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Получено теоретическое решение задачи о высокочастотной электропроводности металлического нано-

слоя с учетом эффектов размерного квантования электронов. Поверхность Ферми проводника представляет

собой эллипсоид вращения с ориентированной параллельно плоскости нанослоя главной осью. Допускается,

что частота электрического поля не превышает частоту плазменного резонанса. Получены аналитические

выражения для компонент тензора проводимости, зависящие от безразмерных параметров: толщины, частоты

электрического поля, параметров шероховатости границ нанослоя и параметра эллиптичности поверхности

Ферми. Выполнен сравнительный анализ полученных результатов с известными экспериментальными

данными для пленки висмута.
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Введение

Проводящие нанослои активно используются в раз-

личных областях нано-, опто-, СВЧ-электроники и сол-

нечной энергетики [1–5]. Это обусловлено активным

развитием технологий, позволяющих изготавливать на-

нослои толщиной порядка нескольких нанометров [6].
В настоящее время намечается тенденция к умень-

шению характерного размера интегральных схем, сте-

пень интеграции достигла миллиардов транзисторов на

квадратный миллиметр. Многослойные нанопокрытия

позволили значительно повысить энергоэффективность

солнечных элементов. Для рационального использова-

ния слоистых наноструктур появляется необходимость в

создании и совершенствовании теоретических моделей,

характеризующих их электрические, оптические и др.

параметры. В нанослоях с толщиной порядка наномет-

ров необходимо принимать во внимание квантование

энергетического спектра носителей заряда. На особенно-

сти поведения носителей заряда оказывает значительное

влияние неровность поверхности на атомарном уровне.

Для адекватного описания электрических параметров

нанослоев нужны теоретические модели, учитывающие

эффекты размерного квантования и поверхностное рас-

сеяние носителей заряда.

Вопрос о вкладе поверхностного рассеяния электро-

нов проводимости на электрические и гальваномагнит-

ные характеристики тонких пленок был достаточно по-

дробно изучен. В ряде работ [7–13] были использованы

различные модели поверхностного рассеяния носителей

заряда: граничные условия Фукса и Соффера. Отметим,

что в работах [7–13] использовалось квазиклассическое

приближение.

С конца XXв. появляются работы, в которых произ-

водился учет квантования энергетического спектра носи-

телей заряда и неровности поверхности [14–17]. В рабо-

тах [14,15] использован метод функций Грина, согласно

которому волновые функции в квантовой яме опреде-

лялись решением уравнения Дайсона. В других источ-

никах [16,17] производился непосредственный расчет

гамильтониана, обусловленного рассеянием носителей

заряда. Авторы вышеупомянутых работ ограничивались

лишь случаем металла и постоянного электрического

поля.

В работе [18], опубликованной сравнительно недавно,

было получено решение задачи о статической электро-

проводности проводящего нанослоя, где был исполь-

зован метод решения квантовой задачи, основанный

на учете поверхностного рассеяния носителей заряда

через граничные условия Соффера [19]. В работе [18]

рассматривался нанослой из металла и полупроводни-

ка. В первом случае учитывалась зависимость энергии

Ферми от толщины нанослоя (предполагалось, что уро-

вень Ферми определяется верхним заполненным энер-

гетическим уровнем). Во втором случае допускалась

зависимость концентрации свободных носителей заряда

от толщины. В работе [20] построена теоретическая мо-

дель электропроводности полупроводникового нанослоя

в переменном электрическом поле. Предполагалось, что

нанослой сделан из полупроводника, а случай металла

не рассматривался.
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Отметим, что в работах [18,20] задачи решены с

учетом эллипсоидальной зонной структуры проводника,

что обусловлено следующими причинами. В микро- и

наноэлектронике часто применяются полупроводники

кремний и германий, поверхность постоянной энергии

которых содержит несколько эллипсоидов вращения.

В типичных металлах со сферической поверхностью

Ферми эффекты размерного квантования слабовыраже-

ны, поскольку длина волны де Бройля электронов про-

водимости приблизительно равна 0.3 nm (имеет порядок

межатомного расстояния) [21]. Квантовые эффекты ярко

проявляются в полуметаллах висмута и его сплавах

с сурьмой [22] (длина волны де Бройля составляет

порядка 30 nm [23]). Поверхность Ферми электронов в

висмуте представляет собой три симметрично располо-

женных эллипсоида вращения.

В настоящей работе получено решение задачи об

электропроводности металлического нанослоя в пере-

менном электрическом поле с учетом эллипсоидальной

формы поверхности Ферми и модели граничных условий

Соффера.

1. Постановка задачи

Рассмотрим нанослой толщины a, материалом которо-

го является металл или полуметалл. Электрическое поле

напряженности E приложено параллельно плоскости

нанослоя (рис. 1, a) и изменяется во времени по закону

E = E0 exp(−iωt), (1)

где ω — частота электрического поля.
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Рис. 1. a — тонкий металлический нанослой в продольном

электрическом поле; b — форма изоэнергетической поверхно-

сти проводника.

Допускается произвольное соотношение между тол-

щиной нанослоя и длиной волны де Бройля носителей

заряда. В этом случае необходимо учитывать эффекты

размерного квантования электронов проводимости в на-

правлении, перпендикулярном поверхности слоя. Энер-

гетический спектр в направлении оси Z будет состоять

из нескольких подзон (рис. 1, b). Электронный газ в

нанослое можно рассматривать как квазидвумерный газ,

заключенный в потенциальную яму. Предполагается, что

металлический нанослой может граничить только с ди-

электрическими слоями. Наноструктуры, в которых есть

переходы металл−полупроводник, не рассматриваются.

Высота стенок потенциальной ямы будет больше 1.5 eV

(это следует из того, что ширина запрещенной зоны 3 eV

является условной границей между полупроводником

и диэлектриком). Данного условия будет достаточно,

чтобы считать высоту стенок потенциальной ямы беско-

нечной. Предполагается, что изоэнергетическая поверх-

ность имеет вид эллипсоида вращения, главная ось ко-

торого ориентирована параллельно плоскости нанослоя

(рис. 1, b). Рассмотрим ситуацию, когда ось вращения

эллипсоида Ферми ориентирована параллельно оси X .

Полная энергия электрона (дырки), находящегося на l-й

подзоне, будет выражаться следующим образом:

εl =
p2

x

2m‖
+

p2
y

2m⊥
+ ε1l2, l = ±1,±2,±3, . . . ,±N, (2)

где m‖ и m⊥ — продольная и поперечная эф-

фективные массы носителя заряда соответственно,

ε1 = (π~)2/(2m⊥a2) — собственное значение энергии

электрона на первой подзоне, N — суммарное число

подзон.

В настоящей работе не учитывается электрон-

электронное рассеяние, которое становится существен-

ным только при достаточно низких температурах и

в чистых образцах. Установлено, что в висмуте при

температуре выше 77K основной вклад в процессы

переноса носителей заряда вносит только рассеяние

на тепловых колебаниях кристаллической решетки [24].
Рассмотрим верхнюю границу температур, при которых

будет справедлива теоретическая модель. В типичных

металлах температура вырождения составляет поряд-

ка 104 K. Электронный газ можно считать вырожденным

вплоть до температуры плавления металла. В полуме-

таллах висмута из-за малой концентрации носителей

заряда (порядка 1017 cm−3) температура перехода элек-

тронного газа в невырожденное состояние сравнительно

невысока (около 100K) [25]. Тем не менее исследования

показывают, что в пленках висмута, нанесенных на

диэлектрические подложки, может изменяться зонная

структура и концентрация носителей заряда. Это про-

исходит из-за наличия микродеформаций пленок висму-

та. Например, в пленках чистого висмута, нанесенных

на подложку из слюды, концентрация может достичь

2 · 1018 cm−3 [26]. В этом случае температура вырож-

дения будет около 400K, т. е. теоретическая модель
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настоящей работы может быть применима к пленкам

висмута при комнатных температурах.

В рамках квантовой теории система носителей заряда

описывается оператором плотности [27]:

ρ̂(t) =
∑

l

Wl|ψl(t)〉〈ψl(t)|, (3)

подчиняющемуся уравнению Лиувилля

i~
∂ρ̂(t)

∂t
= [Ĥ(t), ρ̂(t)]. (4)

Здесь ψl(t) — волновая функция электронов, Ĥ(t) —

гамильтониан системы, Wl — коэффициент, характе-

ризующий вероятность нахождения системы носителей

заряда в состоянии ψl .

Допускается небольшое отклонение системы носи-

телей заряда от равновесного состояния. Оператор

плотности можно записать в виде суммы равновесного

оператора ρ̂(0) и малой неравновесной поправки ρ̂(1):

ρ̂(k‖, z , t) = ρ̂(0)(εl) + ρ̂(1)(k‖, z ) exp(−iωt), (5)

где k‖ — параллельная плоскости нанослоя компонента

волнового вектора.

При условии (5) (см. Приложение) уравнение (4)
можно привести к кинетическому уравнению в прибли-

жении времени релаксации τ :

−iω
(

f
(1)
l‖ + f

(1)
l⊥

)

+
~kz l

m⊥

∂
(

f
(1)
l‖ + f

(1)
l⊥

)

∂z

+
eE

~

∂ f
(0)
l

∂k‖
+

f
(1)
l‖

τ‖
+

f
(1)
l⊥

τ⊥
= 0. (6)

Здесь τ‖ и τ⊥ — соответственно продольная и попе-

речная компоненты тензора времени релаксации, e —

заряд электрона, ~ — постоянная Планка, kz l — z -

компонента волнового вектора носителя заряда на l-й

подзоне. Отметим, что функция распределения носите-

лей заряда f l играет роль диагональных элементов мат-

рицы плотности в уравнении (6), которая представима в

линейном по внешнему полю приближении:

f l(k‖, z , t) = f
(0)
l (εl) + f

(1)
l (k‖, z ) exp(−iωt), (7)

f
(1)
l (k‖, z ) = f

(1)
l‖ (k‖, z ) + f

(1)
l⊥(k‖, z ),

f
(0)
l (εl) =

{

1, 0 < εl < εF,

0, εl > εF,

где f
(0)
l — равновесная функция распределения, f

(1)
l‖

и f
(1)
l⊥ — неравновесные поправки, определяющие от-

клонение функции распределения от равновесной в

направлениях, параллельных главной и побочной осям

эллипсоида постоянной энергии соответственно, εF —

энергия Ферми.

Поверхностное рассеяние носителей заряда будем

учитывать при помощи граничных условий Соффе-

ра [19], накладываемых на уравнение (6):







f
(1)+
l‖,⊥ = q1(g1, θ) f

(1)−
l‖,⊥ при z = 0,

f
(1)−
l‖,⊥ = q2(g2, θ) f

(1)+
l‖,⊥ при z = a,

(8)

q1,2(g1,2, θ) = exp
(

−(4πg1,2 cos θ)
2
)

,

g1,2 = gs1,2/λF.

Здесь f
(1)+
l‖ и f

(1)+
l⊥ — неравновесные поправки к

функции распределения электронов с kz l > 0; f
(1)−
l‖

и f
(1)−
l⊥ — неравновесные поправки c kz l < 0; λF —

длина волны де Бройля электрона с энергией Ферми;

gs1 и gs2 — соответственно среднеквадратичная высота

поверхностного рельефа нижней и верхней границы

нанослоя; θ — угол между направлением волнового

вектора электрона и нормалью к поверхности нанослоя.

2. Математические расчеты

Решая уравнение (6) с учетом граничного условия (8),
получим выражения для неравновесных поправок к

функции распределения носителей заряда

f
(1)+
l‖ (z ) = −e(vx · Ex)

ν‖

∂ f
(0)
l

∂ε‖
(1− φ+

l‖e−�l‖ξ), (9)

f
(1)+
l⊥ (z ) = −e(vy · Ey )

ν⊥

∂ f
(0)
l

∂ε‖
(1− φ+

l⊥e−�l⊥ξ ), (10)

f
(1)−
l‖ (z ) = −e(vx · Ex )

ν‖

∂ f
(0)
l

∂ε‖
(1− φ−

l‖e�l‖(1−ξ)), (11)

f
(1)−
l⊥ (z ) = −e(vy · Ey)

ν⊥

∂ f
(0)
l

∂ε‖
(1− φ−

l⊥e�l⊥(1−ξ)). (12)

Введены следующие обозначения:

φ+
l‖,⊥ =

(1− q1) + q1(1− q2)e
−�l‖,⊥

1− q1q2e−2�l‖,⊥
,

φ−
l‖,⊥ =

(1− q2) + q2(1− q1)e
�l‖,⊥

1− q1q2e2�l‖,⊥
,

�l‖,⊥ = aν‖,⊥/(ν1l); ξ = z/a .

Здесь ν‖,⊥ = τ −1
‖,⊥ − iω — соответственно комплекс-

ная частота рассеяния носителей заряда в направлениях,

параллельных главной и побочной осям эллипсоида

постоянной энергии, ε‖ — продольная кинетическая

энергия электрона.

Плотность тока определяется выражением [18]:

j =
2ek1

(2π)3

∑

l

∫ ∫

v
(

f
(1)+
l + f

(1)−
l

)

dkxdky . (13)
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Распишем выражение (13) для компонент плотности

тока на оси X и Y :

jx =
2ek1

(2π)3

∑

l

∫ ∫

vx

(

f
(1)+
l‖ + f

(1)−
l‖

)

dkx dky , (14)

jy =
2ek1

(2π)3

∑

l

∫ ∫

vy

(

f
(1)+
l⊥ + f

(1)−
l⊥

)

dkx dky . (15)

Для вычисления интегралов (14) и (15) удобно перей-

ти к системе координат (ε‖, ϕ). Связь координат (kx , ky)
и (ε‖, ϕ) дается следующей системой уравнений:



















kx =

√

2m‖ε‖

~
cosϕ,

ky =

√

2m⊥ε‖

~
sinϕ.

(16)

Подставляя (9)−(12), (16) в (14) и (15) и проведя

необходимые вычисления, получим следующие выраже-

ния для x - и y -компонент плотности тока:

jx =
4πe2m

3/2
0 Ex

√
2ε1

ν‖h3m‖

N
∑

l=1

(εF − ε1l2)

× (2 + φ+
l‖e−�l‖ξ + φ−

l‖e−�l‖(1−ξ)), (17)

jy =
4πe2m

3/2
0 Ex

√
2ε1

ν⊥h3m⊥

N
∑

l=1

(εF − ε1l2)

× (2 + φ+
l⊥e−�l⊥ξ + φ−

l⊥e−�l⊥(1−ξ)), (18)

где введено обозначение для скалярной эффективной

массы электрона m0 = 3

√

m‖m2
⊥.

Будем предполагать, что концентрация носителей за-

ряда в металле не меняется. Согласно зонной теории,

энергия Ферми в металле определяется верхним за-

полненным энергетическим уровнем. С уменьшением

толщины слоя снижается количество разрешенных энер-

гетических состояний. Если концентрацию носителей

считать постоянной величиной, то уровень Ферми дол-

жен меняться с изменением толщины. Аналогичные рас-

суждения были проведены в работе [28] для тонких пле-

нок алюминия и золота. Показано, что энергия Ферми

увеличивается с уменьшением толщины, и зависимость

энергии Ферми от толщины ведет себя осциллирующим

образом. Воспользуемся зависимостью энергии Ферми

от толщины нанослоя, полученной в работе [18]:

ρ2 =
2

3N
ρ3v +

1

6
(N + 1)(2N + 1), (19)

ρ =
√

εF/ε1, ρv =
√

εFv/ε1,

где εFv — энергия Ферми без учета квантования энерге-

тического спектра носителей заряда (макроскопического
образца), N — общее число заполненных подзон, опре-

деляемое выражением

N = int

[

3

√

p

2
+
√

Q + 3

√

p

2
−
√

Q +
1

4

]

, (20)

Q =

(

p

2

)2

−
(

7

48

)3

, p =
3

32
+ ρ3v .

Компоненты тензора интегральной проводимости

определяются по формулам(21)−(23). В случае, когда

главная ось эллипсоида Ферми ориентирована парал-

лельно оси X , проводимость представляет собой диаго-

нальный тензор второго ранга:

G =

(

G‖ 0

0 G⊥

)

, (21)

G‖ =

a
∫

0

σ‖dz = a

1
∫

0

jx

Ex

dξ, (22)

G⊥ =

a
∫

0

σ⊥dz = a

1
∫

0

jy

Ey

dξ. (23)

Подставляя (17) и (18) в (22) и (23), получим выра-

жения для продольных и перпендикулярных компонент

тензора проводимости:

G‖,⊥ = σ0a6‖,⊥(x0, xλ, y0, γ, g1, g2), (24)

6‖ =
γ2

z 0‖

{

1− 3

16x3
0γ

1.5

N
∑

l=1

(ρ2 − l2)χ

(

2x2
0z 0‖γ

lxλ

)}

,

(25)

6⊥ =
1

γz 0⊥

{

1− 3

16x3
0γ

1.5

N
∑

l=1

(ρ2 − l2)χ

(

2x2
0z 0⊥γ

lxλ

)}

.

(26)
Введены следующие параметры:

σ0 =
ne2τ0v

m0

, τ0v = 3

√

τv‖τ
2
v⊥,

χ(p) =
1

2p
(1− e−p)

2− q1 − q2 + (q1 + q2 − 2q1q2)e
−p

1− q1q2e−2p
,

q1,2(g1,2, θ) = exp
(

−(2πg1,2l/x0)
2
)

,

z 0‖ =
ρ
√
γ

2x0

− iy0, z 0⊥ =
ρ

2x0γ
− iy0, γ =

m⊥

m0

,

ρ2 =
16

3N
x3
0γ

1.5 +
1

6
(N + 1)(2N + 1),

x0 =
a

λF0
, xλ =

3

λF0
, y0 = ωτ0v .

Здесь σ0 — классическая проводимость без учета эф-

фектов размерного квантования, τ0v — скалярное время

релаксации в макроскопическом образце, 6‖ и 6⊥ —

соответственно безразмерные продольная и поперечная

компоненты тензора проводимости, являющиеся функ-

циями безразмерных параметров: x0 — толщина слоя;

xλ — длина свободного пробега носителей заряда; y0 —

частота электрического поля; g1 и g2 — параметры
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шероховатости поверхностей слоя; γ — параметр эл-

липтичности, определяющий степень анизотропии изо-

энергетической поверхности. Параметры x0, xλ , g1 и g2

нормированы на длину волны де Бройля электрона λF0 с

энергией Ферми εFv .

Если направление главной оси эллипсоида вращения

будет совпадать с осью Y , то продольная и поперечная

компоненты тензора проводимости поменяются местами

друг с другом. В случае произвольного направления оси

вращения эллипсоида в плоскости (kx , ky ) выражение

для тензора проводимости принимает вид

G̃ =

(

G‖ cos
2 ϕ0+G⊥ sin2 ϕ0 (G‖−G⊥) cosϕ0 sinϕ0

(G‖−G⊥) cosϕ0 sinϕ0 G‖ sin
2
ϕ0+G⊥ cos2 ϕ0

)

,

(27)
где ϕ0 — угол между главной осью эллипсоида враще-

ния и осью X .

3. Предельные случаи

Рассмотрим случай сферически-симметричной энер-

гетической зоны (γ = 1). Продольные и поперечные

компоненты тензора проводимости будут равны друг

другу:

6‖ = 6⊥ =
γ2

z 0

{

1− 3

16x3
0

N
∑

l=1

(ρ2 − l2)χ

(

2x2
0z 0

lxλ

)}

,

(28)

z 0 =
ρ

2x0

− iy0.

Рассмотрим предельный переход в квазиклассический

случай (a ≫ λB , a . 3). Заметим, что из (19) и (20)
следует

N ≈ int [ρv ], (29)

ρ2 ≈ ρ2v . (30)

Поскольку энергетический спектр электронов являет-

ся практически непрерывным, в выражениях (25) и (26)
от суммирования по номеру подзоны l можно перейти к

интегрированию. В результате получим

6‖ =
γ2

z 0‖

{

1− 3

2

1
∫

0

(1− t2)χ

(

x0z 0‖
√
γ

t

)

dt

}

, (31)

6⊥ =
1

z 0⊥γ

{

1− 3

2

1
∫

0

(1− t2)χ

(

x0z 0⊥
√
γ

t

)

dt

}

. (32)

Здесь введены обозначения:

t =
vz

vF⊥
, x0 =

a

3
,

где vF⊥ — скорость Ферми электрона в направлении,

перпендикулярном оси вращения эллипсоида Ферми.

Выражения (31) и (32) согласуются с результатом

работы [29] в случае вырожденного электронного газа.

В статическом случае выражения для продольных и

поперечных компонент тензора проводимости принима-

ют вид, соответствующий результату работы [18]:

6‖ =
2x0γ

1.5

ρ

{

1− 3xλ ρ

32x4
0γ

3

N
∑

l=1

l

(

1− l2

ρ2

)

χ

(

x0ργ
1.5

lxλ

)}

,

(33)

6⊥ =
2x0

ρ

{

1− 3xλ ρ

32x4
0γ

1.5

N
∑

l=1

l

(

1− l2

ρ2

)

χ

(

x0 ρ

lxλ

)}

.

(34)

4. Анализ результатов

На рис. 2 и 3 представлены зависимости модуля и ар-

гумента безразмерной продольной компоненты тензора

интегральной проводимости от безразмерной толщины.

Сплошные и штриховые кривые построены при разных

значениях параметра эллиптичности γ . Наблюдаются

осцилляции, период которых зависит от частоты элек-

трического поля. Возникновение осцилляций, возможно,

обусловлено следующими причинами. Поскольку при

малых толщинах нанослоя перпендикулярная компонен-

та волнового вектора квантуется, дискретными вели-

чинами будут проекция скорости на ось Z и частота

поверхностного рассеяния носителя заряда. Если подо-

брать период колебаний напряженности электрического

поля T таким образом, чтобы выполнялось условие

τs = nT (где τs — время движения носителя заряда от

одной границы нанослоя до другой, n — положительное

целое число), часть носителей заряда будет рассеи-

ваться поверхностью нанослоя в момент изменения на-

правления вектора напряженности электрического поля.

Когда эти носители заряда испытывают поверхностное

рассеяние, внешнее электрическое поле не оказывает

0 1.20.4 0.8

0.2

0.4

0.3

0.1

x0

0.5

1.6

|Σ
| ||

1

2

3
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5

6

Рис. 2. Зависимости модуля безразмерной продольной ком-

поненты тензора интегральной проводимости 6‖ от без-

раeзмерной толщины x0 при xλ = 8; g1 = g2 = 0.2, γ = 2.32

(сплошные кривые 1–3), γ = 1.6 (штриховые кривые 4–6):
1 — y0 = 10; 2 — y0 = 20; 3 — y0 = 30.
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Рис. 3. Зависимости аргумента безразмерной продольной

компоненты тензора интегральной проводимости 6‖ от без-

размерной толщины x0 при xλ = 8; g1 = g2 = 0.2, γ = 2.32

(сплошные кривые 1–3), γ = 1.6 (штриховые кривые 4–6):
1 — y0 = 10; 2 — y0 = 20; 3 — y0 = 30.

на них влияния. Следовательно, функция распределения

таких носителей заряда вблизи границ нанослоя будет

равновесной. Как показывают граничные условия (8),
поверхности нанослоя не будут оказывать влияния на

характер движения этой группы носителей заряда при

τs = nT . В результате этого при некоторых значениях x0

и y0 модуль и аргумент проводимости будут близкими

случаю зеркальной поверхности. Рис. 3 показывает, что

с увеличением частоты период осцилляций убывает,

а максимумы смещаются влево. При низких частотах,

когда y0 < 10, осцилляции модуля и фазы проводимости

становятся слабовыраженными. Анизотропия поверхно-

сти Ферми влияет на период осцилляций зависимостей

проводимости от толщины: с уменьшением γ период

осцилляций уменьшается. Это можно объяснить измене-

нием соотношения между продольной и поперечной эф-

фективными массами носителей заряда, оказывающими

влияние на частоту поверхностного рассеяния. Сниже-

ние γ приводит к уменьшению поперечной эффективной

массы электрона и увеличению частоты поверхностного

рассеяния (уменьшению τs ). Отметим, что осцилляцион-

ные максимумы пунктирных кривых смещены в сторону

больших x0.

На рис. 4 и 5 представлены частотные зависимости

модуля и аргумента безразмерной продольной компо-

ненты тензора проводимости. Наблюдается уменьшение

модуля проводимости с ростом частоты электрического

поля. Это можно объяснить запаздыванием отклика но-

сителей заряда при высоких частотах, в результате чего

поведение носителей заряда становится аналогичным

совокупности связанных зарядов, не вносящих вклада

в проводимость. Отметим, что частотная зависимость

модуля проводимости монотонна, а фаза проводимости

осциллирует с изменением частоты. Причина возник-

новения осцилляций аналогична той, что изложена в

пояснениях к рис. 2 и 3. При варьировании параметра

y0 периодически будет выполняться условие τs = nT ,

когда модуль и аргумент проводимости будут близки

к случаю зеркального рассеяния. Период осцилляций в

случае одинаковых параметров шероховатости верхней

и нижней поверхности нанослоя (кривая 3 на рис. 5)
в два раза меньше периода осцилляций в ситуации,

когда одна поверхность нанослоя зеркальная, а дру-

гая — шероховатая (кривая 1 на рис. 5). Это можно

объяснить тем, что в случае, описываемом кривой 1,

частота поверхностного рассеяния носителей заряда в

два раза меньше частоты рассеяния в ситуации, ха-

рактеризуемой кривой 3. Можно сказать, что характер

движения носителей заряда в случае, когда одна из

0 205 10

1.0

0.2

0.6

y0

25

|Σ
| ||

1

2

3

0.4

0.8

15

Рис. 4. Зависимости модуля безразмерной продольной ком-

поненты тензора интегральной проводимости 6‖ от безраз-

мерной частоты y0 при x0 = 0.8 xλ = 8; γ = 2.32; g2 = 0.15:

1 — g1 = 0; 2 — g1 = 0.06; 3 — g1 = 0.15.
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Рис. 5. Зависимости аргумента безразмерной продольной

компоненты тензора интегральной проводимости 6‖ от без-

размерной частоты y0 при x0 = 0.8 xλ = 8; γ = 2.32; g2 = 0.15:

1 — g1 = 0; 2 — g1 = 0.06; 3 — g1 = 0.15.
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границ нанослоя зеркальна, аналогичен случаю нанослоя

удвоенной толщины с двумя шероховатыми границами.

В ситуации, когда параметры шероховатости границ

нанослоя произвольны (кривая 2) частотная зависи-

мость фазы осциллирует сложным образом. В этом

случае осцилляции представляют собой совокупность

чередующихся более выраженных и менее выраженных

максимумов фазы проводимости.

На рис. 6 и 7 изображены зависимости модуля и ар-

гумента проводимости от параметра эллиптичности по-

верхности Ферми γ . Сплошные кривые построены с уче-

0 2.00.5 1.0
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γ
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 ⊥
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Рис. 6. Зависимости модуля безразмерной продольной (6‖,

кривые 1, 3) и поперечной (6⊥, кривые 2, 4) компоненты тензо-

ра интегральной проводимости от параметра эллиптичности γ

при x0 = 0.5; xλ = 8; y0 = 30; g1 = 0; g2 = 0.2. Сплошные

кривые построены с учетом квантовой теории, штриховые

кривые построены с учетом квазиклассической теории.
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Рис. 7. Зависимости аргумента безразмерной продольной (6‖,

кривые 1, 3) и поперечной (6⊥, кривые 2, 4) компоненты тензо-

ра интегральной проводимости от параметра эллиптичности γ

при x0 = 0.5; xλ = 8; y0 = 30; g1 = 0; g2 = 0.2. Сплошные

кривые построены с учетом квантовой теории, штриховые

кривые построены с учетом квазиклассической теории.
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Рис. 8. Зависимости действительной (кривые 1, 3) и мнимой

(кривые 2, 4) части проводимости пленки висмута толщиной

70 nm от частоты. Сплошные кривые 1, 2 — эксперименталь-

ные данные работы [30]. Штриховые кривые 3, 4 — теорети-

ческий расчет при λB0 = 27 nm, 3 = 1.8 µm; γ = 0.4; g1 = 0.1;

g2 = 0.9.

том квантовой теории явлений переноса ((25) и (26)),
а штриховые — в квазиклассическом приближении

((31) и (32)). Как показывают рисунки, с увеличени-

ем γ модуль и фаза продольной компоненты тензора

проводимости убывают, а модуль и фаза поперечной

компоненты — увеличиваются. На рис. 6 и 7 видно,

что при значении γ = 1 кривые 1–4, сходятся в одну

точку. Это означает, что в случае сферической зонной

структуры проводника продольная и поперечная компо-

ненты проводимости совпадают друг с другом. Наблюда-

ются осцилляции зависимостей фазы проводимости от

параметра эллиптичности. Наиболее сильное отличие

результатов, полученных с учетом квантовой и квази-

классической теорий, наблюдается в случае поперечного

направления главной оси эллипсоида Ферми. Расчеты,

полученные в квазиклассическом приближении, показы-

вают неограниченное увеличение модуля проводимости

при γ ≪ 1. Это, возможно, связано с малой эффективной

массой носителей заряда в направлении, параллельном

вектору напряженности электрического поля. Рис. 1, b

показывает, что в квантовом случае уменьшение длины

побочной оси эллипсоида постоянной энергии (умень-
шение γ) приводит к снижению концентрации носителей

заряда из-за уменьшения числа разрешенных энергети-

ческих состояний. Это приводит к тому, что модуль

проводимости не может неограниченно увеличиваться

при γ ≪ 1.

На рис. 8 изображены зависимости действительной

и мнимой частей проводимости пленки висмута от

частоты электрического поля. Сплошная кривая —

экспериментальные данные работы [30], а штриховая

кривая — теоретический расчет. Пленки висмута были
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получены термическим напылением при температуре

70 ◦C с последующим отжигом при 180 ◦C. Такие усло-

вия напыления позволили создать пленки висмута с пре-

имущественной ориентацией вдоль тригональной оси C3.

Это подтверждается рентгеновской дифрактометрией и

микрофотографиями рельефа поверхности, сделанными

с помощью атомно-силовой микроскопии [30]. Авторами
работы [30] было установлено, что пленка состоит

из кристаллитов, представляющих собой треугольники.

Соседние кристаллиты ориентированы относительно об-

щей границы таким образом, что одна из кристалло-

графических осей (бинарная C1 или биссекторная C2)
не меняет своего направления, а другая ось повернута

на 180◦ . Как утверждают авторы работы, границы между

зернами при такой ориентации кристаллитов в образце

практически не влияют на проводимость. Основным фак-

тором, оказывающим влияние на проводимость, остается

поверхностное рассеяние носителей заряда и размерное

квантование.

Ориентация вдоль оси C3 соответствует случаю, ко-

гда главные оси трех эллипсоидов постоянной энергии

электронов практически параллельны плоскости пленки.

Для сравнения теоретических расчетов с эксперимен-

тальными данными было использовано выражение для

усредненной по толщине слоя проводимости, определяе-

мой суммой составляющих проводимости от электронов

с каждого эллипсоида:

σa =
G

a
=

1

a

3
∑

i=1

Gi
xx =

1

a

3
∑

i=1

{

G‖ cos
2

(

χ + i
2π

3

)

+ G⊥ sin2
(

χ + i
2π

3

)}

=
3

2a
(G‖ + G⊥).

(35)
Здесь χ — угол между направлением главной оси

эллипсоида Ферми и осью X . G‖ и G⊥ определяются

выражениями (24)−(26).
Отметим, что в достаточно тонких слоях проводи-

мость пленок висмута может вести себя подобно по-

лупроводнику. Это происходит из-за изменения относи-

тельного расположения энергетических зон, на которых

расположены носители заряда. Как показали исследо-

вания [31,32], критическая толщина пленки висмута,

меньше которой материал висмут проявляет свойства

полупроводника, варьируется в диапазоне 25−30 nm.

Для сравнения с теоретическими расчетами были ис-

пользованы экспериментальные результаты для плен-

ки висмута толщиной 70 nm. В этом случае висмут

проявляет металлические свойства, т. е. для сравнения

с экспериментом можно использовать построенную в

настоящей работе теоретическую модель, применимую

к металлическим нанослоям.

Рисунки показывают хорошее согласие теоретиче-

ских расчетов с экспериментальными данными. Период

осцилляций сплошных кривых совпадает с периодом

осцилляций штриховых кривых. Различие состоит в

положении осцилляционных максимумов (минимумов)

проводимости. Имеются различия в положении осцилля-

ционных максимумов действительной и мнимой частей

проводимости, возможно, связанные с особенностью

зонной структуры висмута, наличием межэллипсоидных

переходов носителей заряда. Расхождение сплошных и

штриховых кривых может быть связано с тем, что в

настоящей работе рассматривался случай, когда энергия

Ферми изменяется при варьировании толщины слоя,

а концентрация носителей заряда остается постоянной.

Вероятно, в полуметаллах необходимо учитывать зави-

симость сразу двух параметров от толщины, что по-

требует более детального описания квантовых явлений

переноса применительно к полуметаллам.

Заключение

В настоящей работе с учетом эффектов размерного

квантования носителей заряда получены аналитические

выражения для продольной и поперечной компонент

тензора проводимости металлического нанослоя как

функций толщины нанослоя, длины свободного пробега

носителей заряда, частоты электрического поля, пара-

метров шероховатости границ нанослоя и параметра

эллиптичности поверхности Ферми. Обнаружены осцил-

ляции зависимостей модуля и фазы проводимости от

толщины и частоты электрического поля. Варьирова-

ние параметрами шероховатости поверхности позволяет

изменять амплитуду осцилляций, а частотой электри-

ческого поля — их положение и период. Осцилляции

частотных зависимостей модуля и фазы проводимости

ярко выражены в относительно тонких нанослоях с

толщиной, сопоставимой с длиной волны де Бройля

носителей заряда при частотах порядка нескольких де-

сятков терагерц.

Установлено, что анизотропия поверхности Ферми

проводника влияет на период осцилляций зависимостей

модуля и фазы проводимости от толщины. Показано, что

модуль проводимости монотонно зависит от параметра

эллиптичности, а аргумент проводимости — осциллиру-

ющим образом.

Сравнение полученных теоретических расчетов с экс-

периментальными данными пленки висмута показало

адекватность построенной теоретической модели. Име-

ются различия в положении осцилляционных максиму-

мов действительной и мнимой частей проводимости,

возможно связанные с особенностью зонной структуры

висмута, наличием межэллипсоидных переходов носите-

лей заряда и т. д.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.
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Thin Solid Films, 821, 140678 (2025).
DOI: 10.1016/ j.tsf.2025.140678

Приложение

Вывод кинетического уравнения

В рамках теории возмущения гамильтониан Ĥ можно

представить в виде

Ĥ(t) = Ĥ0 + V̂ (t), (П1)

где Ĥ0 — собственный гамильтониан электрона, V̂ —

зависящий от времени потенциал перехода между соб-

ственными состояниями.

Тогда с учетом (П1) уравнение для матричных эле-

ментов оператора плотности ρl′l принимает вид [27]:

i~
∂ρl′l

∂t
= (εl′ − εl)ρl′l +

∑

l1

(Vl′l1ρl1l − ρl′l1Vl1l). (П2)

Здесь εl — собственное значение гамильтониана Ĥ0,

Vl′l1 — матричный элемент оператора V̂ .

Уравнение для диагональных элементов матрицы

плотности (функции распределения) f l = ρll запишется

следующим образом:

∂ f l

∂t
= − i

~

∑

l1

(Vll1ρl1l − ρll1Vl1l). (П3)

Журнал технической физики, 2026, том 96, вып. 3



Высокочастотная электропроводность металлического нанослоя с учетом эффектов размерного... 457

В нестационарном случае уравнение (П3) можно

переписать в виде

∂ f l

∂t
=

(

∂ f l

∂t

)

F

− i

~

∑

l1

(Vll1ρl1l − ρll1Vl1l). (П4)

Первое слагаемое в правой части уравнения описыва-

ет изменение функции распределения f l под действием

внешнего электрического поля. Второе слагаемое харак-

теризует изменение функции распределения в результа-

те рассеяния носителей заряда.

В работе [18], где рассматривался случай постоянного

электрического поля, получено выражение для первого

слагаемого уравнения (П4):

(

∂ f l

∂t

)

F

=
~kz l

m⊥

∂ f l

∂z
+

eE

~

∂ f l

∂k‖
, (П5)

где kz l = πl/a — перпендикулярная компонента волно-

вого вектора электрона на l-й подзоне; k‖ — компонента

волнового вектора носителя заряда, параллельная плос-

кости нанослоя.

Второе слагаемое уравнения (П4) связано с вероят-

ностью перехода носителя заряда Wl1l из состояния l в

состояние l1 в результате объемного рассеяния [18]:

∂ f l

∂t
= −

∑

l1

Wl1l( f l − f l1), (П6)

Wl1l =
2π

~
|V 0

ll1
|2δ(εl1 − εl),

где V 0
ll1

— матричный элемент потенциала рассеяния

носителя заряда на одной примеси.

В случае эллипсоидальной зонной структуры металла

правую часть уравнения (П6) можно выразить через

компоненты тензора времени релаксации. Рассмотрим

подробно этот вопрос. Учитывая линейное по внешнему

полю разложение функции f l (7), интеграл столкнове-

ний можно переписать в виде

∂ f l

∂t
= −

∑

l1

Wl1l( f
(1)
l − f

(1)
l1

). (П7)

Будем считать, что рассеяние носителей заряда упру-

гое. Перейдем к системе координат в пространстве

волновых векторов таким образом, чтобы поверхность

Ферми имела сферическую симметрию:



















k̃x =
√

m0/m‖kx ,

k̃y =
√

m0/m⊥ky ,

k̃z l =
√

m0/m⊥kz l.

(П8)

Выражение для полной энергии в этой системе коорди-

нат принимает вид

εl =
~
2k̃2

x

2m0

+
~
2k̃2

y

2m0

+
~
2k̃2

z l

2m0

. (П9)

Неравновесные поправки к функции распределения

f
(1))
l и f

(1)
l1
, полученные в результате линейного по

внешнему полю разложения, можно представить в виде

суммы произведений функций, зависящих от энергии

носителя заряда на компоненты продольного волнового

вектора k̃‖ :

f
(1)
l (z , k̃‖)= f

(1)
l‖ (z , k̃‖)+ f

(1)
l⊥(z , k̃‖)=χ‖(εl)k̃x+χ⊥(εl)k̃y ,

(П10)

f
(1)
l1

(z , k̃‖)= f
(1)
l1‖

(z , k̃‖)+ f
(1)
l1⊥

(z , k̃‖)=χ‖(εl1 )k̃x+χ⊥(εl1 )k̃y .

(П11)
Подставляя (П10) и (П11) в (П7), получим выражение

для интеграла объемных столкновений:

∂ f l

∂t
= −χ‖(εl)k̃x

∑

l1

Wl1l

(

1− χ‖(εl1 )

χ‖(εl)

)

− χ⊥(εl)k̃y

∑

l1

Wl1l

(

1− χ⊥(εl1 )

χ⊥(εl)

)

. (П12)

Заметим, что получившийся множитель в скобках

зависит только от энергии носителей заряда в l и l1-й

подзонах. В приведенной системе координат (k̃x , k̃y , k̃z )
в случае упругого рассеяния носителей заряда матрица

перехода зависит только от модуля волнового вектора

(энергии носителей заряда). В этом случае можно ввести

время релаксации носителей заряда:

∑

l1

Wl1l

(

1− χ⊥(εl1)

χ⊥(εl)

)

=
1

τ
(П13)

и переписать выражение (П12) в виде

∂ f l

∂t
= −χ‖(εl)k̃x

τ
− χ⊥(εl)k̃y

τ
. (П14)

Переходя к старым координатам в пространстве вол-

новых векторов, получим

∂ f l

∂t
= −χ‖(εl)

τ

√

m‖

m0

kx −
χ⊥(εl)

τ

√

m⊥

m0

ky =
f

(1)
l‖

τ‖
+

f
(1)
l⊥

τ⊥
,

(П15)
где τ‖ и τ⊥ — продольная и поперечная компоненты

тензора времени релаксации.

Учитывая вышесказанное, кинетическое уравнение

приобретает вид

−iω
(

f
(1)
l‖ + f

(1)
l⊥

)

+
~kz l

m⊥

∂( f
(1)
l‖ + f

(1)
l⊥)

∂z

+
eE

~

∂ f
(0)
l

∂k‖
+

f
(1)
l‖

τ‖
+

f
(1)
l⊥

τ⊥
= 0. (П16)
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