. 2, c). Ее рельеф представляет собой высокие

острова с отверстием в центре. В горизонтальном сече-

нии многие из этих островов имеют форму треугольника

Рело (ширина около 1.7µm у основания). Мы предпо-

лагаем, что такие структуры образованы в несколько

этапов. На первом на центрах зародышеобразования до

некоторого термодинамически обусловленного предель-

ного размера растут усеченные треугольные пирамиды,

на подобие тех, которые показаны в ссылке [15]. Это
они дают сигнал 17.01◦ в рентгенограммах, а значит

молекулы в таких кристаллитах лежат параллельно под-

ложке. На втором три сформированные боковые грани

усеченной пирамиды достигают такой площади, что

становятся наиболее активными центрами вторичного

зародышеобразования, поэтому дальнейший рост класте-

ров идет от них вертикально вверх. Горизонтальная по-
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Рис. 6. a — рентгеновские дифрактограммы пленок SubPc, осажденных на кремнии (100) при различных температурах в
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обработки дифрактограммы пленки при Tg = −35 ◦C; b, c — упаковка молекул SubPc в кристаллах и ее ориентация относительно

плоскости (002) в проекции векторов bc (b) и ac (c).

верхность зародыша остается незаполненной, поскольку

менее привлекательна для агрегации молекул SubPc, и

в середине острова получается отверстие. На третьем

этапе адсорбированным на поверхность подложки и усе-

ченных вершин пирамид молекулам не хватает времени

свободного пробега τs , чтобы добраться до вершины

растущей треугольной колонны, и они налипают на

ее бока, округляя сечение островков до треугольника

Рело. Именно такая картина при 0 ◦C натолкнула нас на

мысль, что рост молекулярных кластеров SubPc, скорее

всего, имеет приоритетные направления, зависящие от

температуры. При низких температурах кластер пре-

имущественно растет в направлении кристаллических

осей a и b, формируя первой грань вдоль плоскости

(002), которая и присоединяется к подложке (рис. 6, b, c).
Рост вдоль оси с, т. е. в вертикальном направлении, силь-

но затруднен из-за сложной пирамидальной упаковки

(рис. 6, b, c, рис. 7).

Как видно из рис. 7, молекулы SubPc в кристалле

организованы попарно. В работе [30] были проведены

квантово-химические расчеты энергий орбиталей и спек-

тров поглощения в области Q-полосы для 12 возможных

взаимных молекулярных ориентаций димеров SubPc, вы-

деленных из кристаллической структуры, среди которых

только пять оказались различимы по энергиям. Лишь

один вариант, димер 1, с ориентацией типа
”
convex-

to-convex“ дает батохромный сдвиг основной полосы

поглощения относительно спектра мономера SubPc, а

димер 2 с ориентацией
”
concave-to-concave“ наиболее

стабилен с точки зрения энергии связи [30]. В разных

трансляциях элементарной ячейки кристалла SubPc доля

димеров 1 и 2 типа будет отличаться. Для наглядно-

сти на рис. 7 оси агрегатов из димеров
”
convex-to-

convex“ и
”
concave-to-concave“ типа помечены синей и

красной линиями соответственно. Тогда образующиеся

при низких Tg кристаллы преимущественно содержат

димеры 1, а соотношение димеров 1 и 2 контролируется

термодинамически.

Электронные спектры поглощения, приведенные на

рис. 8, подтверждают это предположение. В органи-

ческих растворителях молекулы SubPc не склонны к

агрегации [1], поэтому приведенный спектр в толуоле

характеризует поглощение света мономерными моле-

кулами. Он содержит две полосы — B -полосу с мак-

симумом 305 nm и Q-полосу с максимумом 565 nm,

отвечающие за электронные переходы между молекуляр-

ными орбиталями ВЗМО-1→НСМО и ВЗМО→НСМО

(высшая занятая и низшая свободная молекулярные

орбитали) [1,31]. Поскольку молекула SubPc изогнута

и имеет низкую симметрию [1], расчетные ВЗМО для

резонансных π-сопряженных систем, т. е. молекулярные

орбитали 2a1 и 2a2, не идентичны по энергии [31]. Q-

полоса содержит два пика поглощения (рис. 8), соот-

ветствующих электронным переходам с этих орбиталей

на общую НСМО: 2a1 → 1e∗ дает основной максимум,

2a2 → 1e∗ в спектре имеет вид коротковолнового пле-

ча [31].

Пики поглощения в спектрах пленок SubPc (рис. 8)
относительно раствора в толуоле сдвинуты батохромно

на 30− 40 nm, что соответствует большей доле диме-

ров 1. Этот сдвиг больше на 8 nm у пленки, осажденной

при −35 ◦C, относительно спектров пленок, осажденных

при 20 ◦C. При Tg = 70 ◦C максимум Q-полосы не сдви-

нут относительно Tg = 20 ◦C, но интенсивность погло-

щения на длине волны короче 550 nm заметно выше.

Интенсивность на длине волны 550 nm в спектре пленки,

осажденной при 0 ◦C, несколько ниже, чем при 20 ◦C,

но выше, чем при −35 ◦C, а основной пик сохраняет
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свое положение как при 20 ◦C− 70 ◦C. Помимо посте-

пенного роста интенсивности, деконволюция спектров

выявила гипсохромный сдвиг субмаксимума при 550 nm

с повышением Tg . Согласно квантово-химическим рас-

четам [30], он отвечает за переход на
”
третье π → π∗

возбужденное состояние“ у димеров SubPc. Это связано

с тем, что, во-первых, уменьшается доля димеров 1, и

во-вторых, понижается кристалличность пленок (рис. 6).
Аналогичный Tg = −35 ◦C батохромный сдвиг был по-

лучен в работе [21] после длительного отжига пленки

SubPc при 100 ◦C, осажденной при комнатной темпе-

ратуре (RT). Авторы зафиксировали схожую картину

реорганизации рельефа и появление аналогичного сиг-

нала отражения кристаллической плоскости (002) при

17.09◦ . Увеличение температуры отжига приведет к еще

большему росту кристалличности, появлению и других

пиков отражения, согласующихся с дифрактограммой

исходного порошка SubPc (рис. 9, 10).

При 70 ◦C пленка становится минимально шерохо-

ватой, состоит из протяженных волокон, стремящихся
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от точки начала роста (рис. 2, f). Подобные структуры

пленок SubPc были исследованы в работе [16], где

авторы заключили, что они формируются через стадию

стопочной агрегации в одномерные массивы и после-

дующего их срастания в крупные сети. Отмечено [16],
что такие структуры обладают анизотропией дрейфовой

подвижности носителей заряда в зависимости от того,

вдоль или перпендикулярно поверхности слоя приложе-

но электрическое поле. Пленки не состоят из стопочных

массивов полностью, поскольку к одномерным структу-

рам возможно присоединение в боковом направлении.

В противном случае для структур, состоящих только из

стопочных агрегатов SubPc, предсказан гипсохромный

сдвиг Q-полосы относительно ее положения в спектре

мономеров [30], чего в реальном спектре пленки при

Tg = 70 ◦C не наблюдается (рис. 8). Авторы [30] счи-

тают вывод о стопочной организации пленок SubPc,

сделанный в работе [16], полностью ошибочным, и

предполагают, что одномерные массивы на самом деле

состоят из димеров 1. Однако, как было сказано выше,

димер 2 теоретически более стабилен, чем димер 1.

Структурная организация одномерных массивов, обра-

зующихся при осаждении SubPc на нагретую подложку,

остается предметом научной дискуссии.

Ожидаемо пленки, осажденные при Tg = 40 ◦C и

70 ◦C, не имеют дальнего порядка рентгеновской ди-

фракции (рис. 6, a). Для проверки мы в таком же процес-

се нанесли пленки SubPc толщиной 100 nm, т. е. более

контрастные, на кремний и измерили их рентгеновские

дифрактограммы (рис. 10). В них кристалличность также

пропадает при Tg выше 20 ◦C. Образование аморфных

сплошных и нерельефных пленок является признаком

падения силы межмолекулярного взаимодействия, а зна-

чит, согласно формуле (1), росту сродства к подложке.
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Таблица 2. Проводимость и фотоотклик пленок SubPc в

латеральном направлении между Au-электродами

Tg ,
◦C σ , S/m JSun/Jdark

−35
Темнота 2.30 · 10−7

2.2
Свет 6.95 · 10−7

+20
Темнота 4.44 · 10−8

10.6
Свет 4.62 · 10−7

+70
Темнота 3.66 · 10−10

122
Свет 4.57 · 10−8

Примечание. σ — удельная проводимость пленок; JSun/Jdark —

отношение плотности тока при симулированным солнечным светом

и в темноте при +12В, далее — фотоотклик.

Однако приведенные в работах [9,23] термодинамиче-

ские и кинетические уравнения не предполагают смены
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Рис. 11. Вольт-амперные характеристики 30 nm пленок SubPc в ячейках Au/SubPc/Au со встречно-штыревыми электродами.

Разность кривых прямого и обратного хода измерения объясняется захватом и высвобождением носителей заряда ловушками. Как

и для фталоцианинов, гистерезис уменьшается с ростом Tg , т. е. с уменьшением количества ловушек [32].

механизма роста, поскольку в таком узком интервале

температур энергии осаждаемых молекул γd и поверх-

ности подложки γs меняются незначительно, а скорость

осаждения не менялась. Кардинальная смена карти-

ны роста, которая маловероятна в данных граничных

условиях, вероятнее всего была достигнута. С учетом

данных оптических спектров (рис. 8) и дифрактограмм

пленок (рис. 6, 10), становится понятно, что в форми-

ровании аморфных пленок при Tg выше 40 ◦C вместо

мономеров SubPc участвует другая частица с другим

значением γd и сродством к поверхности подложки γ∗,

обладающая достаточным γs , вероятнее всего, наиболее

стабильный димерный агрегат 2 типа [30] (рис. 7).
Тогда его длина диффузии [23] будет определяться

температурой подложки (т. е. кинетически). Случаи уча-

стия в ростовых процессах подвижных димерных и

тримерных частиц уже встречались при осаждении неор-

ганических пленок, например, золота [23], но вопрос

разного сродства к подложке этих частиц не рассмат-

ривался.
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Таблица 3. Фотоэлектрические характеристики многослойных ячеек с донорным слоем SubPc

Tg Буфер Jsc (mA/cm2) Jdark (mA/cm2) Uoc , V S RR FF η, %

CuI 1.3 · 10−2 7.2 · 10−2 0.37 31 7 0.18 8.9 · 10−4

−35 ◦C MoO3 1.1 · 10−3 1.7 · 10−4 0.6 13 0.2 0.17 1.1 · 10−4

ITO 9.2 · 10−4 1.2 · 10−2 0.13 2 1 0.43 5.1 · 10−5

CuI 3.2 14.1 0.49 8697 13 615 0.21 0.33

0 ◦C MoO3 3.5 · 10−2 1.4 · 10−1 0.38 1427 344 0.45 0.0065

ITO 2.3 7.7 0.3 26 009 9253 0.34 0.24

CuI 10 9.2 0.48 845 400 0.3 1.43

20 ◦C MoO3 2.7 3.6 0.5 5367 1440 0.17 0.24

ITO 14.4 234 0.16 643 2127 0.32 0.75

CuI 7.8 · 10−3 9.6 · 10−4 0.53 16 0.2 0.19 7.7 · 10−4

70 ◦C MoO3 6.8 · 10−3 4.7 · 10−4 0.64 62 0.5 0.17 7.5 · 10−4

ITO 2 38 0.3 2709 4868 0.27 0.11

Примечание. Jsc — плотность тока при напряжении 0V при освещении солнечным светом; Jdark — плотность тока при напряжении +1V в

темноте; Uoc — напряжение, при котором генерируемый фототок был полностью скомпенсирован и равен нулю; S — фотоотклик, вычисляемый

как отношение проводимости при освещении к проводимости в темноте при напряжении −1V; RR — выпрямление, вычисляемое как отношение

проводимости в темноте при +1 и −1V.

При промежуточных значениях Tg = 20 ◦C−40 ◦C рас-

тут сплошные пленки, но с островками (рис. 2, d, e).
Скорее всего, при этих температурах в формировании

пленок одновременно участвуют две частицы — моно-

мерная молекула SubPc (островковый рост) и ее димер

типа
”
concave-to-concave“ (послойный рост). Площадки,

где подслой расположенных параллельно подложке мо-

лекул SubPc все еще образуется, можно наблюдать на

изображениях АСМ (рис. 2, d, e) при 20 ◦C и 40 ◦C в

виде областей с приподнятыми границами, что связано

с более благоприятными условиями роста на боковых

гранях кристаллов (как при 0 ◦C).
Разная пропорция между молекулярно-упорядочен-

ными доменами с быстрым транспортом заряда и коли-

чеством/шириной границ между ними, лимитирующими

перенос заряда, неизбежно влечет за собой различия

в (фото-) проводимости пленок SubPc. Мы взяли три

ключевые температуры Tg — −35 ◦C, 20 ◦C и 70 ◦C,

отражающие три типа морфологии, для оценки удельной

проводимости σ , [S/m], слоя SubPc вдоль подложки (го-
ризонтально) между золотыми электродами встречно-

штыревой геометрии, разделенными зазором в 30µm.

Очевидно, что измерение горизонтальной проводимо-

сти для Tg = 0 ◦C, несмотря на интересную структуру,

нецелесообразно — островки имеют практически ну-

левой взаимный контакт. Плотность латерального тока

измерялась в атмосфере аргона в темноте и при осве-

щении симулированным солнечным светом мощностью

100mW/cm2.

Из табл. 2 видно, что темновая латеральная про-

водимость σ падает с повышением Tg на три порядка;

фотоотклик при этом растет за счет ее падения, а не

роста фотопроводимости. Возможной причиной такого

поведения можно считать изменение концентрации лову-

шек носителей заряда [32]. Очевидно, в роли ловушек и

рекомбинационных центров в пленках SubPc выступают

в том числе и межзеренные границы. Заполнение и

высвобождение ловушек влияет и на размах гистерезиса

в вольт-амперных характеристиках ячеек Au/SubPc/Au

(рис. 11), чем ниже Tg , тем он шире. Повышение

фотоотклика в колончатых агрегатах субфталоцианинов

ранее уже замечали [1].
Чтобы продемонстрировать роль морфологии

слоя SubPc в работе тонкопленочных фотоактивных

устройств, были изготовлены многослойные структуры

ITO/Буфер/SubPc(14∗ nm)/C60(40 nm)/BCP(8 nm)/Al(80 nm),
где буфер — MoO3, CuI, либо отсутствует (рис. 1).
Ультратонкий буферный слой должен выравнивать

работу выхода прозрачного электрода ITO и уровень

ВЗМО молекулярного фотоабсорбера, тем самым

повышая ЭДС холостого хода Uoc [4,12,17,20]. Только

SubPc мы осаждали при различных температурах Tg ,

все остальные компоненты при RT. Знак (∗) у толщины

SubPc служит напоминанием о том, что это значение

является чисто номинальным с учетом рельефа пленок

(рис. 2, табл. 1). При RT данная толщина считалась бы

оптимальной [24], но это не распространяется на пленки,

полученные при других Tg [12] или скоростях осажде-

ния [8]. Диапазон напряжений при измерении вольт-

амперных характеристик был в пределах (+1)−(−1)V,
чтобы гарантировано преодолеть пороговое напряжение

открытия диода, но избежать деградации структуры пле-
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Рис. 12. Вольт-амперные характеристики многослойных структур c донорным слоем SubPc в темноте (a), при освещении

симулированным солнечным светом (b), выделенные участки ВАХ в IV квадранте при освещении (c−f).

нок SubPc. В режиме фотовольтаической ячейки КПД

получился невысоким, лучшее значение 1.43% получено

при Tg = 20 ◦C, ближе всего к RT (табл. 3), против

1.55% и 1.82% у известных родственных по структуре

прототипов ячеек [12,24]. С учетом высокой вариатив-

ности морфологии пленок отклонение Tg от RT всего

на 5 ◦C может быть достаточно, чтобы толщина оса-

жденного слоя SubPc вышла за диапазон оптимальной,

поскольку длина диффузии экситона LD и подвижность

носителей заряда µ сильно зависит от морфологии слоя

SubPc [15,16]. Это может объяснить, почему у авторов

работы [17] мог возникнуть дрейф эффективности ячеек,

в которых SubPc осаждали при 150 ◦C.

В режиме фотодиода наилучшие характеристики

RR = 9.2 · 103 и S = 2.6 · 104 достигнуты в образцах, где

SubPc нанесен при Tg = 0 ◦C на ITO без подслоя CuI или

MoO3. Это нельзя списать на вклад сети параллельно

включенных микроскопических ячеек ITO/C60/BCP/Al

(т. е. ток течет помимо SubPc), поскольку площадь

пробелов в пленках SubPc, полученных при Tg = −35 ◦C

и 0 ◦C должна быть примерно одинакова (рис. 2, a, c,

табл. 1). Скорее, удачная морфология колончатых кри-

сталлических доменов SubPc приводит к увеличению µ

и LD в перпендикулярном подложке направлении. Дрей-

фовая подвижность µ в зависимости от направления

может отличаться на три порядка [16], а LD достигать
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95 nm в кристаллических пленках SubPc [15], что при-

близительно соответствует высоте колончатых структур,

формирующихся при Tg = 0 ◦C. Вольт-амперные харак-

теристики многослойных ячеек приведены на рис. 12.

Как и ожидалось, внедрение анодного буфера MoO3

повысило Uoc , однако влияние на прочие фотоэлектри-

ческие характеристики было неоднозначным.

Применение CuI в качестве буферного слоя оправда-

но для Tg <RT, где пленки формируются мономерами

SubPc. Как известно, буфер обладает ориентирующим

действием на фталоцианиновые молекулы, способствуя

их осаждению параллельно подложке [13]. В диапазоне

Tg , где активной формирующей слой частицей явля-

ется димерный агрегат, применение буфера, наоборот,

приводит к значительному падению фототока и всех

зависимых от него характеристик фотодиода (табл. 3).
Внедрение слоя MoO3 привело к росту последователь-

ного сопротивления, из-за чего темновой ток Jdark по

сравнению с CuI заметно ниже. Только при Tg = 20 ◦C

его внедрение в ячейку привело к росту фотоотклика в

9 раз относительно ITO, во всех остальных случаях его

применение не оправдало ожиданий (табл. 3).

Выводы

Тонкие слои низкомолекулярного полупроводника

субфталоцианина хлорида бора SubPc получались в

PVD-процессе при разных температурах роста Tg в

диапазоне −35 ◦C− + 70 ◦C. Впервые показано, что вы-

бор Tg в достаточно узком диапазоне позволяет плавно

изменять морфологию слоя SubPc от островковой на

охлажденной ниже 0 ◦C подложке до сплошной и одно-

родной — на подогретой до Tg = 70 ◦C. Это становится

возможным потому, что в ростовом процессе, по всей

видимости, участвуют две частицы SubPc — мономер

и димер, который может сам по себе быть подвижен

уже вблизи 20 ◦C (RT). В диапазоне 20 ◦C < Tg < 70 ◦C

морфология пленок представляет собой результат сов-

местного осаждения мономера и димера, причем доля

димеров и длина диффузии контролируется термоди-

намически и кинетически соответственно. По резуль-

татам измерений электронных спектров поглощения

и рентгеновской дифракции, мономеры SubPc образу-

ют
”
convex-to-convex“ агрегаты с ориентацией моле-

кул параллельно подложке. На основе слоев SubPc в

PVD-процессе были изготовлены многослойные диод-

ные структуры с планарным молекулярным гетеропе-

реходом ITO/буфер/p-SubPc/n-C60/BCP/Al. Внедрение в

качестве буфера слоя MoO3 не приводит к улучшению

фотоэлектрических показателей этих структур, тогда

как внедрение CuI в некоторых случаях может быть

целесообразно. Лучшее темновое выпрямление и све-

точувствительность достигнуты для структур, где слой

SubPc осажден при Tg = 0 ◦C.
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