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Исследована взаимосвязь между нормальной интегральной излучательной способностью (εtn) и удельной

теплоемкостью (C p) металлов IV периода Периодической системы в температурной области, охватывающей

фазовый переход первого рода (плавление). Проведен корреляционный анализ указанных параметров

при гомологических температурах 0.9 · Tmelt и 1.1 · Tmelt . Установлена хорошая степень согласованности

между поверхностными и объемными свойствами металлов до и после плавления (R2 > 0.97). При этом

относительные скачки εtn и C p в точке плавления не коррелируют, что указывает на различную физическую

природу этих величин. Представленные результаты подчеркивают роль электронной структуры и электрон-

фононного взаимодействия в формировании теплофизических характеристик при фазовых переходах.
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Введение

Исследование теплофизических свойств металлов в

окрестности фазового перехода первого рода представ-

ляет значительный интерес для физики конденсирован-

ного состояния и материаловедения [1,2]. Фазовый пе-

реход
”
твердое тело–жидкость“ сопровождается скачко-

образным изменением ключевых термодинамических ха-

рактеристик, включая теплоемкость, теплопроводность,

электросопротивление и плотность, что отражает фунда-

ментальную перестройку атомной и электронной струк-

туры вещества [3].
Особое значение имеет анализ взаимосвязи парамет-

ров переноса энергии — теплоемкости (C p) и нор-

мальной интегральной излучательной способности (εtn),
измеряемой в инфракрасном диапазоне. Теплоемкость,

как объемное термодинамическое свойство, характери-

зует способность вещества аккумулировать тепловую

энергию и связана с плотностью фононных состояний

и электронным вкладом при высоких температурах [4].
Нормальная интегральная излучательная способность

представляет собой поверхностную радиационную ха-

рактеристику, определяемую электронно-фононным вза-

имодействием и оптическими свойствами приповерх-

ностного слоя [5].
Актуальность исследования обусловлена недостаточ-

ной изученностью корреляционных связей между объем-

ными и поверхностными теплофизическими свойствами

в широком температурном диапазоне, включающем об-

ласть фазового перехода. Особый интерес представляют

d-металлы IV периода Периодической системы, харак-

теризующиеся сложным взаимодействием электронных

и фононных подсистем, а также наличием магнитных

степеней свободы [6].

Целью настоящей работы является установление кор-

реляции между C p и εtn для d-металлов IV перио-

да в температурном диапазоне, включающем область

предплавления твердой фазы и перегрева жидкой фазы.

В исследовании применяется сравнительный анализ с

использованием гомологической нормализации темпера-

турной шкалы и изучение взаимосвязи параметров в точ-

ке фазового перехода. Предложенный подход позволяет

количественно оценить взаимосвязь между объемными

и поверхностными теплофизическими свойствами и вы-

явить влияние электронной структуры на формирова-

ние радиационных характеристик металлов при высоких

температурах.

Теоретическая значимость работы заключается в уста-

новлении количественных закономерностей между фун-

даментальными теплофизическими характеристиками в

условиях фазовых превращений. Практическая ценность

результатов связана с возможностью прогнозирования

радиационных свойств металлов при высокотемператур-

ной обработке и создании новых материалов с заранее

заданными теплофизическими характеристиками.

1. Исходные данные

Для корреляционного анализа использованы данные

по εtn d-металлов IV периода. Большинство значений

(Ti, V, Mn, Sc, Co, Ni, Cu, Zn) получены из авторских

экспериментальных работ. Для обеспечения полноты

ряда дополнительно использованы литературные данные
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Таблица 1. Источники и методы получения данных по εtn

Элемент Tmelt , K [3] Метод получения εtn Источник 0.9 · Tmelt , K 1.1 · Tmelt , K

Sc 1814 Экспериментальный [7] 1632.6 1995.4

Ti 1946 [8] 1751.4 2140.6

V 2220 [9] 1998 2442

Cr 2133 Расчетный − 1919.7 2346.3

Mn 1519 Экспериментальный [10] 1367.1 1670.9

Fe 1811 Литературные данные [11] 1630 1992.1

Co 1767

Экспериментальный

[12] 1590.3 1943.7

Ni 1728 1555.2 1900.8

Cu 1358 [13] 1222.2 1493.8

Zn 693 [14] 623.7 762.3

Таблица 2. Теплофизические характеристики металлов в точке плавления и при гомологических температурах

Металл ε0.9tn εsol
tn ε

liq
tn ε1.1tn C0.9

p Csol
p C

liq
p C1.1

p

Sc 0.19 0.24 0.26 0.29 983.19 983.19 978.74 978.74

Ti 0.31 0.33 0.41 0.49 776.20 843.61 977.04 977.04

V 0.35 0.42 0.55 0.45 790.20 859.48 895.15 895.15

Cr 0.26 0.25 0.25 0.27 797.75 1591.20 975.08 975.08

Mn 0.28 0.29 0.32 0.34 744.75 842.39 873.71 873.71

Fe 0.25 0.28 0.31 0.37 678.78 760.45 823.68 823.68

Co 0.19 0.23 0.25 0.28 651.87 640.40 726.25 726.25

Ni 0.18 0.19 0.24 0.26 631.11 657.21 734.247 734.24

Cu 0.06 0.07 0.12 0.14 525.11 516.85 516.16 516.16

Zn 0.04 0.04 0.11 0.13 450.90 474.03 491.74 491.74

Примечание∗ : εsol
tn , ε

liq
tn — нормальная интегральная излучательная способность при температуре плавления для твердой и жидкой фаз

соответственно; ε0.9tn , ε1.1tn — нормальная интегральная излучательная способность при гомологических температурах 0.9 · Tmelt и 1.1 · Tmelt

соответственно; Csol
p , C

liq
p — удельная теплоемкость при температуре плавления для твердой и жидкой фаз соответственно, [J/(kg·K)]; C0.9

p ,

C1.1
p — удельная теплоемкость при гомологических температурах 0.9 · Tmelt и 1.1 · Tmelt соответственно, [J/(kg·K)].

для Fe, а для Cr значение εtn рассчитано. Источники

данных для каждого элемента детализированы в табл. 1.

Экспериментальные измерения εtn выполнены абсо-

лютным методом. Измерения проводились в непрерыв-

ном температурном диапазоне, охватывающем области

гомологических температур 0.9 · Tmelt и 1.1 · Tmelt для

каждого металла. Значения εtn, приведенные в табл. 2

для конкретных гомологических температур, были полу-

чены путем интерполяции экспериментальных данных.

Температура в эксперименте контролировалась и изме-

рялась с точностью ±5K.

Для измерений использовался радиометр прямо-

го видения, работающий в спектральном диапазоне

1−5µm [15], что перекрывает положение максимума

излучения по Вину для всех исследуемых металлов в

данном температурном интервале. Приемником излуче-

ния в радиометре служил термостолбик с платиновой

чернью. Таким образом, использованная в настоящей ра-

боте экспериментальная установка относилась к классу

радиометрических комплексов для измерения нормаль-

ной интегральной излучательной способности. Образцы

металлов твердой фазы имели зеркально-полированную

поверхность. Шероховатость поверхности, контролируе-

мая с помощью профилометра, не превышала 0.05 µm.

Измерения в области предплавления проводились в

динамическом вакууме при остаточном давлении менее

10−3 Pa, в области жидкой фазы — в атмосфере очищен-

ного аргона. Следует отметить, что адсорбция газа на по-
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верхности расплава может влиять на ее излучательную

способность [5,16]. Однако, учитывая инертность аргона,
высокую температуру измерений (≥ 1.1 · Tmelt), снижаю-
щую степень адсорбции, и идентичные условия для всех

измерений в жидкой фазе, влияние адсорбированного

аргона на результаты экспериментов оценивается как

пренебрежимо малое в рамках погрешности метода и не

оказывающее решающего воздействия на установленные

корреляционные закономерности. Погрешность опреде-

ления εtn не превышала ±5%. Подробное описание

методики измерений и экспериментальной установки

представлено в работе [12].
Для Cr, в связи с отсутствием экспериментальных

данных по излучательной способности в требуемом

температурном диапазоне, значения εtn были рассчитаны

с использованием приближения Фута [16], представляю-
щего развитие моделей Друде и Ашкинасса, имеющее

вид

εtn = 5.78
√

r · T − 17.9r · T + 44(r · T )3/2, (1)

где r — удельное электрическое сопротивление, [� ·m];
T — температура, [K].
Расчет проводился по уравнению (1) на основе тем-

пературных зависимостей удельного электросопротив-

ления из [17]. Совокупная погрешность расчета по

данному приближению складывается из инструменталь-

ной погрешности исходных данных и систематической

погрешности теоретического приближения.

В табл. 2 представлены сводные данные по теплофи-

зическим характеристикам исследуемых металлов.

Значения удельной теплоемкости для твердого и жид-

кого состояний, приведенные в табл. 2, были получены

из электронного справочника [18]. Для промежуточных

температур выполнена линейная интерполяция с учетом

раздельных вкладов фаз до и после плавления. Для ниве-

лирования различий в температурах плавления исполь-

зована гомологическая шкала температур с опорными

точками 0.9 · Tmelt (предплавление) и 1.1 · Tmelt (перегрев
жидкости).

2. Рассуждения

Фазовый переход первого рода, сопровождающий

процесс плавления, характеризуется фундаментальным

разрушением дальнего порядка в кристаллической ре-

шетке, что приводит к значительным изменениям как

теплофизических, так и электронных свойств метал-

лов [1,2]. На микроскопическом уровне это проявляется

в существенной перестройке спектра фононных и элек-

тронных состояний, изменении характера межатомных

взаимодействий, а также в переходе от коллективного

упорядоченного движения атомов к стохастическому

движению, характерному для жидкого состояния. Дан-

ные структурные преобразования непосредственно вли-

яют на механизмы переноса энергии и излучательные

характеристики металлов.

Теплоемкость в твердой фазе в области высоких

температур определяется преимущественно фононным

вкладом в соответствии с моделью Дебая, однако су-

щественный вклад могут вносить электронные степени

свободы, особенно для металлов с высокой плотностью

состояний на уровне Ферми [4,6]. В жидкой фазе проис-

ходит дополнительное увеличение вклада от электрон-

ных степеней свободы и ангармонических колебаний,

хотя общее изменение C p при переходе через Tmelt не

всегда имеет резко выраженный характер [3,19]. Следует

отметить, что для переходных d-металлов существенную

роль играют электрон-электронные взаимодействия и

магнитные степени свободы, что осложняет теорети-

ческое описание поведения теплоемкости в области

фазового перехода.

Излучательная способность представляет собой важ-

ный радиационный параметр, характеризующий способ-

ность поверхности металла испускать тепловое излуче-

ние в инфракрасном диапазоне. Данная величина опреде-

ляется комплексными оптическими свойствами металла

и существенно зависит от его электронной структуры и

отражательной способности [5,16]. Поскольку процессы

теплового излучения формируются в приповерхностном

слое металла, но при этом зависят от объемных ха-

рактеристик (в частности, электронной подвижности,

плотности состояний и частот электрон-фононного рас-

сеяния), возникает естественная физическая взаимосвязь

между поверхностными радиационными и объемными

теплофизическими параметрами.

Изменение εtn вблизи температуры плавления обу-

словлено несколькими конкурирующими механизмами:

усилением электрон-фононного взаимодействия, ростом

плотности возбужденных электронных состояний, а так-

же фундаментальной перестройкой электронной струк-

туры при плавлении. Особенно выраженный характер

эти изменения носят для металлов с частично заполнен-

ной d-оболочкой, где сильные электронные корреляции

и сложная многозонная структура оказывают существен-

ное влияние на тепловое поведение и радиационные

характеристики [3,19,20].

Проведенное исследование демонстрирует, что,

несмотря на различную физическую природу пара-

метров C p и εtn (термодинамический и радиационный

соответственно), оба они являются чувствительными

индикаторами структурной перестройки металла при

фазовом переходе первого рода. Их совместное рас-

смотрение является физически обоснованным благодаря

наличию общего микроскопического основания —

изменениям в электрон-фононной подсистеме металла,

что и объясняет наблюдаемую статистически значимую

корреляцию при гомологических температурах. Уста-

новленные закономерности позволяют глубже понять

взаимосвязь между объемными и поверхностными

свойствами металлов в условиях фазовых превращений.
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3. Анализ корреляции при
гомологических температурах

На рис. 1 представлена корреляция εtn с C p для d-

металлов при 0.9 · Tmelt . Для количественной оценки

взаимосвязи данные по металлам, демонстрирующим

общий тренд (Ti, V, Mn, Fe, Co, Ni, Cu, Zn), были

аппроксимированы степенной функцией вида:

εtn = (4.26± 2.15) · 10−13 ·C(4.125±0.215)
p . (2)

Полученный высокий коэффициент детерминации

(R2 = 0.97) подтверждает устойчивую корреляцию и

взаимосвязь объемных и поверхностных свойств метал-

лов в твердой фазе. Металлы с низкой C p (Cu, Zn)
демонстрируют низкое εtn, что обусловлено слабыми

фононными процессами и высокой отражательной спо-

собностью, характерной для металлов с заполненной d-

оболочкой [3]. Точки таких элементов, как Ni, Co и Fe,

группируются вблизи кривой регрессии, демонстрируя

предсказуемое поведение в рамках установленной за-

висимости. Наибольшие отклонения от общего тренда

наблюдаются для Sc и Cr. В случае Sc сильное расхож-

дение, вероятно, связано со спецификой его электрон-

ной структуры в области предплавления, что требует

отдельного изучения. Для Cr, значение εtn для которого

было рассчитано по приближению Фута [16], отклонение
может быть связано с ограниченной применимостью

модели для данного металла. Эти точки приведены

на графике в качестве справочной информации и не

учитывались при построении регрессии. Таким образом,

установленная зависимость является статистически зна-

чимой для большей части исследуемого ряда d-металлов.

На рис. 2 представлена корреляция εtn с C p для жид-

кой фазы при 1.1 · Tmelt . Аппроксимация эксперименталь-

ных данных степенной функцией выявила зависимость с

высоким коэффициентом детерминации (R2 = 0.98):

εtn = (7.88 ± 3.50) · 10−7 ·C(1.94±0.16)
p . (3)

Полученное значение R2, сопоставимое с таковым

для твердой фазы, указывает на сохранение устойчи-

вой корреляции между теплоемкостью и излучательной
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Рис. 1. Корреляция εtn и C p для металлов при 0.9 · Tmelt .
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Рис. 2. Зависимость εtn от C p для металлов при 1.1 · Tmelt .

способностью после плавления. Это демонстрирует, что

взаимосвязь между объемными теплофизическими и

поверхностными радиационными свойствами является

фундаментальной и не разрушается при фазовом пере-

ходе первого рода. Металлы с полностью заполненной

d-оболочкой (Zn, Cu) характеризуются минимальными

значениями εtn и C p [3], в то время как элементы с

незаполненными d-орбиталями (Ti, V) демонстрируют

максимальные значения параметров, что согласуется

с усилением электрон-фононного взаимодействия [20].
Наблюдаемые отклонения для Sc и Cr, данные для

которых приведены на графике справочно, подчеркивают

сложный характер влияния индивидуальных особенно-

стей электронной структуры (для Sc) и ограничений

расчетных моделей (для Cr) на формирование радиаци-

онных характеристик в расплаве.

Для интерпретации установленных корреляций между

εtn и C p необходимо рассмотреть физические механиз-

мы, определяющие эти свойства. Теплоемкость металлов

при высоких температурах складывается из фононного

и электронного вкладов [6]. Фононная составляющая

обусловлена тепловыми колебаниями атомов решетки,

а электронная — тепловым возбуждением электро-

нов вблизи уровня Ферми и пропорциональна плот-

ности электронных состояний и температуре. Излуча-

тельная способность в ближнем ИК-диапазоне тесно

связана с электропроводностью (приближении Хагена–
Рубенса [16]). Таким образом, εtn определяется процесса-

ми рассеяния носителей заряда, главным из которых при

высоких температурах является рассеяние на фононах.

Интенсивность этого процесса зависит от амплитуды

тепловых колебаний решетки, т. е. напрямую связана с

фононным вкладом в теплоемкость.

Следует также отметить, что при столь высоких тем-

пературах может проявляться эффект термоэлектрон-

ной эмиссии, связанный с испусканием электронов с

нагретой поверхности [6,21]. Поскольку энергетические

спектры электронов термоэмиссии и фотонов теплового

излучения частично перекрываются, существует потен-

циальная взаимосвязь между этими явлениями. В пер-

вом приближении можно предположить, что вклад тока
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термоэмиссии в общий энергетический баланс и, следо-

вательно, в определяемую излучательную способность

не является доминирующим по сравнению с механиз-

мами электрон-фононного рассеяния, определяющими

оптические свойства в ИК-диапазоне [5,16]. Тем не менее

для более строгого количественного разделения этих

вкладов и построения физической модели необходимо

проведение дополнительных исследований.

Установленная устойчивая корреляция между εtn и C p

твердой фазы свидетельствует о том, что оба параметра

в кристаллическом состоянии контролируются общи-

ми микроскопическими процессами. Рост теплоемкости,

связанный с усилением фононных мод, приводит к

повышению удельного электрического сопротивления за

счет роста вероятности электрон-фононного рассеяния,

что в соответствии с соотношением Хагена–Рубенса,
ведет к увеличению εtn [16].
Высокий коэффициент детерминации (R2 = 0.98), по-

лученный для жидкой фазы, указывает на сохранение

тесной взаимосвязи между теплоемкостью и излучатель-

ной способностью после плавления. Однако изменение

вида аппроксимирующей зависимости (ср. формулы (2)
и (3)) отражает фундаментальную перестройку механиз-

мов, определяющих эти свойства. Разрушение дальнего

порядка приводит к росту фононной составляющей теп-

лоемкости из-за появления новых низкочастотных мод.

Для εtn, наряду с электрон-фононным взаимодействием,

возрастает роль рассеяния на флуктуациях плотности в

расплаве.

Утверждение о роли флуктуаций плотности основа-

но на фундаментальных представлениях о структуре

жидкостей. В отличие от кристаллов жидкие металлы

характеризуются отсутствием дальнего порядка и на-

личием значительных флуктуаций плотности, которые

существуют уже в непосредственной близости от тем-

пературы плавления и проявляются, в частности, в виде

затухающих осцилляций на функциях радиального рас-

пределения [19,22]. Нагрев до 1.1 · Tmelt , использованный

в настоящей работе, является достаточным для наблю-

дения этого эффекта, что подтверждается эксперимен-

тальными данными для железа и алюминия [22], пока-
зывающими изменение характеристик ближнего порядка

в данном интервале температур. Именно комплексным

влиянием возросшей роли флуктуаций и измененного

электрон-фононного рассеяния можно объяснить на-

блюдаемое видоизменение корреляции при переходе в

жидкое состояние, несмотря на сохранение ее высокой

статистической значимости.

4. Анализ поведения относительных
скачков в точке плавления

В разд. 4 представлен анализ графической зависимо-

сти (рис. 3) между относительными величинами скачков

εtn и C p металлов при температуре плавления Tnmelt . Для

улучшения визуального восприятия данных значения
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Рис. 3. Зависимость поведения относительных величин
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p ) смещены на 0.5 единицы по оси
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Экспериментальные данные демонстрируют значи-

тельный разброс значений. Наибольший скачок теп-

лоемкости наблюдается у Cr и имеет отрицательное

значение, что может быть связано с особенностями

магнитной структуры и электронного спектра данного

металла. Остальные металлы периода характеризуются

положительными и сравнительно однородными значени-

ями скачков теплоемкости.

В отличие от поведения теплоемкости Cr и Mn

демонстрируют минимальные значения скачка излуча-

тельной способности, в то время как медь и цинк

показывают максимальные значения данного параметра.

Для остальных металлов периода величина скачка εtn

имеет примерно одинаковый порядок величин.

Наблюдаемое существенное расхождение между от-

носительными скачками εtn и C p свидетельствует об

отсутствии линейной связи между этими параметра-

ми в точке фазового перехода первого рода. Данное

явление объясняется различной физической природой

изучаемых характеристик: относительный скачок C p от-

ражает изменение теплоемкости вследствие разрушения

кристаллической решетки и увеличения числа степеней

свободы [21], в то время как скачок εtn определяет-

ся изменением отражательной способности, локальной

перестройкой электронной плотности и модификацией

поверхностного слоя [5].

Таким образом, различие в микроскопических меха-

низмах, определяющих поведение теплоемкости и из-

лучательной способности в точке плавления, приводит

к рассогласованию величин их относительных скачков,

несмотря на наличие корреляции при температурах,

отклоняющихся от Tmelt .

Выводы

Проведенное исследование выявило устойчивую кор-

реляционную зависимость между нормальной инте-

гральной излучательной способностью и удельной теп-
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лоемкостью d-металлов IV периода в области гомоло-

гических температур, охватывающей фазовый переход

”
твердое тело–жидкость“. Высокая степень корреляции

(R2 > 0.97) наблюдается как при 0.9 · Tmelt в твердой

фазе, так и при 1.1 · Tmelt в жидкой фазе, что свидетель-

ствует о фундаментальной связи между объемными и

поверхностными свойствами.

Установлено, что фазовый переход первого рода со-

провождается изменением характера корреляции (вид
степенной зависимости), при этом ее статистическая

значимость сохраняется. Это изменение обусловлено пе-

рестройкой механизмов рассеяния: в твердой фазе доми-

нирует электрон-фононное рассеяние в периодическом

потенциале, в то время как в жидкости дополнительный

вклад вносят рассеяние на флуктуациях плотности и

возросшая роль низкочастотных фононных мод.

Выявлены специфические отклонения от общего трен-

да для Sc и Cr, которые связаны с особенностями

их электронной структуры и ограничениями расчетной

модели, что подчеркивает важность учета индивидуаль-

ных свойств элементов. Отсутствие корреляции между

относительными скачками C p и εtn в точке плавления

подтверждает различную физическую природу измене-

ний этих параметров при фазовом переходе, несмотря

на наличие сильной корреляции вблизи Tmelt .

Применение гомологической нормализации темпера-

туры и степенной аппроксимации подтвердило свою эф-

фективность для выявления скрытых закономерностей.

Полученные результаты открывают возможности для

разработки методов прогнозирования радиационных ха-

рактеристик металлов в экстремальных температурных

условиях.
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