
Журнал технической физики, 2026, том 96, вып. 3

03

Колебания подвешенного в воздушном потоке

цилиндра со стабилизатором

© А.Н. Рябинин, М.И. Иванов, А.В. Данилов

Санкт-Петербургский государственный университет,

199034 Санкт-Петербург, Россия

e-mail: a.ryabinin@spbu.ru

Поступило в Редакцию 24 июня 2025 г.

В окончательной редакции 9 ноября 2025 г.

Принято к публикации 25 ноября 2025 г.

В экспериментах в аэродинамической трубе изучены колебания кругового цилиндра, снабженного

стабилизатором. Цилиндр подвешен в воздушном потоке на тросовой подвеске и может колебаться. Ось

цилиндра в равновесном положении направлена под небольшим отрицательным углом атаки к направлению

скорости набегающего потока. Стабилизатор удерживает цилиндр в этом положении, обеспечивая малое

лобовое сопротивление. Колебания цилиндра в воздушном потоке зарегистрированы акселерометром,

который вместе с контроллером находится внутри цилиндра. Прибор позволил измерять три проекции

угловой скорости цилиндра на оси системы координат, связанной с цилиндром. В отдельном эксперименте

определены аэродинамические коэффициенты сил и моментов, действующих на цилиндр. Модифицирована

математическая модель, ранее предложенная для описания колебаний цилиндра. Модель правильно

описывает угловые колебания цилиндра вокруг оси, близкой к вертикальной, поперечные колебания,

амплитуда которых увеличивается с ростом скорости воздушного потока, и режим биений, возникающий

в определенном диапазоне скоростей воздушного потока.
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Введение

При переносе плохо обтекаемых тел, подвешенных на

тросовой подвеске, могут возникать недопустимые рас-

качивания тела, которые приводят к аварии. Подобные

ситуации, в частности, возникают при транспортировке

грузов, переносимых в подвешенном состоянии под

летательным аппаратом, например, вертолетом [1].

С.В. Сипаров изучал устойчивость переноса груза на

внешней тросовой подвеске под вертолетом [2]. Им

было получено характеристическое уравнение, пред-

назначенное для анализа устойчивости движения гру-

за. Предполагается для определения устойчивости ис-

пользовать критерий Рауса–Гурвица. Устойчивым в на-

стоящей работе принималось движение, при котором

груз на внешней подвеске неподвижен относительно

точки подвеса. Это избыточное требование с точки

зрения безопасности полета. Допустимы колебания, не

представляющие опасности для летательного аппарата.

В работе [3] рассматривались уравнения движения груза,
закрепленного под вертолетом с помощью двухзвенной

подвески, причем предполагалось, что вертолет, в общем

случае, перемещается по криволинейной траектории с

изменяющейся скоростью. Получена система обыкно-

венных дифференциальных уравнений 24-го порядка.

Приводится пример расчета движения вертолета, пере-

носящего контейнер. В настоящей работе не приводятся

зависимости аэродинамических сил носимого тела от

углов, описывающих его ориентацию. Универсальный

подход к моделированию движения пары вертолет —

груз на внешней подвеске изложен в статье [4]. Однако
и в этой статье конкретному виду аэродинамических

сил не уделяется внимания. Много сведений о переносе

грузов на внешней подвеске приводится в моногра-

фии [5]. Рассматриваются устройства, используемые для

стабилизации движения груза, переносимого на внешней

подвеске под вертолетом, построение уравнений движе-

ния, применяемые для этого системы координат.

Модель взаимодействия груза на тросовой подвеске

и вертолета рассматривается в работе [6] с учетом

ускоренного движения точки подвеса троса к вертолету.

Конкретный вид аэродинамических сил не рассматрива-

ется. Сравнение данных, полученных в эксперименте в

аэродинамической трубе и в результате вычислений с

использованием математической модели, проводится в

работе [7]. Обнаружены режим колебаний с постоянной

амплитудой и режим биений.

Статья [8] посвящена анализу движения цилиндриче-

ского груза, у которого отношение длины L к диаметру

D равно λ = L/D = 2. Груз переносится с постоянной

скоростью на внешней тросовой подвеске под верто-

летом. Груз имеет стабилизатор, который в равновес-

ном положении устанавливает цилиндр в направлении,

соответствующем минимуму лобового сопротивления.

Однако это положение неустойчиво. Цилиндр совершает

угловые колебания вокруг вертикальной оси. Угловые
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колебания не представляют опасности для полета лета-

тельного аппарата, если частота колебаний существенно

отличается от частоты колебаний груза на подвеске

под действием силы тяжести. Близкие частоты при-

водят к резонансным явлениям, следствием которых

являются интенсивные опасные поперечные колебания

груза. В статье [8] предложена математическая модель,

в которой аэродинамические коэффициенты боковой

силы и момента рыскания представляются линейными

функциями угла скольжения, а угловые колебания во-

круг вертикальной оси описываются дифференциальным

уравнением типа уравнения Ван-дер-Поля.

В настоящей работе проводится экспериментальное

изучение колебаний цилиндра со стабилизатором. Мате-

матическая модель, предложенная в [8], модифицируется.

Одним из широко распространенных методов иссле-

дования колебаний является дистанционное определе-

ние положения движущегося тела триангуляционным

лазерным датчиком перемещений. Такие датчики при-

меняются главным образом для изучения колебаний

тел вдоль одного направления [9,10]. Другим мето-

дом является использование тензодатчиков, входящих в

упругую подвеску колеблющегося тела [11,12]. Оба эти

метода трудно применить в эксперименте по изучению

колебаний тела, подвешенного в потоке. Наиболее под-

ходящим методом является использование акселеромет-

ров. Большие возможности имеются у акселерометров,

предназначенных для работы совместно с контроллером

Arduino. Контроллер Arduino стал популярным в связи с

массовым развитием робототехники. Контроллер может

работать как связующее звено между десятками измери-

телей различных физических величин и компьютерами.

Рост популярности и объемов изготовления привел

к существенному удешевлению приборов. Контроллер,

разработанный итальянской фирмой Arduino, изготавли-

вается во многих странах под разными названиями, что

разрешено разработчиком. Контроллер Arduino вместе

с акселерометрами применяется для нахождения углов,

определяющих ориентацию летательных аппаратов раз-

личного типа. В частности, контроллер Arduino с аксе-

лерометрами применяется в беспилотных летательных

аппаратах самолетного типа и квадрокоптерах [13,14].

Этот метод регистрации движения подвешенного в

воздушном потоке тела выбран в настоящей работе.

1. Экспериментальное определение
проекций угловой скорости на оси
связанной системы координат

Эксперименты проводились на аэродинамической тру-

бе АТ-12 Санкт-Петербургского государственного уни-

верситета [15]. Аэродинамическая труба имеет открытую
рабочую часть, выходная часть сопла представляет со-

бой круг диаметром 1.5m. Скорости воздушного потока

могут плавно изменяться в пределах от 0 до 40m/s.
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Рис. 1. Схема эксперимента.

На рис. 1 представлена схема расположения цилин-

дра на подвеске в рабочей части аэродинамической

трубы. Расстояние от точки подвеса до оси цилиндра

l = 1.06m, длина цилиндра L = 0.46m, диаметр ци-

линдра D = 0.25m. К кормовой части цилиндра жест-

ко прикреплен стабилизатор, имеющий форму плоской

прямоугольной пластины. Длина стабилизатора равна

0.21m, высота — 0.115m. Таким образом, площадь

стабилизатора в два раза меньше площади поперечного

сечения цилиндра. Подвеска выполнена из хлопчатобу-

мажной нити. В отсутствие воздушного потока цилиндр

находится в центре рабочей части.

В центре цилиндра в полости находится акселерометр

GY-521 на основе микросхемы МPU 6050 и контроллер

Piranha UNO, являющийся усовершенствованным анало-

гом Arduino UNO. Акселерометр расположен в центре

цилиндра.

Акселерометр GY-521 измеряет три проекции пере-

грузки, действующей на тело, на оси неинерциальной

системы координат, жестко связанной с микросхемой, и,

следовательно, с цилиндром. Если устройство неподвиж-

но, проекция на вертикальную ось равна единице. Кроме

того, в состав акселерометра входят три гироскопа,

измеряющие три проекции угловой скорости на те же

оси. Программирование контроллера и считывание пока-

заний осуществляется с помощью свободно распростра-

няемой программы Arduino IDE. Контроллер соединен с

компьютером экранированным кабелем, длина которого

составляет 6m. Программирование осуществляется на

варианте языка С. Arduino IDE организует виртуальный

последовательный порт, через который происходит за-

грузка кода из компьютера в контроллер и считывание

показаний с контроллера. Для обработки данных изме-

рений была написана небольшая программа на языке

Free Pascal, передающая данные из последовательного
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порта в текстовый файл. Данные в текстовых файлах

в дальнейшем обрабатывались. Каждый файл содержал

1700 строчек, в каждой строчке были данные, считыва-

емые по шести каналам, и время считывания. Данные

считывались через интервал 1t = 0.017 s.

Была проведена калибровка акселерометра, которая

позволила определить коэффициенты, связывающие по-

казания прибора с проекциями угловой скорости. Для

калибровки использовались результаты измерения уско-

рения и угловой скорости при колебаниях цилиндра в

отсутствие воздушного потока в рабочей части аэродина-

мической трубы. Определялась цена деления показаний

перегрузки в одном из каналов, в котором регистри-

ровалась проекция на вертикальную ось неподвижного

цилиндра. Затем цилиндр раскачивался в плоскости,

содержащей точку подвеса и ось цилиндра. Колебания

медленно затухали. По периодически изменяющимся

показаниям того же канала определялись максимальное

и минимальное показания перегрузки, период колебаний.

По их значениям вычислялась амплитуда угловых ко-

лебаний. Небольшая амплитуда позволяла считать коле-

бания гармоническими и вычислить угловую скорость

в зависимости от времени. Одновременно канал изме-

рения угловой скорости записывал зависимость угловой

скорости от времени. Сравнение показаний двух каналов

было основой для нахождения градуировочного коэф-

фициента, связывающего показания канала измерения

угловой скорости с истинными значениями угловой ско-

рости. Также оказалось возможным оценить линейность

прибора, повторяя измерения многократно при разных

амплитудах колебаний. Поворот акселерометра на угол

π позволил узнать изменение чувствительности. Оказа-

лось, что показания прибора могут несколько отличаться

при смене направления оси. Производитель не указал

погрешность определения угловой скорости. Поэтому

погрешность пришлось оценивать по результатам гра-

дуировки. Она не превышает 3% от верхнего предела

шкалы, равного 4.4 s−1.

2. Математическая модель колебаний
цилиндра со стабилизатором в
воздушном потоке

Принимается, что тяги подвески нерастяжимы и не

передают крутильный момент. Аэродинамическими си-

лами, действующими на тяги подвески, пренебрегается.

Подвеска с цилиндром представляет собой двухзвенный

маятник, способный колебаться с пятью степенями сво-

боды. Однако в эксперименте наблюдалось движение

цилиндра только с тремя степенями свободы, поэто-

му математическая модель рассматривает только такое

движение. Предположим, что точка подвеса движется с

постоянной скоростью, и пусть эта точка является нача-

лом связанной системы координат. Оси ортогональной

системы координат x , y и z параллельны главным осям

инерции цилиндра со стабилизатором. Оси нанесены на

рис. 1. Продольная ось x направлена параллельно оси

цилиндра от кормовой части к носовой. Нормальная

ось y расположена в плоскости симметрии цилиндра со

стабилизатором, направлена вдоль оси подвески вверх.

Поперечная ось z составляет правую тройку вместе с

осями x и y . Положение цилиндра описывается тремя

углами γ , ϑ и ψ. Обозначения углов совпадают с обо-

значениями использующихся в динамике полета углов

крена, тангажа и рыскания [16]. Последовательные по-

вороты на эти углы переводят оси нормальной системы

координат xg , yg и z g в оси связанной системы коорди-

нат. Начало нормальной подвижной системы координат

также находится в точке подвеса. Ось xg направлена

горизонтально вдоль вектора скорости дижения точки

подвеса относительно среды, ось yg направлена вверх,

и z g составляет с первыми двумя осями правую ортого-

нальную систему координат. Первый поворот на угол γ

вокруг оси xg переводит оси yg и z g в оси y ′

g и z ′

g .

Второй поворот на угол ϑ производится вокруг оси z ′

g .

Он переводит ось y ′

g в ось y . Третий поворот вокруг

оси y на угол ψ завершает перевод нормальной системы

координат в связанную. Малые углы γ , ϑ и ψ совпадают

с углами крена, тангажа и рыскания, определенными

в [16].
Аэродинамические силы будем задавать в скоростной

системе координат xa , ya , z a , которая переводится

в связанную двумя последовательными поворотами на

углы α и β . Обозначения углов совпадают с обозна-

чениями углов атаки и скольжения, установленными

стандартом [16], однако порядок поворотов изменён.

При малых углах указанные углы совпадают с углами

атаки и скольжения. В скоростной системе координат

ось xa направлена вдоль вектора скорости центра ци-

линдра относительно среды, ось ya лежит в плоскости

симметрии цилиндра со стабилизатором и направлена в

сторону верхней части цилиндра, ось z a составляет с

первыми двумя правую тройку осей.

Первый поворот на угол α осуществляется вокруг

оси z a . Он переводит ось ya в ось y . Второй поворот

вокруг оси y на угол β завершает переход от скоростной

к связанной системе координат.

Уравнения движения цилиндра в проекциях на оси

связанной вращающейся системы координат имеют

вид [17]:

Jx ω̇x − (Jy − Jz )ωyωz = Lx ,

Jy ω̇y − (Jz − Jx)ωzωx = Ly , (1)

Jz ω̇z − (Jx − Jy)ωxωy = Lz ,

где ωx , ωy , ωz — проекции угловой скорости на оси

x , y, z ; Jx , Jy , Jz — элементы тензора инерции, имею-

щего диагональный вид; Lx , Ly , Lz — проекции момента

сил, действующего на цилиндр относительно точки под-

веса. Следующее упрощающее положение состоит в пре-

небрежении моментом инерции цилиндра относительно

собственного центра масс по сравнению с моментом

инерции относительно точки подвеса: Jx ≈ Jz >> Jy .
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Проекции угловой скорости выражаются через углы

крена, тангажа и рыскания:

ωx = ϑ̇ sinψ + γ̇ cosψ cos ϑ,

ωy = ψ̇ − γ̇ sinϑ, (2)

ωz = ϑ̇ cosψ + γ̇ sinψ cos ϑ.

После подстановки проекций угловой скорости и их

производных в систему уравнений (1) система будет

иметь вид

ϑ̈ = −γ̇2 sinϑ cos ϑ + (cosψLz − sinψLx )/Jz ,

γ̈ = 2γ̇ ϑ̇ sinϑ + (sinψLz + cosψLx )/Jz , (3)

ψ̈ = γ̈ sinϑ + γ̇ ϑ̇ cos ϑ + Ly/Jx .

Проекции момента сил Lx , Ly , Lz на оси связанной

системы координат выражаются формулами

Lx = −Fz l, Ly = L′

y , Lz = −Fx l,

где Fx — проекция действующей на цилиндр силы

на продольную ось, взятая с обратным знаком; Fz —

проекция силы на поперечную ось связанной системы

координат. Fx и Fz являются суммами проекций силы

тяжести и аэродинамической силы. L′

y — проекция

момента сил относительно центра масс цилиндра на

ось y .

Чтобы получить уравнения движения в проекциях на

оси связанной системы координат, необходимо преобра-

зовать проекции аэродинамической силы из проекций

на оси скоростной системы координат. Проекции си-

лы тяжести из нормальной системы координат нужно

перевести в проекции связанной системы координат.

Проекции аэродинамической силы на оси скоростной

системы координат Xa , Ya и Za выражаются через аэро-

динамические коэффициенты лобового сопротивления

cxa , подъемной силы cya и боковой силы cz a :

Xa = cxaqs, Ya = cyaqs, Za = cz aqs,

где s — площадь поперечного сечения цилиндра;

q = ρu2/2 — скоростной напор; ρ — плотность воздуха;

u — скорость центра цилиндра относительно среды.

Проекция на скоростную ось, называемая лобовым со-

противлением, также берется с обратным знаком [16].
Вектор проекций аэродинамической силы в связанной

системе координат X , Y и Z находится перемножением

матрицы преобразования на вектор, элементы которого

являются проекциями аэродинамической силы в ско-

ростной системе координат:





X

Y

Z



 =





cos β cosα cos β sinα − sinβ

− sinα cosα 0

sin β cosα sin β sinα cos β









Xa

Ya

Za



 .

Вектор проекций силы в связанной системе координат

равен сумме вектора аэродинамических сил и векто-

ра проекций силы тяжести: Fx = X + Px , Fy = Y + Py ,

Fz = Z + Pz . Вектор проекций силы тяжести имеет в

нормальной системе координат только одну проекцию,

не равную нулю:





−Px

Py

Pz



 =

=

















cosψ sinϑ cos γ+ cosψ sinϑ sin γ−
cosψ cos ϑ

+ sinψ sin γ − sinψ cos γ

sinϑ cos ϑ cos γ cos ϑ sin γ

sinψ sinϑ cos γ− sinψ sinϑ sin γ+
sinψ cos ϑ − cosψ sin γ cosψ cos γ

















×





0

−mg

0



 ,

где m — масса цилиндра; g — ускорение силы

тяжести. Перед Px имеется минус, потому что проекция

силы тяжести на продольную ось берется с обратным

знаком.

Вводится обозначение, которое сократит размер фор-

мул: ε = ψ − β . Уравнения движения примут следующий

вид:

ϑ̈ = − γ̇2 sinϑ cos ϑ + qsl
(

cos ε(cxa cosα + cya sinα)

+cz a sin ε
)

/Jz mgl sinϑ cos γ/Jz ,

γ̈ cos ϑ =2γ̇ ϑ̇ sinϑ + qsl

(

sin ε(cxa cosα + cya sinα)

−cz a cos ε
)

/Jz mgl sin γ/Jz , (4)

ψ̈ = γ̈ sinϑ + γ̇ ϑ̇ cos ϑ + qsL
(

my + Lβ̇mβ̇
y/v

)

,

где my и m
β̇
y — коэффициент момента рыскания и враща-

тельная производная момента рыскания. Для вращатель-

ной производной для цилиндра ранее было предложено

выражение [1]:

mβ̇
y = µ(1− δβ2).

Выражение (5) содержит два параметра, которые опре-

деляют амплитуду вращательных колебаний по углу

рыскания и скорость ее изменения. Такое представление

вращательной производной позволяет объяснить авто-

колебания цилиндра, упруго закрепленного в потоке

газа. Более простое представление µ = const описывает

затухание колебаний, если µ < 0, либо неограниченное

возрастание амплитуды колебаний, если µ > 0. Наличие

члена второго порядка в формуле (5) ведет к уста-

новлению колебаний с постоянной амплитудой, опре-

деляемой параметром δ . Величину параметра δ можно

оценить по амплитуде колебаний по углу рыскания в

режиме, в котором отсутствуют другие виды колебаний.

Эксперименты по исследованию режима колебаний по
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углу рыскания проводились в работе [18]. Проволочная

подвеска в этих экспериментах позволяла цилиндру с

удлинением L/D = 2 колебаться только с одной степе-

нью свободы. Стабилизатор у цилиндра отсутствовал.

Сила, возвращающая цилиндр в положение равновесия,

создавалась стальными пружинами. Получено, что в

случае прохождения оси вращения через центр цилиндра

параметр δ = 68. Наличие стабилизатора изменяет этот

параметр. Кроме того, частота колебаний цилиндра на

пружинной подвеске намного превышала частоту коле-

баний подвешенного цилиндра.

В статье [8] получены выражения, связывающие углы

ε, α, ϑ , γ :

tan ε =
γ̇l cos ϑ

ϑ̇l + cos ϑv
, tanα =

cos ε sinϑv

ϑ̇l + v cosϑ
. (6)

В статье [8] получена связь между скоростью точки

подвеса v и относительной скоростью центра масс

цилиндра и среды u при условии малости величин

lϑ̇/v << 1 и lγ̇/v << 1:

u2 ≈ v2
(

1 + 2 cos ϑ lϑ̇/v
)

. (7)

На следующем этапе уравнения движения преобра-

зуются в предположении малости углов ϑ , ψ, γ и их

производных. Выражения (6) упростятся:

ε =
γ̇l

v
, α = ϑ. (8)

В уравнениях движения останутся только углы в первой

степени. Останется также член с δβ2, имеющий порядок

единицы. Угол ψ из уравнений исключается.

Следующие рассуждения позволяют оценить влияние

движения стабилизатора, жестко закрепленного в кор-

мовой части цилиндра и включить в уравнения члены,

содежащие производную по времени угла рыскания ψ.

Вращение стабилизатора в предположении малости угла

ψ ведет к тому, что угол скольжения стабилизатора

изменяется на малую добавочную величину. Его ско-

рость в поперечном направлении отличается от скорости

центра цилиндра на величину ψ̇(L/2). Отношение допол-

нительной поперечной скорости к скорости потока равно

разнице углов скольжения в центре стабилизатора и в

центре цилиндра. Эту разницу в углах можно выразить

через производные углов β и γ , если использовать

первую формулу (8):

1ψ = ψ̇(L/2)/v = β̇(L/2)/v + γ̈lL/(2v2). (9)

В последнем выражении вместо γ̈ подставляется фор-

мула, полученная из второго уравнения (4), в кото-

рой пренебрегается аэродинамической силой, малой по

сравнению с силой тяжести, и слагаемым в правой

части, содержащим произведение двух малых производ-

ных углов крена и тангажа. Предположение о малости

аэродинамической силы по сравнению с силой тяжести

подтвержается тем, колебания по углу крена близки к

гармоническим. Синус малого угла крена заменяется

углом, а косинус угла тангажа заменяется единицей.

Предполагается, что коэффициенты боковой силы cs и

момента рыскания стабилизатора ms линейно зависят от

1ψ:

cs = −cz s1ψ, Zs = cs qs, ms = −mys1ψ, Mys = ms qsL,

где Zs и Mys — боковая сила и момент рыскания,

действующие на стабилизатор.

Таким образом, уравнения движения (4) преобразуют-
ся к виду

ϑ̈ = rv2
(

−cxa + cz a γ̇
l

v
− 2cxa ϑ̇

l

v

)

− ω2ϑ,

γ̈ = rv2
(

−cxa γ̇
l

v
− cz a − cz s

(

β̇
L

2v
− γ

lLω2

2v2

))

− ω2γ,

β̈ =r1v
2

(

my −
(

β̇
L

2v
− γ

lLω2

2v2

)

+ µ
L

v
(1− δβ2)β̇

)

+γ̇
l

v
ω2,

где r = ρs/(2ml); r1 = ρsL/(2Jy ); ω
2 = g/l .

Следующая система уравнений (10) представляет со-

бой безразмерные уравнения движения. В них диффе-

ренцирование происходит по безразмерному времени

τ = tω, где t — реальное время.

ϑ̈ + ϑ = Rν
(

−νcxa + γ̇cz a − 2cxa ϑ̇
)

,

γ̈ + γ = Rν

(

−νcz a − cxa γ̇ − cz s

(

β̇ − γ

ν

) L

2l

)

, (10)

β̈ − R1ν
2my =R1ν

(

−mys

(

β̇ − γ

ν

) L

2l
+ µ

L

l
β̇

(

1− δβ2
)

)

+
γ̇

ν
.

В безразмерных уравнениях движения (10) исполь-

зованы обозначения: R = ρsl/(2m); R1 = ρsLl2/(2Jy );
ν = v/(lω) = v/

√
gl. Уравнения движения в безразмер-

ном виде позволяют выписать числа подобия явле-

ния: ν — безразмерная скорость воздушного потока;

ρsl/m — величина, пропорциональная отношению плот-

ности воздуха к средней плотности цилиндра; l/L — от-

носительная длина подвески; Jy/(ml2) — число подобия,

характеризующее распределение плотности цилиндра

по его объему. Вместо безразмерной скорости потока

можно использовать число Струхаля Sh = ωl/(2πv),
которое обратно пропорционально безразмерной скоро-

сти ν , либо трактовать безразмерную скорость ν как

число Фруда Fr = v/
√

gl. Список чисел подобия сле-

дует дополнить числом Рейнольдса, от которого могут

зависеть аэродинамические коэффициенты, входящие в

уравнения движения. Знание чисел подобия позволяет

переносить результаты физического и математического
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Рис. 2. Аэродинамические коэффициенты лобового сопротивления, боковой силы и момента рыскания в зависимости от угла

скольжения β .

моделирования на множество объектов, характеризую-

щихся одинаковыми числами подобия.

Как следует из системы уравнений (10), колебания по

углу тангажа в рамках модели не влияют на колебания

по углу скольжения и по углу крена.

Уравнения движения цилиндра (10) решались мето-

дом Рунге–Кутты четвертого порядка.

3. Определение аэродинамических
коэффициентов

Уравнения движения содержат аэродинамические ко-

эффициенты лобового сопротивления cxa , боковой силы

cz a , момента рыскания цилиндра со стабилизатором my

и коэффициенты cz s и mys . Эти коэффициенты зависят в

общем случае от углов атаки α и скольжения β .

В модели колебаний, изложенной в статье [8], предпо-
лагалось, что коэффициент боковой силы и коэффициент

момента рыскания линейно зависят от угла скольжения,

а коэффициент лобового сопротивления в диапазоне

углов, в котором происходят колебания, постоянен или

связан с углом скольжения квадратичной зависимостью.

В настоящей работе учитывается, что зависимости cz a

и my от угла β отличаются от линейных, а зависимость

cxa от β не квадратичная. В математической модели эти

зависимости от угла скольжения, определенные экспери-

ментально, аппроксимировались полиномами, разными

в различных диапазонах углов скольжения. Диапазон

углов атаки невелик, поэтому в настоящей работе за-

висимостью от угла атаки пренебрегается.

Аэродинамические коэффициенты поперечной силы и

момента рыскания стабилизатора принимались линейно

зависящими от угла рыскания. Экспериментально опре-

деление этих коэффициентов в присутствии цилиндра

представляет собой трудную задачу. Поэтому значения

cz s и mys выбраны на основе данных, опубликованных

в работе [19] для прямоугольной пластины с соотно-

шением сторон, равным двум. На графиках, приведен-

ных в [19], видно, что коэффициент подъемной силы

пластины линейно зависит от угла атаки в диапазоне

от −0.17 до 0.17 rad, тангенс угла наклона линейной

зависимости равен 4. Мы принимали, что характерная

площадь равна не площади стабилизатора, а площади

поперечного сечения цилиндра, которая в два раза

больше, поэтому cz s = 2. Момент сил равен подъемной

силе, умноженной на плечо L/2. С учетом того, что в
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Рис. 3. Компоненты вращательной скорости в зависимости от времени. Режим приблизительно постоянной амплитуды колебаний

(v = 7.1 m/s, ν = 2.28 ). Слева — эксперимент, справа — расчет.

качестве характерной длины берется длина цилиндра L,

коэффициент mys = 1.0.

Аэродинамические коэффициенты cxa , cz a и my из-

мерялись трехкомпонентными весами с проволочной

подвеской.

На рис. 2 представлены зависимости аэродинамиче-

ских коэффициентов лобового сопротивления, боковой

силы и момента рыскания от угла скольжения. Точки

на графиках представляют собой экспериментально по-

лученные данные. Аэродинамические весы позволяют

измерять аэродинамические коэффициенты с погреш-

ностью, не превышающей 5%. Сплошными линиями

обозначены аппроксимационные зависимости. Весь диа-

пазон углов скольжения разбит на 5 поддиапазонов,

в каждом из которых методом наименьших квадратов

проводилась аппроксимация полиномом невысокого по-

рядка. На границах поддиапазонов совпадали значения

коэффициентов и их производные по углу скольжения.

Если |β| > 0.34, зависимости аэродинамических коэф-

фициентов от угла скольжения выражаются формулами:

cxa = 1.303 + 2.93β2 − 2.4β4,

cz a = −2.148β + 2.3β3,

my = −1.189β − 0.33β3.

В диапазоне |β| < 0.27:

cxa = 0.962 + 12.1β2 − 75β4,

cz a = −4.187β + 19.5β3,

my = −2.553β + 14.2β3.

В диапазоне 0.27 < β < 0.34:

cxa = 15.861 − 145β + 478β2 − 514β3,

cz a = 22.47− 236β + 792β2 − 877β3,

my = 1.396 − 21.73β + 84.6β2 − 107β3.

В диапазоне −0.34 < β < −0.27:

cxa = 15.861 − 145β − 478β2 + 514β3,

cz a = −22.47− 236β − 792β2 − 877β3,

my = −1.396 − 21.73β − 84.6β2 − 107β3.

Не удалось поставить эксперимент для определения

коэффициента µ. От величины этого коэффициента за-

висит время, требуемое для установления колебаний с

постоянной амплитудой. Было принято, что µ = 2. Па-

раметр δ в уравнениях движения выбирался из условия,

чтобы скорость потока, при котором происходит пере-

ход от колебаний с постоянной амплитудой к режиму

биений соответствовала экспериментальному значению.

Было получено, что δ = 88. Набор параметров уравне-

ний движения не является единственно возможным. При

другом значении параметра µ параметр δ примет другое

значение.

4. Результаты экспериментов и
сравнение их с предсказаниями
математической модели

В результате эксперимента выяснилось, что при ма-

лых скоростях воздушного потока возникают угловые

колебания цилиндра по углу рыскания, частота которых

определяется возвращающим в положение равновесия

моментом рыскания и моментом инерции цилиндра.

Частота вращательных колебаний растет с возрастанием

скорости набегающего потока. При приближении часто-

ты к частоте колебаний цилиндра на подвеске как физи-

ческого маятника возникают колебания по углу крена.

Амплитуда колебаний по углу крена при конкретной

скорости набегающего потока быстро устанавливается

постоянной. Зависимость двух компонент угловой ско-

рости от времени представлена на рис. 3.
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Рис. 4. Компоненты угловой скорости в зависимости от времени. Режим биений (v = 8.1 m/s, ν = 2.6). Слева — эксперимент,

справа — расчет.

При дальнейшем увеличении безразмерной скорости

набегающего потока до 2.3 наблюдаются биения. Рис. 4

показывает зависимость двух компонент угловой скоро-

сти от времени в этом режиме колебаний.

Эксперименты с дальнейшим увеличением скорости

потока пришлось прекратить, поскольку цилиндр при

движении начал выходить за пределы однородного ядра

потока в рабочей части. Математическая модель при

повышении скорости предсказывала продолжение режи-

ма биений. Но при этом предположения, выдвигавшиеся

при выводе уравнений движения, о том, что движение

описывается колебаниями с малыми углами отклонения

от положения равновесия, не верны.

Сценарий развития колебаний, полученный при физи-

ческом и математическом моделировании одинаков. Но

количественное различие результатов эксперимента и

расчета присутствует. Его можно объяснить неполнотой

математической модели, многочисленными предположе-

ниями о величине углов, описывающих отклонения от

положения равновесия. Но основные черты явления ма-

тематическая модель при своей простоте предсказывает.

Заключение

В работе применен экспериментальный метод иссле-

дования колебаний цилиндра со стабилизатором, подве-

шенного в воздушном потоке, который основан на из-

мерении ускорений и угловой скорости акселерометром.

Акселерометр работает вместе с контроллером Arduino.

При увеличении скорости потока возникают угловые ко-

лебания вокруг вертикальной оси. Увеличение скорости

ведет к появлению интенсивных поперечных колебаний

с постоянной амплитудой. Дальнейший рост скорости

приводит к колебаниям с биениями. Модифицирована

предложенная ранее простая математическая модель.

Модифицированная модель правильно описывает из-

менение режимов колебаний при изменении скорости

воздушного потока. Математическая модель представ-

ляет собой систему обыкновенных дифференциальных

уравнений в безразмерном виде. Найдены числа подобия

явления.
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