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Разработан быстродействующий широкополосный детектор инфракрасного излучения на основе лазерно-

индуцированного графена, полученного методом лазерного пиролиза тонкой полиимидной пленки. Спек-

тральная характеристика фотоотклика детектора согласуется со спектром излучения абсолютно черного

тела, за исключением особенностей, обусловленных оптической схемой установки. В отличие от стандартных

болометров частотная характеристика детектора на основе лазерно-индуцированного графена определена

двумя различными физическими механизмами, что приводит к слабому спаду чувствительности на частотах

порядка 1− 10 kHz и выше. Высокая эффективность поглощения излучения в широком спектральном диа-

пазоне (1 < λ < 21 µm) и относительно высокая чувствительность (∼ 0.16%/W) позволили рассматривать

данный детектор как перспективную основу для создания технологически простых и недорогих приемников

инфракрасного излучения.
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Введение

Последние два десятилетия интенсивно исследуются

физико-химические свойства и развиваются физические

принципы технического использования графена [1–3].
Уникальные свойства графена, такие как отсутствие за-

прещенной зоны, высокая подвижность носителей заряда

и прозрачность, высокая теплопроводность и электро-

проводимость, а также низкая теплоемкость, стимулиру-

ют исследования в области транспортных и фотоинду-

цированных явлений [4–8]. Например, особое внимание

уделяется созданию тепловизоров, устройств обработки

и преобразования электромагнитного излучения, матриц

фокальной плоскости и т. д. [7,9–12]. Принцип действия

таких устройств преимущественно основан на измене-

нии электросопротивления графена в результате его на-

грева электромагнитным излучением. Низкая теплоем-

кость и высокая теплопроводность графена теоретически

позволяет достичь быстродействия на частотах, близких

к терагерцовому диапазону (∼ 1012 Hz) [7–10]. Однако
при создании фотодетекторов на основе монослойно-

го графена возникают существенные ограничения: во-

первых, доля поглощения падающего излучения крайне

мала (∼ 2% [6,12]), а во-вторых, при использовании

графена в качестве фоторезистора в электрической

цепи наблюдается высокая темновая плотность тока,

что снижает отношение сигнал/шум и чувствительность

устройства.

Возможным решением проблемы является использо-

вание различных пористых графеновых структур. В та-

ких трехмерных (3D) структурах многократно увеличи-

вается эффективная поверхность и соответственно доля

поглощенного света, а большое количество случайно со-

единенных монослоев графена позволяет распределить

электрический ток между ними и уменьшить плотность

тока в контактах [10,12–14]. Перспективным методом

синтеза подобных структур является прямое лазерное

деструктурирование (пиролиз) полиимидных пленок,

приводящее к образованию лазерно-индуцированного

графена (ЛИГ) [15]. ЛИГ представляет собой высоко-

пористый электропроводящий 3D-углеродный материал,

состоящий из наноразмерных фрагментов графенопо-

добных слоев, хаотично ориентированных в трехмерной

матрице, с большим количеством дефектов и пор [15].
Строго говоря, ЛИГ не относится ни к классическому

2D-графену, ни к упорядоченному графиту [16]. Однако
в настоящее время термин

”
ЛИГ“ уже устоялся и

широко используется в научных публикациях, связанных

с лазерным пиролизом различных углеродосодержащих

прекурсоров. Простота и высокая скорость получения

пленок ЛИГ привела к интенсивной разработке различ-

ных датчиков на его основе [17–25], микрожидкостных
устройств [26–32], устройств памяти [33–40], экоси-

стемных
”
умных“ устройств [26,28,41–45] и т. д. Боль-

шая толщина пленок ЛИГ (d ∼ 20− 300µm [13,46,47])
обеспечивает высокие значения коэффициента погло-
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щения света, а также электросопротивления и емко-

сти [45,48–50]. Это позволило создать фотодетектор с

частотными характеристиками, близкими к полупровод-

никовым аналогам [32,51], обнаружить эффект увлече-

ния при облучении пленки ЛИГ лазерными импульсами

наносекундной длительности [47], а также предложить

детектор видимого и ближнего инфракрасного (ИК)
излучения [52]. Перечисленные работы подтверждают

высокий технический потенциал ЛИГ, в том числе для

фотоники. Несмотря на эти успехи, детальные иссле-

дования ЛИГ-детекторов в среднем ИК-диапазоне не

проводились.

В настоящей работе представлены краткие результаты

исследования спектральных и частотных характеристик

фотодетектора на основе пленки ЛИГ в ближнем и

среднем ИК-диапазоне спектра (1 < λ < 21µm) в срав-

нении с идеальным болометром, определены параметры

чувствительности ЛИГ-детектора к интенсивности пада-

ющего излучения.

1. Образцы и условия эксперимента

ЛИГ представляет собой высокопористую электро-

проводящую 3D-структуру с удельной поверхностью до

нескольких сотен m2/g, состоящую из нанокристаллитов

турбостратного графита, случайным образом ориентиро-

ванных друг относительно друга [53]. Синтез ЛИГ произ-

водился на воздухе при обычных условиях в результате

лазерного пиролиза углеродосодержащего прекурсора в

виде полиимидной пленки толщиной 125µm. Детектор

ИК-излучения (вставка на рис. 1, a) был получен на

поверхности полиимидной пленки построчным сканиро-

ванием сфокусированным пучком непрерывного газово-

го (CO2) лазера (длина волны λ = 10.6µm) по задан-

ной траектории [13,54]. Параметры лазерного излучения

контролировались с помощью измерителя мощности

PM100D, сопряженного с датчиком тепловой мощности

S425C-L. Диаметр лазерного пучка, мощность излуче-

ния лазера, скорость сканирования и расстояние между

строками составляли 190 µm, 6W, 220mm/s и 25µm

соответственно. Следует отметить, что для синтеза ЛИГ,

а также в различных задачах по модификации углерод-

ных материалов применяются как непрерывные, так и

импульсные лазеры, включая фемтосекундные лазерные

комплексы [15,55–58]. При этом важными параметрами

являются мощность лазера (пиковая мощность в импуль-

се) и длина волны излучения (определяющая энергию

фотонов и степень поглощения материалом). В на-

стоящей работе использовано излучение CO2-лазера,

которое эффективно поглощается полиимидной плен-

кой. Это позволяет синтезировать более однородную

структуру ЛИГ [59,60]. С практической точки зрения

также существенно то, что непрерывные углекислотные

газовые лазеры (CO2-лазеры) отличаются относительно

невысокой стоимостью и простотой в эксплуатации.

Рис. 1. РЭМ изображение поверхности ЛИГ (a) (на вставке

приведена фотография ЛИГ-детектора в виде меандра), спектр
комбинационного рассеяния света (b) и обзорный РФЭС

спектр поверхности ЛИГ (c).

В результате лазерной термообработки полиимидной

пленки были получены образцы (ЛИГ-детекторы) в виде

меандра общей длиной 85mm с шириной и толщиной

линии 300 и 20µm соответственно. Концы меандра име-

ли контактные площадки размером 2× 2mm. При этом

освещаемая поверхность меандра составляла 5× 8mm.

В силу механо-физических свойств (гибкости) самой

полиимидной пленки (субстрата), образцы ЛИГ, полу-

ченные на ее поверхности, также являются гибкими,

что было установлено и в других работах (см. напри-
мер, [60–62]).

На рис. 1, a представлено изображение участка по-

верхности ЛИГ, полученное с помощью растрового

электронного микроскопа (РЭМ- Thermo Fisher Scientific

Quattro S).

Видно, что синтезированный материал имеет губ-

чатую структуру, состоящую из переплетенных сетей

открытых полостей разнообразной формы и различного
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Рис. 2. Схема эксперимента: 1 — глобар, 2 — параболическое

зеркало, 3 — механический обтюратор, 4 — монохроматор,

5 — линза из KBr, 6 — полиимидная пленка, 7 — ЛИГ-

детектор, выполненный в виде меандра на поверхности поли-

имидной пленки, 8 — контактные площадки. Нижняя часть

рисунка условно демонстрирует принцип фотоотклика ЛИГ-

детектора.

размера, а также пластинчатых образований различной

ориентации. Спектр комбинационного рассеяния света

поверхности пленки ЛИГ, полученный при возбуждении

излучением гелий-неонового лазера на длине волны

632.8 nm на спектрометре HORIBA HR800, приведен на

рис. 2, b.

Представленный спектр состоит из четырех хорошо

известных полос рассеяния D, G, D′ и 2D, описанных

во многих работах по синтезу ЛИГ [13–18]. Кроме

этих четырех полос, в области больших частотных

сдвигов хорошо проявляется полоса D + D′ [53]. По-

хожие полосы рассеяния имеют дефектный графен и

кристаллиты графита с дефектами, а также нанокри-

сталлиты турбостратного графита. Анализ отношений

площадей указанных полос к площади G-полосы, а

также их частотного положения, ширины и формы линий

подтверждает, что ЛИГ состоит из нанокристаллитов

турбостратного графита с размером кристаллитов вдоль

плоскости графеновых слоев около 16 nm. Для анализа

химического состояния ЛИГ была применена методика

рентгеновской фотоэлектронной спектрометрии (РФЭС)
(спектрометр SPECS Surface Nano Analysis GmbH). На
рис. 2, c приведен обзорный спектр РФЭС, который

является типичным для ЛИГ, синтезированного при

вышеуказанных условиях лазерного пиролиза полии-

мидной пленки. Видно, что в спектре кроме линии

углерода С1s, имеется линия кислорода O1s. Детальные

исследования спектров РФЭС указывают, что на по-

верхности ЛИГ также имеются следовые концентрации

азота. Обработка полученного спектра РФЭС показыва-

ет, что концентрации углерода, кислорода и азота со-

ставляют 87.6 at. %, 11.1 at. % и 0.6 at. % соответственно.

Разложение спектров C1s и O1s демонстрирует, что

поверхность ЛИГ содержит кислород- и азотсодержащие

группы (C − O, C = O, O −C = O, C − N и др.), кото-
рые могут влиять на его оптические и электрические

свойства. Темновое сопротивление меандра R составило

∼ 5 k� (удельное сопротивление ρ ∼ 0.075�·cm) при

комнатной температуре (T = 295K), что соответствует

значениям удельного сопротивления графена в рабо-

тах [8,63]. В формальном приближении ЛИГ в виде

однородной проводящей пленки графена максимальная

величина скин-слоя (δ) в среднем ИК-диапазоне может

быть оценена как δ = 2ρλ/µ0c
1/2 ∼ 5.4µm на длине

волны λ = 20µm (µ0 — магнитная постоянная, c —

скорость света в вакууме). Эта величина показывает, на

какую глубину в среднем проникает поле в структуру

ЛИГ на низких частотах (радио, СВЧ частоты), где

скин-эффект доминирует над диэлектрическими поте-

рями. На высоких частотах (оптика, ИК) доминирует

поглощение света самой графеновой сеткой и рассея-

ние на порах. В этом случае глубина проникновения

света δopt в основном определяется макроскопическим

коэффициентом поглощения структуры δopt = λ/4πk , где

k — коэффициент экстинкции, который зависит от

концентрации графена, морфологии пор, длины волны,

интерференции света внутри структуры и т. д. Обычно

δopt значительно меньше δ . Поскольку оцениваемая тол-

щина синтезированного ЛИГ (d = 20µm) превышает δ

(d > δ > δopt), можно считать, что в нашем случае обес-

печивается практически полное поглощение падающего

ИК-излучения в рабочем спектральном диапазоне при

комнатной температуре.

При изготовлении электрических контактов меандра

использовались три типа соединения ЛИГ с серебря-

ными токоотводящими проводами: 1) токопроводящим

клеем типа
”
Контактол“ на основе Ag; 2) расплавом

In; 3) пленкой Cu. Все контакты имели эквивалентные

свойства в течение двух-трех недель. В дальнейшем

контакты типа 1 и 2 демонстрировали признаки де-

градации. Поэтому в настоящей работе использовались

более стабильные медные контакты толщиной ∼ 200 nm,

полученные магнетронным распылением в вакууме при

температуре подложки T ∼ 200 ◦C.

Измерения напряжения фотоотклика 1V , наведенно-

го ИК-излучением в ЛИГ-детекторе (меандре), произ-

водились по схеме, описанной ниже (рис. 2). Свет

глобара (силитовый излучатель с рабочей темпера-

турой ∼ 1380 ◦C), промодулированный механическим

обтюратором (Thorlabs MC2000B) с частотой до

Журнал технической физики, 2026, том 96, вып. 3
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10 kHz, фокусировался параболическим Al-зеркалом на

входную щель модернизированного призменного ИК-

монохроматора ИКС-21М. Монохроматический неполя-

ризованной свет в интервале длин волн 0.5 < λ < 21µm

фокусировался параболическим зеркалом и KBr-линзой

на освещаемую поверхность меандра в виде пятна диа-

метром ∼ 4mm.

Напряжение фотоотклика 1V определялось как из-

менение электросопротивления (1R) ЛИГ-детектора в

результате его нагрева на величину 1T при поглощении

света в соответствии с выражением [64]:

1V = Idc1R = Idc(dR/dT)1T, (1)

где Idc = Udc/(Rref + Rd) — ток на детекторе,

Udc = 9V — напряжение источника постоянного

тока, Rref — сопротивление нагрузки, равное

темновому сопротивлению меандра (см. выше), Rd —

сопротивление освещенного меандра.

Величина 1V фиксировалась с помощью синхрон-

ного усилителя Stanford Research SR810 (Lock-in) и

самодельного широкополосного предусилителя. Следу-

ет отметить, что достаточно высокая плотность тока

(∼ 102 − 103 A/cm2) не приводила к заметному разру-

шению контактов и образца или изменению резистив-

ных свойств детектора. Такую термостойкость меандра

можно объяснить многократным увеличением площади

(количества контактов) структуры ЛИГ по сравнению

с монослойным графеном [13,49]. Частотные характе-

ристики ЛИГ-детектора определялись с использованием

светодиода с λ = 0.63µm, работающего в постоянном

или импульсном (прямоугольный меандр) режимах при

подаче напряжения от генератора высокой частоты

(АКИП-2141).

2. Результаты эксперимента

Спектральная зависимость фотоотклика ЛИГ-

детектора 1V (λ) измерялась в диапазоне длин волн

0.5− 21µm при частоте модуляции ИК-излучения

f = 9.1Hz, на которой 1V достигает максимальных

значений [52,64] (рис. 3).

Кроме того, частота f = 9.1Hz попадает в рабо-

чий диапазон частот Bi-болометра с окном из KBr,

что позволило далее провести сравнение параметров

ЛИГ-детектора с данными штатного детектора ИК-

монохроматора.

Спектр 1V для ЛИГ-детектора демонстрирует макси-

мум при λmax ≈ 1.75µm (рис. 3). Согласно закону сме-

щения Вина (λmax · T = 2898µm·K), это положение со-

ответствует температуре абсолютно черного тела (АЧТ)
T ≈ 1656K, что близко к рабочей температуре глобара в

установке. Для сравнения на рис. 3 приведена спектраль-

ная зависимость плотности энергетической светимости

теплового излучения АЧТ при T = 1656K, рассчитанная
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Рис. 3. Спектр фотооклика (1V ) ЛИГ-детектора при

f = 9.1Hz (левая ось ординат) и спектр излучения АЧТ (ε)
(правая ось) при T = 1653K. На вставке приведен спектр

фотооклика ЛИГ-детектора, нормированный на спектр АЧТ.

по формуле Планка [65]:

ε(λ, T ) =
2πhc2

λ5
·

1

ehc/kT λ − 1
, (2)

где h — постоянная Планка.

Нужно отметить, что в отличие, например, от фо-

тонных детекторов (InSb, HgCdTe), спектр фотоотклика

ЛИГ-детектора хорошо повторяет спектр АЧТ, что явля-

ется характерным для тепловых приемников и обеспечи-

вает корректные измерения интегральной мощности из-

лучения в широком ИК-диапазоне без искажений за счет

собственной спектральной избирательности. В длинно-

волновой области (λ > 21µm) спектр 1V (λ) ограничен

поглощением света линзой из KBr. Резкое уменьшение

1V (λ) в коротковолновой области (λ < 1.7µm) обу-

словлено резким уменьшением интенсивности в спек-

тре излучения АЧТ. Особенности на кривой 1V (λ) в

области 1− 6µm связаны с поглощением ИК-излучения

атмосферными парами H2O и CO2 [66]. Размытость этих
особенностей связана с большой спектральной шириной

щели (1ν) призменного монохроматора ИКС-21М в

эксперименте. Вставка на рис. 3 демонстрирует спектр

фотоотклика ЛИГ-детектора, который после нормиров-

ки на спектр АЧТ напоминает или близок к спектру

идеального фоторезистора. Как видно из рисунка, в

результате такой обработки линии, связанные с погло-

щением паров H2O и CO2, усиливаются, а амплитуда

1V — уменьшается. Необходимо отметить, что слабый

монотонный спад 1V при увеличении длины волны

света обусловлен нелинейной дисперсией показателей

преломления dn/dλ используемых сменных призм из

стекла, NaCl и KRS-5 [56].
Для сравнительной оценки фотоотклика изготовлен-

ного ЛИГ-детектора был использован заводской Bi-

болометр из монохроматора ИКС-21М с обнаружи-

тельной способностью D = 109 − 1010 Hz1/2·cm/W при

комнатной температуре. Сравнение показало, что при
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одинаковых условиях эксперимента фотоотклик неохла-

ждаемого металлического болометра на частоте 9.1Hz

всего в ∼ 102 − 103 раз выше, чем ЛИГ-детектора.

Таким образом, в грубом приближении обнаружитель-

ная способность полученного ЛИГ-детектора составляет

D ∼ 106 Нz1/2·cm/W. Более точное определение D для

ЛИГ требует дополнительных исследований.

Предыдущие [52] и наши исследования показали, что

только часть пленки ЛИГ участвует в преобразова-

нии электромагнитной энергии, поскольку эффектив-

ная толщина скин-слоя меньше толщины пленки ЛИГ.

Следовательно, одним из способов повышения D для

ЛИГ-детектора может быть уменьшение толщины самой

структуры ЛИГ, так как основная доля энергии света

поглощается в поверхностных слоях. При этом за счет

повышения концентрации энергии должны уменьшиться

и шумы детектора. Отметим, что на данном этапе в

текущих условиях эксперимента и для данных образцов

ЛИГ величина тепловых шумов является достаточно

высокой, и ее точное определение (или, например,

эквивалентной мощности шума (NEP) детектора) не

представляется возможным и целесообразным.

При сравнении с промышленным болометром на ос-

нове висмута (Bi) ЛИГ-детектор демонстрирует необыч-

ный характер зависимости фотоотклика 1V ( f ) от часто-

ты модуляции света. На рис. 4, a представлен низкоча-

стотный участок этой зависимости (6 < f < 45Hz) для

излучения светодиода (λ = 0.63µm), модулированного с

помощью механического обтюратора.

Наличие
”
полки“ на кривой 1V ( f ) при f ≤ 10Hz

и резкое уменьшение чувствительности при боль-

ших частотах указывает на болометрическую приро-

ду фотоотклика в этом частотном интервале. Оцен-

ка частоты максимума 1V для болометра по вы-

ражению f t = 1/τ дает величину f t ≈ 5Hz, где

τ ≈ C/G [54], C ≈ 12 J/(mol·K) — теплоемкость графена

при T = 300K [1], G ≈ 5000W/(m·K) — теплопровод-

ность графена [68,69]. Расхождение с экспериментально-

наблюдаемой частотой максимума 1V может быть обу-

словлено отсутствием точных данных о теплоемкости

и теплопроводности пористого ЛИГ. В то же время

высокая пористость (более 90%) и низкая плотность (по
разным данным, от ∼ 4mg/cm3 [9] до ∼ 70mg/cm3 [13])
приводят к снижению теплоемкости ЛИГ-детектора и,

как следствие, к увеличению его быстродействия по

сравнению с болометром. Отметим, что уменьшение

толщины структуры (массы ЛИГ) также должно умень-

шить тепловую инерцию и повысить скорость отклика

ЛИГ-детектора.

Важным параметром для детекторов болометрическо-

го типа является коэффициент термического электросо-

противления β = 1/R · dR/dT , характеризующий отно-

сительное изменение сопротивления R рабочего элемен-

та при его нагреве. Параметр β определяет чувствитель-

ность детектора к температурным изменениям, т. е. его

обнаружительную способность. В работе параметр β для
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Рис. 4. a — частотная зависимость фотоотклика (1V ) для

ЛИГ-детектора при λ = 0.63 µm; b — температурная зависи-

мость коэффициента термического сопротивления ЛИГ (β). На
вставке — обратная температурная зависимость сопротивле-

ния ЛИГ-детектора.

ЛИГ рассчитывался по наклону температурной зависи-

мости сопротивления R(T ) в диапазоне 200− 300K и

составил β ≈ 0.05%/K при T = 293K и β ≈ 0.15%/K

при T = 200K (рис. 4, b), что хорошо согласуется с

данными для других полупроводников.

Вставка на рис. 4, b демонстрирует, что

температурная зависимость электросопротивления

ЛИГ удовлетворительно описывается функцией вида

lnR = lnR0 + Ea/2kT , где энергия активации носителей

заряда Ea ∼ 5meV, R0 = 5 k�, k — постоянная

Больцмана. Полупроводниковый ход lnR может быть

связан с высокой дефектностью ЛИГ. Например,

процессами адсорбции и присутствием в пористом

ЛИГ различных функциональных групп углерода и

кислорода [20–23,52–63], что согласуется с данными

о модификации зонной структуры графена через хи-

мическое функционализирование [13–18,63]. Подобное

поведение β(T ) и R(T ) имеют также оксид графена и

пленки многослойного графена, полученные аэрогель-

методом [8,9]. Отметим, что классический графен

обладает
”
металлическим ходом“ зависимостей β(T ) и

R(T ) (см., например, [2,70]). Таким образом, пористая

структура ЛИГ и наличие функциональных групп при-

водят к деградации детектора в атмосферных условиях

и появлению энергетической полупроводниковой щели

в спектре. Для стабилизации параметров фоточувстви-

тельности ЛИГ-детектора и повышения β можно варьи-

ровать методику синтеза ЛИГ [13–18,27–29,48,49] или

использовать различные активные примесные группы,

например, металлические наночастицы [4,20,40–42,51].
Из рис. 4 видно, что болометрический эффект в

ЛИГ-детекторе сохраняется до f = 45Hz, при которой

1V почти в четыре раза меньше, чем в максимуме

(рис. 3, a). При дальнейшем увеличении частоты мо-

дуляции света кривая 1V ( f ) демонстрирует излом, и

сигнал плавно спадает вплоть до f = 10 kHz (рис. 5).
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Как было отмечено в работах [47–49,51], наличие этой

составляющей 1V ( f ) может быть связано с так на-

зываемым
”
photogating“ эффектом — разновидностью

фотоэлектромагнитной ЭДС, обусловленной изменени-

ем подвижности и концентрации свободных носителей

заряда (дырок и электронов) в процессе поглощения

света [7,71] в графеновых структурах. Данный эффект

слабо зависит от частоты и связан с уникальными свой-

ствами 2D-графена (в том числе ЛИГ), включающих

малую теплоемкость, слабое электрон-фононное вза-

имодействие, высокую удельную электропроводимость

(σ ≈ 0�−1·cm−1 [72]) и высокую подвижность но-

сителей заряда. В исследуемом образце подвижность

носителей, измеренная с точностью до константы в

стандартной схеме с четырьмя холловскими контактами

на участке меандра, составила µ ∼ 4300 cm2/(V·s) при

комнатной температуре. Эта величина гораздо меньше,

чем в графене, что может быть связано с влиянием

примесей, дефектов или адсорбированных молекул. Тем

не менее в работе [47] был представлен термодетектор

из ЛИГ, работающий на THz-частотах, что указывает на

возможные перспективы расширения частотного диапа-

зона ЛИГ-детектора.

Частотная зависимость ЛИГ-детектора 1V ( f ) (рис. 5)
исследовалась при его облучении светом с длиной волны

0.63 µm. Модуляция излучения светодиода осуществ-

лялась двумя способами: 1) механическим–оптомехани-
ческим обтюратором с диском и 2) электрическим–
высокочастотным генератором. При частотах модуляции

f < 0.5 kHz значения 1V для обоих случаев практи-

чески совпадают. В диапазоне частот 1 < f < 10 kHz

чувствительность ЛИГ-детектора к излучению, модули-
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Рис. 5. Частотная зависимость фотоотклика (1V ) ЛИГ-

детектора при модуляции излучения светодиода λ = 0.63 µm

механическим обтюратором (кривая 1) и генератором высокой

частоты (кривая 2). Штриховой линией для сравнения при-

ведена кривая чувствительности идеального болометра (SBol),
рассчитанная по выражению (4).

рованному механическим обтюратором, была на ∼ 20%

выше, чем при модуляции с помощью электрического

генератора. Такое расхождение можно связать с неучтен-

ными процессами релаксации в электронной цепи реги-

страции сигнала от ЛИГ-детектора, поскольку при мо-

дуляции интенсивности излучения не прямоугольной, а

синусоидальной формой сигнала, разница в фотоотклике

1V ( f ) для обоих типов модуляции уменьшается. Таким

образом, ЛИГ-детектор позволяет хорошо воспроизво-

дить форму импульсов на частотах до f = 10 kHz (на
рисунке не показано).
Сравним экспериментальную зависимость 1V ( f ) для

ЛИГ-детектора с частотной зависимостью фоточувстви-

тельности идеального болометра SBol( f ) [52]:

SBol ≈ 3Usβ/( f C), (3)

где Us = 9V — напряжение смещения,

C = 12 J/(mol·K) — теплоемкость ЛИГ, β = 0.05%·K−1 .

Для удобства сравнения частотная зависимость SBol

может быть представлена в виде:

SBol = A/ f , (4)

где A — размерный множитель, определяемый из

соотношения A/ f = 1V для частоты модуляции све-

та f = 10Hz и мощности излучения светодиода

P = 200mW, при фиксированном значении внешней

температуры и сопротивления ЛИГ-детектора.

Рассчитанная по выражению (4) кривая SBol( f ) де-

монстрирует (рис. 5), что множитель A может быть

использован только до частот f ≤ 45Hz, т. е. в частот-

ном диапазоне, где доминирует болометрический меха-

низм. При дальнейшем увеличении частоты модуляции

1V более чем на два порядка величины превышает

SBol( f ). Различие экспериментальных и рассчитанных

зависимостей 1V ( f ) и SBol( f ) в области f > 45Hz

может быть связано с проявлением фотопроводимости

в результате изменения параметров носителей заряда,

например,
”
photogating“ эффектом [52]. Отметим, что

возникновение фотогальванического эффекта на p–n-
переходе (вентильная фото-ЭДС) в ЛИГ-детекторе в

данной геометрии установки в пределах погрешности

эксперимента не наблюдалось. Об этом, например, сви-

детельствует независимость величины сопротивления

ЛИГ от направления тока в измерительной цепи.

Измерения угловых зависимостей 1V (ϕ) показали,

что при углах падения света ϕ ≤ ±30◦ относитель-

но нормали к поверхности меандра снижение фото-

чувствительности ЛИГ-детектора не превышает ∼ 5%.

Таким образом, пористая структура ЛИГ обеспечивает

достаточно эффективное поглощение света под раз-

ными углами. Минимальная или пороговая мощность

излучателя, регистрируемая ЛИГ-детектором, составила

Pmin = ϑdP/dR = 0.16%/W, где ϑ ≈ 0.4� — стандарт-

ное отклонение сопротивления детектора без облу-

чения и при полной мощности лазерного излучения

dR/dP ∼ −410�/W [51]. Полученная величина Pmin
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на порядок ниже значений, характерных для моно- и

многослойного графена [9], но соизмерима с данными,

например, для нанокомпозитных пленок MoS2 с высоким

β [24,73].

Таким образом, чувствительность ЛИГ-детектора

ограничена взаимодействием материала с окружающей

средой и подвижностью носителей заряда. Для дости-

жения характеристик, близких к параметрам графена,

требуется дальнейшая оптимизация. Например, усовер-

шенствование методики синтеза, подбор оптимальной

толщины как самого ЛИГ-слоя, так и подложки, а также

применение защитных и легирующих покрытий.

Заключение

В работе продемонстрировано, что ЛИГ, синтезиро-

ванный методом пиролиза полиимидной пленки непре-

рывным CO2-лазером, является перспективным матери-

алом для создания быстродействующих детекторов элек-

тромагнитного излучения видимого и ИК-диапазона. По-

казано, что пленка ЛИГ проявляет полупроводниковые

свойства с энергией активации порядка 5meV и подвиж-

ностью носителей заряда 4300 cm2/(V·s). Коэффициент
термического сопротивления ЛИГ составляет примерно

0.05%/K и 0.15%/K при температурах 293 и 200K

соответственно. Пористая структура ЛИГ обеспечивает

эффективное поглощение света при углах падения света

до ±30◦ к нормали.

Из пленки ЛИГ был изготовлен ИК-детектор в фор-

ме меандра с тонкопленочными медными контактами.

Спектральная зависимость чувствительности детектора

в интервале 0.5 < λ < 21µm формируется спектром

излучения глобара с особенностями, связанными с по-

глощением света атмосферными парами H2O и CO2,

а также с дисперсией показателей преломления призм

оптической установки.

В области максимума чувствительности сигнал ЛИГ-

детектора примерно в 102 − 103 раз меньше, чем у

промышленного неохлаждаемого металлического боло-

метра. Однако по сравнению с промышленными теп-

ловыми приемниками ЛИГ-детектор может работать в

частотном интервале до 10 kHz. Частотная зависимость

сигнала ЛИГ-детектора определяется двумя механизма-

ми: 1)
”
barrier effect“ — низкочастотный (менее 45Hz)

болометрический эффект, связанный с нагревом пленки

ЛИГ при поглощении света; 2)
”
photogating effect“ —

эффект, связанный с фотоиндуцированным изменением

концентрации и подвижности свободных носителей за-

ряда (на частотах порядка и выше 10 kHz).

Максимальная чувствительность ЛИГ-детектора со-

ставила около 0.16%/W, что более чем на порядок

ниже значений, характерных для моно- и многослойного

графена. Тем не менее простые в изготовлении пленки

ЛИГ имеют потенциал для создания гибких приемников

ближнего и среднего ИК-диапазона с малым временем

отклика. Полученные технические характеристики ЛИГ-

детектора позволяют рекомендовать его для применения

в различных недорогих и компактных устройствах по-

требительской и специализированной электроники.
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