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Обсуждено современное состояние фундаментальных исследований явления глубокого проплавления,

возникающего под действием мощных источников энергии, таких как лазерное излучение и пучки

высокоэнергетических частиц. Явление обнаружено, когда плотность мощности этих источников превышает

определенный пороговый уровень, а форма расплавленной зоны меняется с мелкой и полукруглой на

более глубокую и вытянутую, благодаря образованию полого канала, по которому луч проникает вглубь

металла. Основное внимание уделено результатам исследований гидродинамических аспектов формирования

канала проплавления и его динамического поведения в технологических процессах. Различные капилляр-

ные эффекты, включая термокапиллярноcть и электрокапиллярность, могут определять гидродинамику

технологических процессов в различных условиях и на различных стадиях. Результаты фундаментальных

исследований согласованы с экспериментальными данными в диапазоне технологических мощностей,

показывая несостоятельность широко распространенного в инженерном сообществе предположения об

образовании канала проплавления вследствие интенсивного испарения и удаления расплава высоким

давлением отдачи струи паров.
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Введение

Явление глубокого проплавления (ГП) составляет

основу технологического режима ГП (keyhole mode)
обработки металлов в лазерных и электронно-лучевых

технологиях, которые востребованы в авиакосмической,

атомной, энергетической и оборонной промышленности,

а также в судостроении, двигателестроении, медицине

и т. д. Перспективы их применения и дальнейшего со-

вершенствования связывают с цифровизацией, получе-

нием и внедрением научно обоснованных рекомендаций

по выбору оптимальных параметров технологического

процесса [1,2]. Явление ГП заключается в пороговом

изменении формы расплавленной области, когда вместо

мелкой и полукруглой при допороговом режиме тепло-

проводности (conduction mode) она становится узкой и

вытянутой (рис. 1) из-за образования полого канала, по

которому энергия пучка проникает вглубь металла. При

этом отношение глубины расплавленной зоны к ширине

(L/D) становится больше единицы и может достигать

нескольких десятков.

Режим ГП реализуется в сварочных технологиях (ла-
зерная, электронно-лучевая, гибридная лазерно-дуговая)
и в аддитивных технологиях селективного плавления

металлических порошков лазерным или электронным

пучком. К таким технологиям можно отнести и лазер-

ную резку металлов больших толщин с учетом ее осо-

бенности в виде сильного возмущения гидродинамики

расплава при удалении продуктов плавления газовой

струей [3].

Преимуществом режима ГП является повышенная

производительность и КПД процесса, возможность со-

единять детали большой толщины за один проход луча,

малая зона термического влияния, минимальная тепло-

вая деформация, улучшенная дегазация зоны плавления.

Conduction mode
L/D < 1

D

Keyhole mode
L/D > 1

D

L

L

Рис. 1. Форма зоны плавления при разных режимах плавления

(схема).
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В аддитивном производстве селективным плавлением

порошковых слоев данный режим позволяет увеличить

производительность за счет повышения толщины по-

рошкового слоя, повысить прочность и износостойкость

готового изделия за счет улучшения связи между сло-

ями, измельчения зерна, изменения микроструктуры.

Недостатком режима является нестабильность полого

канала и генерация пор, что затрудняет достижение

высочайшего качества изделий, требуя от технологов

больших усилий для минимизации и устранении пор.

Технологический процесс в режиме ГП осуществим

в диапазоне операционных параметров, границы кото-

рого зависят от мощности излучения P , размера пятна

фокусировки d и свойств металла. Нижняя граница

этого диапазона связана со сменой режимов плавле-

ния и часто по традиции характеризуется пороговой

плотностью мощности qth(d), подразумевая квадратич-

ную зависимость P th(d) ∼ d2, где P th — пороговая

мощность. Такая зависимость не соответствует дей-

ствительности, поэтому значения qth(d) точны лишь в

очень узком диапазоне изменений d . В [4] показано,

что линейная зависимость Pth(d) ∼ d точнее описыва-

ет изменение порогового перехода. Но максимальная

точность, причем в диапазоне изменений d на два

порядка достигается при P th(d) ∼ d4/3 (см. разд. 8).
Верхняя граница технологического диапазона связана с

началом нежелательного выплеска расплава и разлета

капель и остается не исследованной. Для типичных

условий лазерной сварки (d ∼ 500µm) стального образ-

ца эта граница соответствует qspl ∼ 3MW/cm2 [5] (или
Pspl ∼ 6000W). В обзоре будут рассмотрены гидроди-

намические процессы, происходящие в технологическом

диапазоне qth(d) < q < qspl(d) или P th(d) < P < Pspl(d).
Исследования технологических процессов в режиме

ГП ориентируются на ускоренное освоение новых тех-

нологий и опираются преимущественно на инженерные

методы. Из-за недостаточного внимания к фундаменталь-

ным исследованиям достигнутые успехи сегодня пере-

плетаются с противоречивыми выводами специалистов

разных отраслей знаний, наук и школ. Чтобы разрешить

наблюдающиеся противоречия, необходим анализ и си-

стематизация большого множества уже накопленных ре-

зультатов исследований в вышеупомянутых технологиях

с выявлением общих закономерностей. В обзоре изложе-

ны результаты фундаментальных исследований явления

ГП, раскрывающих механизм самоорганизации матери-

ала под действием высококонцентрированных потоков

энергий, в которых каждая технология рассматривается

как частное проявление общего механизма.

Формирование канала проплавления — это муль-

тифизический неравновесный процесс с подвижными

фазовыми границами, включающий тепломассообмен,

поверхностные явления, сложную гидродинамику, ди-

намику испарения и истечения паров, термоэмиссию

зарядов, формирование плазмы и взаимодействие с ней

излучения, электродинамические процессы, волноводное

распространение лазерного излучения в канале и т. д.

Физическое моделирование столь сложного явления

представляет собой трудную задачу, решение которой

вряд ли возможно без применения численных методов

и достоверных знаний о механизме явления. Сего-

дня компьютерное моделирование режима ГП успешно

применяется для решения технологических задач на

основе определения температурных полей для прогно-

за термических напряжений, деформаций и образова-

ния трещин. Воспроизведение гидродинамических полей

вызвано потребностью прогноза образования скрытых

дефектов гидродинамического происхождения (пор и

полостей) и их предотвращения в производстве изделий

ответственного назначения. Однако эта задача пока не

решена из-за сложившейся методологической путаницы,

осложняющей исследования явления ГП.

1. Методологические аспекты развития
представлений о явлении ГП

В технологиях ГП знание температурных полей и

циклов рассматривается как основа для понимания всех

сопутствующих металлургических процессов, связанных

с физикой металлов, химической кинетикой, физикой

плазмы и т. д. В этот перечень обычно не включают

знание гидродинамических полей, считая их влияние

несущественным. Концепт сложился к началу техно-

логического освоения явления ГП в 70-х гг. прошлого

века. В трудах Н.Н. Рыкалина предложено рассмат-

ривать распределение температур в процессе ГП как

результат действия двух источников тепла: точечного на

поверхности и линейно-распределенного по глубине, что

позволяет аналитически получить приближенные темпе-

ратурные поля даже при отсутствии знаний о физике

формирования канала. Повышение точности расчетов

требует реалистичной имитации канала с привлечени-

ем численных методов, для чего стали использовать

приближение на основе расчетного формализма абля-

ционного механизма, предполагающего формирование

канала в результате вытеснения расплава давлением

отдачи паров [6–8]. Тогда же в работе [9] было об-

ращено внимание на возможность поддержания канала

проплавления за счет перемещения расплава термока-

пиллярными (ТК) силами, что отвечало на появившиеся

измерения давления паров в канале проплавления [10],
величина которого оказалась на порядки меньше зна-

чений, требуемых для формирования канала абляцион-

ным давлением. Эти измерения ставили под сомнение

адекватность абляционного механизма при ГП и позднее

были подтверждены аналогичными измерениями [11,12].
Здесь уместно отметить, что все экспериментальные

подтверждения абляционного механизма получены вне

технологического диапазона мощности, при очень вы-

соких значениях плотности мощности, превышающих

108 W/cm2 [13]. Таким образом, уже в 70-х гг. экспе-

рименты свидетельствовали о незначительности абля-

ционного давления в технологических условиях, чем
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создавали почву для понимания возможности ТК ме-

ханизма формирования канала. По этому вопросу на

переходе 70-х и 80-х гг. развернулась дискуссия, в ходе

которой предлагались разные взгляды на явление ГП и

подходы к исследованиям. Однако, если одних интересо-

вал адекватный физический механизм, то другим нужен

был расчетный метод имитации канала для численного

определения температурных полей. Два разных подхода

оказались трудносовместимыми, и дискуссия приняла

острый характер. Уже известные экспериментальные

данные противоречили абляционному механизму и сви-

детельствовали в пользу ТК механизма. Но физически

адекватный механизм не требовался для имитации ка-

нала при численном воспроизведении температурных

полей в решении термических задач массового инжини-

ринга. Для этого достаточно расчетного формализма на

основе любого из механизмов. Абляционный механизм

наиболее прост, поэтому ТК механизм был отклонен.

Широким кругом специалистов этот вывод был вос-

принят как научное заключение о физическом механиз-

ме явления ГП. Технологи, регулярно наблюдающие в

режиме ГП появление яркого плазменного факела паров

металла, и вовсе сочли его за подтверждение
”
очевидно-

го“. Как следствие, обнаруживаемые затем противоречия

абляционного механизма с экспериментальными данны-

ми игнорировались как ошибочные. Тем самым точка

зрения на абляционный механизм как доминирующий

в явлении ГП закрепилась в научно-технической лите-

ратуре и учебных пособиях по технологическим специ-

альностям. Выбор абляционного механизма в качестве

расчетного формализма для имитации канала ограничи-

вал его применение только воспроизведением темпера-

турных полей. Но эти ограничения не были осознаны,

поэтому абляционный механизм стал применяться в

численном моделировании и гидродинамических полей,

т. е. за пределами допустимой области.

Запрос на численное воспроизведение гидродинами-

ческих процессов появился в относительно узком, но

очень важном секторе технологического инжиниринга,

связанном с производством изделий ответственного на-

значения, которые отличаются наивысшими требования-

ми к качеству и являются маркером технологического

лидерства промышленно развитых стран. Предполага-

ется, что решение данной задачи должно устранить

основной недостаток режима ГП — нежелательную

генерацию пор нестабильным каналом. Поры как кон-

центраторы напряжений снижают надежность и ресурс

ответственных деталей и узлов, работающих в особо

напряженных условиях. Для устранения пор необходим

подбор оптимального технологического режима. Сего-

дня это достигается методом проб и ошибок, который

характерен для начального этапа освоения технологий,

когда нет развитой теории, но требует исследования

большого числа проб в течение длительного времени,

значительных затрат сил, времени и ресурсов. Это яв-

ляется вызовом для аддитивных технологий, снижая их

возможности и перспективы цифровой трансформации

промышленности. Ответом ему должен стать точный

прогноз образования пор на основе достоверных знаний

о природе технологического процесса. Однако при ре-

шении этой задачи специалисты столкнулись со сложно-

стями численного воспроизведения гидродинамических

полей, называя причиной неудач отсутствие точных

знаний движущих сил, влияющих на поток жидкости,

что ограничивает воспроизведение гидродинамических

процессов лишь несколькими качественными эффекта-

ми [14]. Эти неудачи могут быть следствием переоцен-

ки роли абляционного механизма. На это указывают

не только вышеупомянутые данные о незначительном

давлении паров в канале проплавления [10–12], но и

другие подтверждения незначительности испарения в

канале [15,16], а также отсутствие надежной валидации

расчетных моделей режима ГП [17,18].
Наряду с этим в рамках фундаментально ориентиро-

ванных исследований развивались представления о ТК

механизме. Причем, полученные результаты и выводы

давали хорошее соответствие с экспериментальными

данными. Их мы кратко изложим в настоящем обзо-

ре, начиная с модельных экспериментов [19,20], про-

демонстрировавших принципиальную возможность фор-

мирования канала проплавления при незначительном

испарении. На основании этих данных была создана

теоретическая оценочная модель формирования канала

проплавления удалением расплава ТК силами [21,22] и

получены оценки, подтверждающие ответственность ТК

механизма в технологических условиях. Исследования

начальной стадии плавления металлов в режиме ГП

подтвердили формирование сдвиговой структуры ТК по-

тока в зоне облучения и раскрыли причину нелинейной

динамики роста канала при точечном воздействии [23].
Получено соотношение для условий порогового перехо-

да в режим ГП [24] и подтверждено его соответствие

экспериментальным данным. Установлено, что генера-

ция пор нестабильным каналом является следствием

возбуждения капиллярно-волновых колебаний распла-

ва [25]. Выявлены основные закономерности генерации

пор [26,27], полученные соотношения подтверждены

сравнением с экспериментами. Определен критерий пре-

кращения порообразования, который задает положение

технологического окна в координатах операционных

параметров и открывает возможность цифровизации

рутинных процедур разработки технологий для произ-

водства изделий ответственного назначения.

Структура ТК потока при ГП имеет особенность,

которая отличает его от структуры ТК потока в допоро-

говом режиме теплопроводности [19–22]. Без учета этой

особенности стремление к учету действий обоих меха-

низмов (абляционного и ТК) также может приводить

к ошибочным результатам и выводам относительно их

вкладов [28–31], что еще больше запутывает понимание

реальной гидродинамической картины. Между тем кор-

ректные суперкомпьютерные расчеты [32], выполненные
в Ливерморской лаборатории с целью проверки идеи

ТК механизма формирования каверны [20], подтвердили
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возможность образования глубокой каверны в металле

под действием только ТК механизма при незначитель-

ной роли абляционного механизма. Анализ причины

недооценки роли ТК механизма в работах [28–31],
выполненный в [33], показал ее связь с применением

грубой расчетной сетки, не соответствующей физически

обоснованным требованиям к дискретизации расчетной

области.

Фундаментальные исследования роли капиллярных

явлений в процессах ГП позволили интерпретировать

ряд эффектов и корреляций, которые не могли быть

объяснены с помощью абляционного и ТК механиз-

мов. Среди них синергетический эффект при гибридном

лазерно-дуговом воздействии [34], а также эмпириче-

ски наблюдаемые корреляции глубины проплавления с

изменениями давления окружающей среды, характери-

стиками приповерхностной плазмы, сигналом эмисси-

онного тока [35], направленностью и напряженностью

внешнего электрического поля [36]. Для понимания этих

эффектов и корреляций достаточно учесть, что поверх-

ностное натяжение зависит не только от температуры

поверхности, но и от электрического потенциала. Эта

идея представлена в [37] гипотезой об ускорении ТК

потока электрокапиллярными силами, обусловленными

зависимостью поверхностного натяжения от электриче-

ского потенциала σ (ϕ), неоднородно распределенного

вдоль поверхности. Эта гипотеза указывает возможный

путь создания и совершенствования методов контроля

технологическим процесса и управления им.

2. Эволюция канала проплавления при
точечном воздействии
непрерывного лазерного излучения

Визуальные наблюдения процесса ГП металлов за-

труднены сложностями, связанными с высокими темпе-

ратурами в зоне облучения, которые можно избежать

с помощью модельных экспериментов. В частности,

информативным оказался модельный эксперимент по на-

блюдению лазерного проплавления парафина, в котором

визуализацию облегчает отсутствие лазерной плазмы

и оптическая прозрачность расплавленного парафина.

Результаты наблюдения эволюции канала проплавления

парафина глубиной до 3−5mm неподвижным и непре-

рывным лазерным излучением мощностью 20−30W

представлены в [19,20]. Необычный характер эволю-

ции канала в парафине, завершающийся затеканием

и исчезновением, несмотря на все еще действующее

излучение, впервые отмечена в монографии [38]. Вместо
исчезнувшего канала образуется тороидальный вихревой

поток с ТК рециркуляцией расплава (рис. 2). При фор-

мировании канала наблюдалось незначительная скорость

истечения паров парафина (∼ 1 cm/s), подтверждающая

невозможность формирования канала давлением отдачи

паров. Привлекает внимание промежуточная стадия с

Keyhole

Melt

No melting

D
ep

th

Time
st

1  stage nd
2  stage rd

3  stage

a b c d e

Рис. 2. Эволюция ванны расплава. Изменение глубины канала

проплавления в парафине и внешнего вида ванны расплава со

временем при воздействии непрерывного лазерного излучения

мощностью 30W. а, b — 1-я стадия, образование кратера; с —

2-я стадия, возбуждение колебаний расплава в канале; d, e —

3-я стадия, коллапс канала в результате его затекания при все

еще действующем излучении.

возбуждением колебаний расплава в канале проплав-

ления, во время которых наблюдаются чередующиеся

захваты газовых пузырьков, что имеет явное сходство

с генерацией пор нестабильным каналом в реальных

технологических процессах на металлах. Таким образом,

простой модельный эксперимент помогает физически

осмыслить сложные гидродинамические процессы в ре-

альных технологиях.

Изменение характера гидродинамических процессов

позволяет выделить в эволюции канала три стадии. На

первой стадии наблюдается рост канала. При незначи-

тельном испарении и малом влиянии давления отдачи

паров и незначительной роли абляционного механизма

причиной формирования канала может быть лишь ТК

удаление расплава из зоны облучения. Это подтвер-

ждается затеканием и исчезновением канала на заклю-

чительной стадии эволюции, несмотря на продолжаю-

щееся действие лазерного излучения. Создана оценоч-

ная теоретическая модель, которая позволила получить

подтверждающие оценки как для проплавления парафи-

на, так и для проплавления разных металлов [19–22].
Основные положения этой модели будут представлены

в разд. 3. Промежуточная (вторая) стадия эволюции

канала характеризуется возбуждением интенсивных ко-

лебаний в слое расплава на его стенках, которые могут

приводить к захвату пузырьков (разд. 6). Понимание

гидродинамических процессов на этой стадии имеет осо-

бую важность для решения проблемы порообразования

в режиме ГП при создании технологий для изделий

ответственного назначения (разд. 6, 10).
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3. ТК механизм глубокого
проплавления лазерным
излучением

ТК эффект хорошо известен как механизм рецирку-

ляции расплава (конвекции Марангони) в допороговом

режиме теплопроводности. Такое течение возникает при

неоднородном нагреве металла и зависимости поверх-

ностного натяжения от температуры σ (T ). Структура
такого потока имеет приповерхностное ТК течение и

возвратный поток с трением о дно. Действие ТК сил на

поверхности определяет направление течения и зависит

от знака температурного коэффициента поверхностного

натяжения σT = ∂σ/∂T . Для чистых металлов он всегда

отрицателен (σT < 0) и определяет направление ТК сил

от горячего металла в центре пятна облучения к более

холодной части на периферии пятна облучения. Знак σT

может измениться на положительный (σT > 0) под вли-

янием поверхностно-активных веществ, примесей или

загрязнений. В этом случае ТК поток направлен от

периферии пятна облучения к центру. Положительный

знак σT характерен для сплавов при их нагреве от

температуры плавления TM до некоторой точки инвер-

сии знака σT , с превышением которой знак σT всегда

меняется на отрицательный из-за понятного стремления

поверхностного натяжения к нулю при критической тем-

пературе. Точка инверсии знака σT обычно превышает

TM примерно на ∼ 100−300◦ и потому она остается

меньше температуры кипения TB , которая характерна

для нагрева стенок канала проплавления в режиме ГП

(согласно данным эксперимента [39]). По этой причине

в режиме ГП знак σT всегда отрицателен (σT < 0),
а ТК поток направлен от центра ванны расплава с

характерной температурой TB к периферии с темпе-

ратурой TM . Таким образом, условие σT > 0 реализу-

емо только в теплопроводностном режиме плавления

металлов.

Рассмотрим одновременное движение двух фазовых

границ — фронта плавления VM и деформацию сво-

бодной поверхности со скоростью VS, возникающую по

условию сохранения массы из-за ТК растекания рас-

плава. Заметим, что формирование вихревого течения

с замыканием линий тока не происходит мгновенно

и требует некоторого времени. На начальной стадии

плавления ТК течение всегда имеет сдвиговую структу-

ру, что приводит к удалению расплава от центра зоны

облучения на периферию и деформации поверхности.

При малой скорости ТК потока V в силу сохране-

ния массы величина скорости деформации VS будет

мала по сравнению со скоростью фронта плавления

VM , т. е. VS < VM . При этом условии толщина слоя

расплава увеличивается со временем, что предполагает

дальнейшее замыкание линий тока и формирование ТК

рециркуляции расплава. Иное развитие получается, если

скорость ТК потока V настолько высока, что достига-

ется условие VS = VM . В этом случае движение обеих

Laser beam
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V V
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TM TM
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V  =VM S

V  =VS M

VM

δ

δ

d

Рис. 3. Термокапиллярный сдвиговый поток расплава и

рост каверны в установившемся режиме при h(t) = δ(t) и

VS(t) = VM(t) с многократными отражениями лазерного излу-

чения на стенках.

Рис. 4. Предельная глубина лазерного проплавления стали —

расчет согласно ТК модели проплавления [22] с учетом

разброса данных о свойствах. Точки — экспериментальные

данные из [43].

фазовых границ происходит при сохранении толщины

расплавленного слоя и сдвиговой структуры ТК пото-

ка, без замыканий линий тока и возникновения воз-

вратного придонного течения. Такая структура потока

сопровождает удаление расплава из зоны облучения

и образование каверны [19–22] (рис. 3). С ростом

каверны в металле возникают многократные отражения

лазерного излучения на стенках и увеличение эффек-

тивного поглощения до значений A = 0.6−0.9 [40,41],
что способствует поддержанию высокой скорости де-

формации с сохранением условия VS = VM . Характерная

скорость ТК течения определяется из баланса поверх-

ностных ТК сил и сил сопротивления вязкого под-
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слоя

V ∼=
σT

η

∂T

∂r
δ,

где η — динамическая вязкость, σT = |∂σ/∂T |, ∂T/∂r —

градиент температуры вдоль поверхности расплава,

δ — толщина вязкого подслоя, которая при сдвиго-

вой структуре потока равна толщине расплавленно-

го слоя h, т. е. δ = h. При малой толщине расплав-

ленного слоя (δ = h ≪ d) градиент температуры мож-

но оценить, как ∂T/∂r ∼ Aqh/(λd), где Aq — погло-

щенная плотность мощности (A = 0.6−0.9 [40,41] —

эффективное поглощение в канале), λ — теплопро-

водность, d — диаметр пятна фокусировки. Тогда

для скорости сдвигового ТК течения можно запи-

сать

V ∼=
σT Aqδ2

ληd
. (1)

Толщина h = δ определяется из равен-

ства VS = VM при формировании кавер-

ны

δ = h = 4

√

λχ1/2η3/2d2

(Aqρ1/2σT )
, (2)

χ — температуропроводность, ρ — плотность. Со-

отношения (1) и (2) позволяют оценивать скорость

сдвигового ТК потока, его толщину h = δ, а так-

же скорость роста каверны VS и пороговую мощ-

ность P th(d) = qth(d)(πd2/4) для перехода в режим

ГП (разд. 8). Полученные оценки соответствуют экс-

периментальным значениям в технологическом диапа-

зоне мощности [19–22]. ТК модель позволяет оце-

нивать предельную глубину канала. В [42] на осно-

ве собранных эмпирических данных установлен ха-

рактер зависимости предельной глубины проплавле-

ния стали от мощности лазерного луча в виде

L ∼ P0.7 (рис. 4). C помощью представлений ТК ме-

ханизма ГП получена близкая аналитическая зависи-

мость L ∼ P2/3 [22], которая показана на рис. 4 за-

штрихованной областью, учитывающей разброс дан-

ных о свойствах стали. Корреляция оценочных рас-

четов с экспериментами подтверждает ТК меха-

низм ГП.

4. Эволюция гидродинамических
параметров на начальной стадии
формирования канала
проплавления

Анализ эволюции параметров проплавления и их

влияние на рост каверны на начальном этапе плавления

представлен в [23]. Рассматривается плавление металла

неподвижным и непрерывным излучением, сфокусиро-

ванным в пятно диаметром d, и на одном графике

(рис. 5) сопоставлена эволюция ряда параметров —

температуры поверхности T (t), скорости ТК потока

Рис. 5. Эволюция параметров плавления в режиме ГП [23]:
a — температура поверхности T (t), скорость ТК потока V (t);
b — скорость фронта плавления VM(t), скорость деформации

поверхности VS(t); c — толщина расплавленного слоя h(t) и

вязкого подслоя δ(t); d — глубина канала проплавления L(t).

V (t), скорости фронта плавления VM(t) и скорости де-

формации поверхности VS(t), толщины расплавленного

слоя h(t) и вязкого подслоя δ(t), ГП L(t) (канала) при

постоянных свойствах металла.

Температура поверхности расплава. Поглощение из-

лучения на поверхности металла происходит в очень

тонком слое. Распространение тепловой волны на рас-

стояние x за время t приближенно равно x(t) ≈ (χt)1/2 .
Изменение температуры поверхности при действии теп-

лового источника с постоянной плотностью мощности q

равно

1T (t) ∼=
2Aq

λ

√

χt

π
.

Считая A, λ, χ постоянными, изменение температуры

будет 1T (t) ∼ t1/2 . Причем, плавление начинается при

температуре TM в момент tM . В момент tB нагрев поверх-

ности достигает насыщения при температуре кипения

TB [39]. Поэтому можно выделить в процессе плавления

два интервала: tM < t < tB с изменением температуры

T (t) ∼ t1/2 и t > tB c насыщением температуры в точке

кипения T (t) = TB (рис. 5, а).
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Толщина вязкого подслоя. С началом ТК течения

поверхностное усилие с помощью вязких сил передается

нижним слоям. Если пренебречь конвективным тепло-

переносом, характер их распространения на толщину

вязкого подслоя δ аналогичен распространению темпе-

ратуры, то есть при V > 0 можно записать δ(t) ≈ (νt)1/2

или δ(t) ∼ t1/2 (рис. 5, с).
Скорость термокапиллярного течения. Скорость ТК

потока растет, согласно соотношения (1), начиная с

момента tM . Причем, в интервале tM < t < tB она растет

линейно со временем, так как V (t) ∼ T (t) ∼ δ(t) ∼ t .

При t = tB температура достигает насыщения T (t) = TB

и далее, при t > tB , остается неизменной, а скорость ТК

течения растет с нелинейным замедлением во времени

V (t) ∼ δ(t) ∼ t1/2 (рис. 5, a).
Скорость деформации поверхности. Радиальное расте-

кание ТК потока со скоростью V при толщине вязкого

подслоя δ вызывает деформацию поверхности жидкости

со скоростью VS(t) и формирование каверны, как пока-

зано на рис. 3. Условие сохранения массы имеет вид

VS(t)(πd2/4) = V (t)δ(t)πd . Отсюда VS(t) = 4V (t)δ(t)/d .

При V (t) ∼ t и δ(t) ∼ t1/2 деформация поверхности в

интервале tM < t < tB растет с нелинейным ускорением

VS(t) ∼ t3/2, а при t > tB нагрев поверхности достига-

ет насыщения при температуре кипения TB . Поэтому

рост скорости VS(t) замедляется (в силу V (t) ∼ t1/2 и

δ(t) ∼ t1/2) и принимает линейный характер VS(t) ∼ t

(рис. 5, b).
Толщина расплавленного слоя.Толщина расплавлен-

ного слоя h(t) определяется движением двух фазовых

границ. В движущейся системе отсчета, связанной с

поглощающей поверхностью, толщина h(t) растет с

движением фронта плавления вглубь металла со скоро-

стью VM(t) ≈ (χ/t)1/2 и уменьшается за счет деформации

поверхности со скоростью VM(t). Используя VM(t), VS(t),
T (t) и обозначая C = 8Aqν/π1/2λd, получим

h(t) =(VM(t) −VS(t))t ≈ (χt)1/2 −
8Aqχ1/2ν

π1/2λd
t5/2

=χ1/2(t1/2 −Ct5/2).

Итак, начало плавления отмечается ростом h(t) благо-

даря быстрому, но с нелинейным замедлением распро-

странения тепловой волны h(t) ∼ t1/2 . Но затем тол-

щина h(t) резко уменьшается из-за нелинейного уско-

рения скорости деформации согласно VS(t) ∼ t3/2 . Это

приводит к прилипанию растущего вязкого подслоя к

границе плавления в момент tC . Выполнение условия

прилипания h(t) = δ(t) завершает формирование сдви-

говой структуры ТК потока (рис. 3, 5, c). С момента

tC две фазовые границы, разделенные вязким подсло-

ем, оказываются в динамичном взаимодействии. Вязкий

подслой сдерживает скорость деформации поверхности

посредством вязкого торможения скорости ТК течения,

но одновременно, удерживая минимально возможную

величину толщины h(t) и обеспечивая этим максимально

возможный тепловой поток на фронт плавления, вязкий

Time of laser irradiation, t

D
ep

th
, 
L

L(t)

Ablation mechanism

Collapse

Thermocapillary
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Рис. 6. Эволюция канала проплавления при доминировании

абляционного (пунктир) или ТК механизма (сплошная линия).

подслой поддерживает на должном уровне скорость

фронта плавления. Таким образом, прилипание вязкого

подслоя h(t) = δ(t) приводит к эффективному удалению

расплава из зоны облучения и началу роста каверны с

равенством скоростей VM(t) = VS(t). Условие прилипа-

ния h(t) = δ(t) нарушается при достижении предельной

глубины канала с прекращением выноса расплава из

горловины канала.

Глубина проплавления. Момент прилипания tC де-

лит процесс проплавления на две фазы — подготовки

сдвигового ТК потока (tM < t < tC) и установившегося

режима роста капиллярного канала (t > tC) (рис. 5, d).
Первая отличается незначительной деформацией по-

верхности с ростом глубины плавления за счет тепло-

проводности L(t) ≈ h(t) ∼ t1/2 . Вторая связана с ростом

канала и нелинейным ускорением глубины проплавле-

ния L(t) ≈ VS(t)t ∼ T (t)δ2(t)t ∼ t5/2 при tM < t < tC и

L(t) ∼ δ2(t)t ∼ t2 при t > tB . Дополнительное ускорение

росту канала (рис. 5, d), по-видимому, придает скачок

эффективного поглощения A при захвате излучения

каверной. Существование двух фаз проплавления с ха-

рактерным изломом эволюционной кривой L(t) наблю-

дается в экспериментах с металлами [43], результаты

которого анализируются ниже в разд. 6.

Таким образом, представленный анализ подтверждает,

что именно высокая ТК потока обеспечивает высокую

скорость деформации поверхности в режиме ГП, способ-

ствует поддержанию сдвиговой структуры ТК потока и

определяет образование канала проплавления. Причем,

этот канал может существовать только кратковременно,

пока сохраняется сдвиговая структура ТК потока с мо-

мента прилипания вязкого подслоя к фронту плавления.

5. Экспериментальное определение
механизма глубокого проплавления
в металлах

Абляционный и ТК механизмы отличаются прило-

жением сил к свободной поверхности расплава. Сила

абляционного давления отдачи паров действует по нор-
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Рис. 7. Эволюция канала проплавления титана лазерным

излучением мощностью 1.5 kW с финишным коллапсом и

переходом к рециркуляции расплава [45]. Стрелками показано

направление течения расплава.

мали к свободной поверхности, а ТК силы направлены

тангенциально. Этим обусловлены особенности эволю-

ции каверны при точечном и длительном воздействии

излучения, по которым можно экспериментально уста-

новить доминирующий механизм формирования канала

проплавления. В случае доминирования абляционного

механизма эволюция канала будет состоять их двух

стадий — начального роста канала до достижения пре-

дельной глубины и последующего квазистационарного

существования каверны в течение продолжительного

воздействия излучения (рис. 6). Квазистационарность

каверны под действием давления отдачи паров наблю-

дается в модельных экспериментах по воздействию

непрерывного лазерного излучения на жидкости [44].
Отсутствие границы плавления не позволяет рассмат-

ривать эксперименты с жидкостями как модель явления

ГП. Появление границы плавления при замене жид-

кости на парафин в экспериментах [19,20] коренным

образом меняет эволюцию канала. Его существование

оказывается кратковременным, после чего канал зате-

кает и исчезает, несмотря на все еще действующее

излучение. После коллапса канала ТК поток принимает

вид вихревой рециркуляции с возвратным придонным

течением, характерным для режима теплопроводности.

Подобный характер эволюции отражает доминирование

ТК механизма при незначительной роли абляционного

механизма.

Перенос выводов, сделанных в модельных экспери-

ментах, на технологии металлов требует эксперимен-

тальных подтверждений аналогичного характера эволю-

ции канала в металлах. С этой целью был проведен

эксперимент с образцом в виде сэндвича из двух плот-

но прижатых пластин титана и прозрачного ситалла.

Лазерное излучение мощностью 1.5 kW фокусировалось

на титан вблизи его контакта с ситаллом [45]. Ре-

зультаты видео-регистрации эволюции канала в титане

представлены на рис. 7. Регистрировались изображения

теплового следа канала проплавления на стадии его

роста, созданные свечением раскаленного до высокой

температуры металла. Максимальная глубина тепло-

вого следа составляет 4.5mm и намного превышает

его ширину, что указывает на формирование канала

проплавления. После достижения каналом предельной

глубины изображение его теплового следа исчезает

сразу по всей высоте в результате движения справа

налево быстрой волны потемнения (подобно движению

”
шторки“). Такой характер исчезновения изображения

невозможно отобразить кривой зависимости глубины

от времени и потому исчезновение условно помечено

заштрихованной областью. Неожиданное исчезновение

изображения может быть следствием возникновения

спиралевидных потоков при затекании канала, о которых

будет изложено в разд. 6. Регистрация проплавления

продолжалась достаточное время (∼ 2 s), чтобы убедить-

ся в невозможности повторного образования канала.

6. Основные стадии эволюции канала
проплавления

Обсудим специфические гидродинамические процессы

на каждой стадии эволюции канала, обратив особое

внимание на условия перехода от одной стадии к другой.

1-я стадия характеризуется ростом каверны при быст-

рой деформации поверхности за счет удаления распла-

ва сдвиговым ТК потоком и теоретически описана в

работах [19–22]. В разд. 4 изложен анализ эволюции

параметров проплавления и формирование сдвигового

ТК потока на этой стадии [23] (рис. 5), в котором эта

стадия делится на две фазы: начальную фазу подготовки

сдвигового потока с движением фронта плавления за

счет теплопроводности, и фазу установившегося роста

канала с высокой скоростью фронта плавления VM = VS

из-за быстрой деформации свободной поверхности и ро-

ста каверны. 1-я стадия завершается с прекращением ТК

выноса расплава из горловины канала из-за понижения

температурного градиента на стенках канала по мере

роста глубины.

2-я стадия связана с переходными процессами транс-

формации сдвигового потока к циркуляции расплава и

затеканию канала на завершающей 3-й стадии эволюции.

2-я стадия характеризуется возбуждением капиллярно-

волновых колебаний слоя расплава на стенках глубо-

кой каверны [19,20,25–27]. Стадия начинается с пре-

кращением удаления расплава через горловину канала

и накопления жидкой массы в верхней части канала,
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Рис. 8. Фотоизображения и схема капиллярно-волновых колебаний расплава в канале проплавления парафина с захватом газового

пузырька [25-27].

что вызывает там локальный отрыв вязкого подслоя от

границы плавления, т. е. локальное нарушение сдвиговой

структуры потока. В месте отрыва вязкого подслоя

появляется возвратное пристеночное течение, которое

перемещает излишнюю массу на дно канала и позволяет

повторное прилипание вязкого подслоя у горловины

канала. Перемещенная масса вызывает отрыв вязкого

подслоя на дне канала. По этой причине и из-за
”
эф-

фекта ножниц“ в корневой части канала наблюдает-

ся максимальная амплитуда колебаний расплавленного

слоя, достигающая 30%−40% от глубины L. При этом

возможны кратковременные чередующиеся коллапсы ка-

нала с захватом газового пузырька, происходящие при

касании гребней волн с противоположных стенок канала

в верхней его части (рис. 8).

Подобные капиллярно-волновые колебания в техно-

логических процессах могут быть ответственными за

нестабильность канала с нежелательной генерацией пор,

что признается основной проблемой режима ГП. Это

определяет практическую важность исследований 2-й

стадии эволюции канала. Раскачка капиллярных волн

происходит в результате ТК неустойчивости [46–48].

При флуктуационном ТК движении расплава вдоль сво-

бодной поверхности в силу его несжимаемости появля-

ется движение жидкости в поперечном направлении, что

приводит к появлению на поверхности расплава возвы-

шений и впадин. Так как в расплавленном слое имеется

постоянный отрицательный поперечный градиент тем-

пературы, то на возвышениях температура поверхности

увеличивается, а в области впадин уменьшается, созда-

вая предпосылки для ТК раскачки капиллярных волн.

В [32] продемонстрировано, что резонансное усиление

капиллярных колебаний на 2-й стадии эволюции, исполь-

зуя подбор частоты модулированного излучения лазе-

ра, можно использовать для повышения эффективности

сверления металлов. В [26,27] установлены основные

закономерности генерации пор в реальных технологиче-

ских процессах с режимом ГП и получено условие пре-

кращения генерации пор, которое определяет положение

технологического окна в системе координат основных

операционных параметров. Результаты указывают на

возможность прогноза технологического окна и пред-

ставляют научный фундамент для совершенствования

технологий.
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Рис. 9. Анализ эволюции канала проплавления в титановом

сплаве при точечном воздействии лазерного излучения (по
результатам эксперимента [43]).

3-я стадия связана с окончательным, финишным кол-

лапсом канала в результате затекания, что сопровожда-

ется замыканием линий тока и формированием устойчи-

вой рециркуляции расплава [19,20,45]. Затекание канала

в парафине занимает достаточно продолжительное вре-

мя, что облегчает наблюдение этой стадии. В металлах,

из-за их малой вязкости, коллапс происходит очень

быстро, затрудняя наблюдение. В [43] для наблюдения

эволюции канала в металле применена высокоскорост-

ная синхротронная (рентгеновская) визуализация. Полу-

ченная кривая эволюции представлена на рис. 9. На ней

отчетливо выделяются первые две стадии.

На 1-й стадии явно выделяется предварительная фаза

(preliminary phase) медленного плавления и после-

дующая фаза быстрого роста канала (keyhole steady

growth phase), что соответствует представленному в

разд. 4 (рис. 5, d) анализу формирования ТК сдвигового

потока. Затем 1-я стадия формирования канала (keyhole
formation) переходит во 2-ю стадию с возбуждением

колебаний расплава в канале (excitation of oscillations).
На этом отслеживание эволюции канала прекращается

по неизвестной причине. При этом авторы не сообщают

ни о принудительном выключении лазерного источника,

ни о возможном быстром коллапсе канала проплавления

на 3-й стадии его эволюции. Можно предположить,

что внезапная
”
потеря“ объекта наблюдения вызвала

затруднения в интерпретации причин. С учетом резуль-

татов эксперимента [45] (разд. 5, рис. 7), подобное пре-

кращение отслеживания кривой эволюции может быть

следствием быстрого коллапса канала (keyhole collapse)
на 3-й стадии.

Аналогичное затруднение отмечается в эксперимен-

тах [49] по реконструкции эволюции канала в нержа-

веющей стали при воздействии лазерного импульса с

нарастающим фронтом (рис. 10). Результаты показали

резкий разрыв, разделяющий кривую эволюции канала

на две части L1 и L2. Первая часть L1 воспроизводит 1-ю

стадию формирования канала с явно выделяющимися

двумя ее фазами (медленного плавления и быстрого
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Рис. 10. Анализ данных эксперимента [49]. Эволюция канала

проплавления в нержавеющей стали при точечном воздействии

лазерного импульса с нарастающим фронтом. Поперечный

шлиф со следами спиралевидных потоков расплава в горло-

вине канала проплавления.

роста канала) и очень краткую 2-ю стадию эволюции,

состоящую всего лишь из одного колебательного цик-

ла. После этого, в момент достижения максимальной

энергии в импульсе, происходит резкий разрыв кривой

эволюции, продолжение которой показано пунктиром с

обозначением L2. Комментариев разрыва кривой эволю-

ции канала нет, как и в [43], по-видимому, из-за тех

же затруднений с интерпретацией быстрого коллапса

канала.

Понять механизм коллапса помогают представленные

в [49] фотографии поперечных шлифов зоны плавле-

ния со следами кристаллизации спиралевидных потоков

от образовавшейся при коллапсе сливной воронки в

области кривой L2 (рис. 10). Спиралевидный характер

потоков объясняет движение волны потемнения справа

налево (подобно
”
шторке“) при фронтальной видео-

регистрации в [19,45] и мгновенное исчезновение изоб-

ражений канала по всей его высоте в эксперименте [43].
При такой

”
потере“ объекта наблюдения эту стадию

эволюции канала невозможно отобразить непрерывной

линией L(t). Поэтому в [43] кривая L(t) просто пре-

рывается, в [49] изображается в виде ее разрыва и

разделением на две части, а в [47] (рис. 7) прерывание

L(t) сочетается с заштрихованной областью.

7. Оценка относительных вкладов
механизмов при глубоком
проплавлении металлов

Для оценки вклада абляционного механизма в перенос

расплава воспользуемся уравнением Бернулли для иде-

альной жидкости (вязкость жидких металлов мала). При

доминировании абляционного механизма баланс стати-
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ческих давлений в жидкости будет задан равенством

σ

R
+ ρgz = pABL, (3)

где pABL — абляционное давление паров, σ/R —

давление Лапласа, ρgz — гидростатическое давление,

R — радиус кривизны поверхности, g — гравитационная

постоянная, z — координата вдоль оси луча. Для оценки

членов уравнения (3) воспользуемся данными экспери-

мента [11], по проплавлению армко-железа электронным

пучком мощностью 7.2 kW в вакууме. Достигнута глуби-

на проплавления L = 20mm при аспектном отношении

L/D = 8. Эксперимент уникален комплексом измерений,

включающим величину поверхностного натяжения жид-

кого железа (σ = 0.42 J/m2) и давления в канале про-

плавления (pABL = 0.31 kN/m2), что позволяет оценить

каждый член уравнения (3).
1) Давление Лапласа составляет σ/R≈3.6−4.2 kN/m2

при измеренном значении поверхностного натяжения

σ = 0.42 J/m2 и радиусе канала r ≈ 1.0−1.15mm (с
учетом диаметра расплавленной зоны D ≈ 2.5mm при

известных значениях L = 20mm и L/D = 8).
2) Величина гидростатического давления равна

ρgL ≈ 2 kN/m2.

3) Давление пара внутри канала (согласно измерени-

ям) составляет pABL = 0.31 kN/m2 .

Из сравнения величин давлений видно, что измерен-

ное давление в канале на порядок меньше суммы дав-

ления Лапласа и гидростатического давления и потому

не может обеспечить механическое поддержание канала.

Это исключает возможность доминирования абляцион-

ного механизма.

Другая возможность оценки вклада абляционного

давления появилась с измерениями скорости течения

расплава на передней стенке канала проплавления в

нержавеющей стали [50]. При диаметре пятна фоку-

сировки лазерного излучения d = 0.9mm и мощности

лазера 6, 10 и 14 kW средние значения скорости рас-

плава V составили 7.5, 10.77 и 16.24m/s соответствен-

но (рис. 11, табл. 1 (поз. 1 и 2)). Соответствующие

расчетные значения скорости ТК течения представле-

ны на рис. 11 (в виде заштрихованной области из-за

разброса значений свойств нержавеющей стали) и в

табл. 1 (поз. 3). Причем расчеты хорошо согласуются

с измерениями.

Абляционное давление паров затрачивается не только

на механическое поддержание канала, но и на удаление

расплава из зоны облучения со значительными скоро-

стями, как показано выше. Поэтому в уравнении (3) к

сумме статических давлений следует добавить динами-

ческое давление потока ρV 2/2:

σ

R
+ ρgz +

ρV 2

2
= pABL. (4)

Абляционное давление pABL можно выразить через изме-

ряемую величину скорости потери массы m/t с площади
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Рис. 11. Изменение скорости течения расплава с ростом

мощности лазера. Точки — эксперимент [50], заштрихованная
область — расчет по соотношениям (1) и (2).

фокального пятна S. Тогда скорость понижения уровня

расплава за счет потери массы будет VABL = m
Stρ

. Из

условия сохранения массового расхода ρVVV = ρVABL

(ρV , VV — плотность и скорость потока пара) запишем

для давления отдачи пара

pABL = ρVV 2
V = ρVABLVV =

mVV

St
. (5)

С учетом (5) уравнение (4) можно записать в измеря-

емых величинах:

σ

R
+ ρgz +

ρV 2

2
=

mVV

St
. (6)

Для измеренных значений скорости течения

V = 7.5−16m/s [50] оценка динамического давления

составляет ρV 2 ≈ 225−1055 kN/m2 . Учитывая

ρV ∼ 1 kg/m3 [51], получим для скорости истечения

паров оценку VV =
√

pABL

ρV
∼ 475−1058m/s (табл. 1,

поз. 5), что на 1.5−2 порядка превышает

обычно регистрируемые в экспериментах значения

10−50m/s [52,53].
Оценим затраты мощности на испарение. Для ме-

ханического поддержания давлением пара канала про-

плавления диаметром ∼ 1mm скорость потери массы

в парах, согласно (5), должна оцениваться величиной
m
t

= ρSVABL = ρVABLπd2

4
= 350, 540 и 790mg/s (табл. 1,

поз. 6) при мощности луча 6, 10, 14 kW соответственно.

Но такие значения m/t на 1.5−2 порядка превышают ти-

пичные экспериментальные данные ∼ 2−8mg/s [51,54].
К тому же высоким скоростям потери массы m/t должны
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Таблица 1. Анализ параметров режима ГП по результатам эксперимента [50]

№ Параметры Условия эксперимента [50]

Э
к
сп
ер
и
м
ен
ты

1
Мощность лазера, kW 6 10 14

Диаметр пятна фокусировки, mm 0.9

2
Скорость расплава на передней стенке канала 7.5 10.77 16.24

(экспериментальные точки на рис. 11), m/s

Термокапиллярный механизм (расчет)

3
Скорость термокапиллярного течения расплава 7.7−10 10−13 12−15.5

(расчетная область на рис. 11), m/s

Абляционный механизм (расчет)

4 Абляционное давление паров в канале проплавления, kN/m2 225 460 1055 ∼ 0.31 [11]

5 Скорость истечения паров, m/s 475 670 1058 10−50 [52,53]

6 Скорость потери массы на испарение, mg/s 350 540 790 2−8 [51,54]

7
Затраты лазерной мощности на испарение, kW 2.191 3.373 4.914

Доля затрат лазерной мощности на испарение, % 36 34 35 0.5−0.6 [55]

соответствовать высокие затраты лазерной мощности

на испарение (m/t)HV = 2.19, 3.373 и 4.914 kW (HV —

удельная теплота испарения) при мощности лазера 6,

10 и 14 kW соответственно (табл. 1, поз. 7). Такие

затраты на испарение составляют 34%−36% от полной

мощности лазера и на 2 порядка превышают реальные

значения ∼ 0.5%−0.6%, подтвержденные измерениями

в эксперименте [55] при сварке нержавеющей стали

лазером мощностью 10 kW. Заметим, что аномально

высокие затраты на испарение (∼ 40% от мощности ла-

зера) получены также в расчетном примере с использо-

ванием абляционного механизма, который представлен в

разд. 4.1 монографий [2,38].

Малое избыточное давление паров в канале проплав-

ления подтверждено также измерениями при сварке в

вакууме. Например, при сварке Al-сплавов электронным

лучом мощностью 1.1−3.85 kW оно составило всего

19−570 Pa [10], а при электронно-лучевой сварке армко-

железа и титанового сплава ВТ1-0 всего 436 и 404 Pa

соответственно [12]. Малое давление паров (∼ 102 Pa)
в канале отмечалось и в работе [56] со ссылкой

на измерения [57]. В [58] вывод о малом давлении

в канале проплавления при сварке лазерным лучом

мощностью 25 kW сделан на основании обнаружения

в объеме пор защитных газов (Ar, He) [59]. В [60]
также отмечается содержание в объеме пор воздуха

или защитного газа, в зависимости от состава рабочей

среды. Все эти данные ставят под сомнение домини-

рование абляционного механизма в режиме ГП. При

этом измерения давления в канале, свидетельствующие

о высоком избыточным давлении паров (∼ 103−105 Pa),
необходимом для абляционного механизма, не обнару-

жены.

8. Пороговый переход в режим ГП

Оценки пороговых условий перехода в режим ГП на

основе предположения о доминировании абляционного

механизма должны исходить из величины деформации

поверхности в связи с резким ростом давления отдачи

паров при достижении некоторой температуры разви-

того испарения T ∗ [44]. По-видимому, впервые анали-

тическое выражение для пороговой плотности мощно-

сти перехода в режим ГП было получено в [61] с

использованием подгоночных параметров. Этот подход

не позволил продвинуться дальше грубых оценок и не

получил развития.

В моделях режима ГП давно используется пред-

положение о насыщении нагрева стенок канала при

температуре кипения TB , которое впоследствии было

подтверждено измерениями [39]. Считается, что резкий

экспоненциальный рост абляционного давления паров

при температуре кипения TB и является причиной

формирования канала проплавления. Таким образом,

отождествляются температуры кипения TB и развитого

испарения T ∗, что не соответствует численным расчетам

температуры на стенках канала. Например, согласно рас-

четам [31], для глубокого проплавления нержавеющей

стали под действием высокого абляционного давления

стенки канала должны быть нагреты до температур

∼ 4000−4200 К, что заметно превышает TB ∼ 3300 К.

Температурный критерий порогового перехода в ре-

жим ГП при T = TB нередко используется для оцен-

ки пороговой смены режимов плавления по порядку

величины. Например, в работах [62,63] этот критерий

использован в аналитическом выражении для зависи-

мости пороговой мощности от диаметра пятна d и

скорости сканирования луча W , а в работах [64,65] для
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Рис. 12. Изменение пороговой мощности смены режимов плавления Fe и Cu в зависимости от размера пятна фокусировки —

сравнение формулы (7) с соотношением, предложенным в [63]. Точки — экспериментальные данные (табл. 2).

определения порогового перехода от объединенных эф-

фектов мощности, скорости и размера пучка. Примеча-

тельно, что при этом предполагается пренебрежительно

малые потери энергии на испарение, что исключает

возможность доминирования абляционного механизма

при поддержании стационарной каверны, поскольку, как

показано в разд. 7, для этого требуются затраты мощ-

ности ∼ 30%−40% от поглощенной мощности лазера,

которыми пренебречь невозможно. Заметим, что темпе-

ратурный критерий T = TB и предположение о малых

потерях энергии на испарение хорошо соответствует ТК

механизму формирования канала ГП.

Пороговое условие смены режимов плавления можно

определить с помощью ТК механизма, если в уравнении

плотности теплового потока (закон Фурье) применить

зависимость (2) для толщины сдвигового ТК потока

h = δ . Тогда для зависимости поглощенной пороговой

мощности от размера пятна фокусировки d получается

APth =
Aqth(d)πd2

4
=

λ(TB − TM)πd2

4δ

=
πλ{d(TB − TM)}4/3(ρσ 2

T /χ)1/6

4η1/2
. (7)

Здесь A — эффективное поглощение излучения каналом,

достигающее в режиме ГП значений A = 0.6−0.9 [40,41]
из-за многократных отражений (как показано на рис. 3).
На рис. 12, 13 представлено сравнение зависимости

поглощенной пороговой мощности AP th(d) (7) при эф-

фективном поглощении в интервале A = 0.5−1 с экс-

периментальными данными, полученными на основных

конструкционных металлах Fe, Cu, Al, Ti (табл. 2).
Сравнение показывает количественное и качественное

согласование расчетных результатов с эксперименталь-

ными данными в широком интервале изменений d .

Подтверждается характер зависимости APth ∼ d4/3. Сле-

довательно, корректная характеристика пороговых усло-

вий для каждого металла должна включать не только

мощность (или плотность мощности), но и размер пятна

фокусировки.

На рис. 12 и 13 формула (7) сравнивается с предло-

женной в [63] аналитической зависимостью пороговой

мощности для круглого пятна фокусировки с однород-

ным распределением мощности. Расчеты выполнены для

Fe, Cu, Al, Ti при изменении диаметра пятна в широком

интервале значений, используемых в технологии лазер-

ной сварки и в аддитивной технологии селективного

лазерного плавления порошковых слоев. Расчеты по

формуле, предложенной в [63], выполнены для двух

скоростей сканирования луча W = 0 и 1m/s, которые

показаны серым цветом. Для сравнения использовано

36 экспериментальных точек, полученных в 25 иссле-

дованиях. Разброс экспериментальных данных находится

в пределах возможного изменения эффективного погло-

щения A = 0.5−1.

Сравнение показывает, что соотношение (7) суще-

ственно точнее описывает пороговые условия, чем пред-
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Рис. 13. Изменение пороговой мощности смены режимов плавления Ti и Al в зависимости от размера пятна фокусировки —

сравнение формулы (7) с соотношением, предложенным в [63]. Точки — эксперименты согласно табл. 2.

Таблица 2. Соответствие номера точки на рис. 12 и 13 и экспериментов из списка литературы

Железо (сталь)
№ точки 1 2,3,4 5 6 7,9,12 8 10 11

Эксперимент [68] [40] [67] [46] [4] [68] [69] [70]

Медь
№ точки 1 2,3 4 5 6 7

Эксперимент [71] [72] [73] [74] [75] [76]

Титан
№ точки 1 2 3,4 5

Эксперимент [77] [78] [43] [79]

Алюминий
№ точки 1 2 3−6,8,11 7 9 10 12

Эксперимент [66] [80] [81] [82] [83] [84] [6]

ложенная в [63] формула. Достаточно высокая точность

соответствия расчетов по соотношению (7) с экспери-

ментальными данными подтверждает правильность ис-

ходных предположений о причинах порогового перехода

в режим ГП. Подтвержденная точность выражения (2)
для толщины сдвигового ТК потока позволяет сформули-

ровать требования к шагу расчетной сетки в численных

моделях режима ГП.

Зависимость пороговой мощности от поглощения из-

лучения с разной длиной волны иллюстрируют резуль-

таты для меди (точки Cu 2 и 3) [72], полученные

при воздействии лазерного излучения с длиной волны

515 и 1030 nm. При этом поглощение плоской медной

поверхности излучения в зеленом диапазоне спектра

(515 nm) близко к 0.4, в то время как поглощение

ИК излучения (1030 nm) составляет около 0.03. Но в

результате многократных отражений в канале эффек-

тивное поглощение возрастает. Для зеленого излучения

(515 nm) величина A приближается к единице, а для ИК

излучения к границе A = 0.5.

Набегание холодного металла на пучок при высокой

скорости сканирования противодействует распростра-

нению границы плавления на передней стенке канала

проплавления и уменьшает толщину расплавленного

слоя. Это является причиной зависимости пороговой

мощности от скорости сканирования. Возрастание вели-

чины пороговой мощности с ростом скорости сканиро-

вания отражают экспериментальные результаты (точки
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Рис. 14. Расчет, согласно соотношениям (2) и (1) изменения

в зависимости от мощности толщины сдвигового ТК слоя

(h = δ) и скорости ТК потока при формировании каверны в

железе при разной фокусировке излучения, d: а — 50, b —

500 µm.

Fe 2,3,4) [40], полученные на нержавеющей стали при

скорости сканирования W = 100, 500 и 1500mm/s.

9. Требования к дискретизации
расчетной области и времени при
численном моделировании режима
ГП

Известно, что на адекватность численного решения

влияет не только полнота системы уравнений и гранич-

ных условий, описывающих модель, но и соответствие

выбранного шага расчетной сетки и шага по времени

реальному масштабу физического процесса. Корректное

воспроизведение сдвигового ТК потока толщиной h = δ

помимо включения граничного условия действия ТК

сил на поверхности расплава и точного определения

положения фронта плавления на передней стенке тре-

бует физически обоснованного выбора шага расчетной

сетки 1x для обеспечения необходимой
”
разрешающей

способности“ модели. При этом шаг сетки должен быть

значительно (∼ на порядок) меньше масштаба δ = h,

т. е. 1x ≤ 0.1h. Временной шаг 1t должен быть связан

с 1x и скоростью ТК потока критерием Куранта–
Фридрихса–Леви (КФЛ) 1t ≤ 1x/V , где V определяется

согласно (1).

Рассмотрим масштабы h = δ и V и технологический

диапазон лазерной мощности, нижняя граница которо-

го определяется пороговым условием (7). В табл. 3

представлены расчетные оценки AP th(d) для двух, от-

личающихся на порядок, значений d, характерных для

лазерной сварки (d = 500µm) и аддитивной техноло-

гии селективным лазерным плавлением (d = 50µm).
Верхняя граница технологического диапазона ограни-

чена соответствием изделия стандартам качества. На-

пример, началом нежелательного выплеска и разлета

капель. Для типичных условий сварки железа это про-

исходит при qspl ∼ 3MW/cm2 [5], т. е. с превышени-

ем в ∼ 7.5 раз порогового значения qth = 0.4MW/cm2

(при d = 500µm) [4]. Отсюда технологический диапа-

зон можно приближенно характеризовать отношением

qspl/qth ∼ 7.5. Если принять, что при изменении d ве-

личина qspl/qth сохраняется, то для d = 50µm и со-

ответствующего порогового значения qth = 1.9MW/cm2

примерная оценка верхней границы технологического

интервала составит qspl ∼ 14MW/cm2. В технологиче-

ском диапазоне qspl/qth ∼ 7.5 (при d = 50 и 500 µm)
изменения толщины сдвигового ТК потока (h = δ) в

железе и его скорости V представлены на рис. 14 и в

табл. 3.

Расчетное поле в пределах пятна облу-

чения d = 50µm должно иметь не менее

d/1x ≥ 10d/h ∼ 200−330 расчетных узлов, а при

d = 500µm не менее ∼ 420−720 узлов. Согласно

критерию КФЛ, временной шаг не должен превышать

1t ≤ 1x/V . Изменения V (P) для двух значений d

представлены на рис. 14 и в табл. 3. С учетом

этих расчетных данных шаг сетки и временной шаг

оказываются в нанометровом и в наносекундном

диапазонах. Следовательно, для решения требуются

большие вычислительные мощности. Так, расчеты [32],
указывающие на возможность формирования каверны

при незначительном испарении, под доминирующим

влиянием ТК механизма, получены на одном из

крупнейших суперкомпьютеров мира.

Представленная методика позволяет проанализиро-

вать корректность дискретизации расчетной области в

тех численных моделях режима ГП, которые содержат

информацию о расчетной сетке. Отметим, что выбор ша-

га сетки и временного шага, как правило, физически не

обосновывается. Крайне редки исследования результатов

на сеточную независимость. Представленная методика

дает возможность преодолеть эти затруднения в оценке

корректности настройки
”
разрешающей способности“

каждой численной модели.

Анализ дискретизации расчетных моделей продемон-

стрируем на примерах шести моделей с представленной

информацией о расчетной сетке [28–31,85–87].
В [28,29] при моделировании проплавления стали

лазерным излучением с d = 0.5mm использован вре-

менной шаг 1t = 1µs. Как показано в табл. 3, при

d = 0.5mm предельное значение временного шага в

соответствии с критерием КФЛ должно быть в интер-

вале 1t = 0.037−0.17µs. Использование слишком круп-

ного шага расчетной сетки 1t = 1µs не может обес-

печить адекватность воспроизведения ТК механизма.

Действительно, полученные значения скорости потока

V ∼ 1−2m/s (при мощности P = 4 kW и d = 0.5mm)
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Таблица 3. Параметры дискретизации расчетной области моделирования режима ГП для железа при двух значениях пятна

фокусировки d

Диаметр пятна фокусировки d, µm 500 50

Пороговая мощность AP th, W (расчет) 800 37

Пороговая плотность мощности Aqth, MW/cm2 (расчет) 0.4 1.9

Технологический диапазон плотности мощности q, MW/cm2 0.4 → 3 1.9 → 14

(оценочно, qspl/qth ≈ 7.5)

Толщина h = δ сдвигового потока (расчет), µm 11.5 → 7 2.5 → 1.5

Скорость ТК течения V (расчет), m/s 7 → 19 15 → 41

Оценка шага сетки 1x ∼ 0.1 ∼ h, µm ≤ 1.2 → 0.7 ≤ 0.25 → 0.15

Оценка временного шага по критерию КФЛ 1t ∼ 1x/V , ns ≤ 170 → 37 ≤ 17 → 3.7

на порядок меньше расчетного для тех же условий

значения по соотношениям (1) и (2) V = 15.5m/s.

В статье [30] при моделировании лазерного проплав-

ления стали (d = 0.3mm) использована расчетная сетка

с шагом 20µm, что на порядок превышает рекомендо-

ванную для адекватного воспроизведения ТК механиз-

ма величину 1x ∼ 0.1 ∼ h = 0.82µm (h = δ = 8.2µm).
Поэтому воспроизведение ТК потока в [30] невозмож-

но, а вывод о якобы незначительном влиянии потока

Марангони на формирование каверны по сравнению с

абляционным механизмом несостоятелен.

В работе [31] моделируется лазерное проплавление

стали (d = 0.5mm) с использованием неоднородной се-

точной системы 202 × 252 точек для расчетной области

размером 5.0× 6.25mm (средний шаг ∼ 25µm). Мини-

мальный пространственный шаг сетки не сообщается, но

указан минимальный временной шаг 1t ∼ 1µs, который

на порядок превышает рекомендованные значения в

интервале 1t ≤ 0.17−0.037µs (табл. 3). Таким образом,

используемая в [31] дискретизация времени и про-

странственной области не может обеспечить адекватный

расчет.

В [85] моделируется точечное проплавление спла-

ва Инконель 625 лазерным импульсом мощностью

P = 700W при фокусировке в пятно d = 205µm

(q = 2.1MW/cm2). Используется пространственная сет-

ка из треугольных элементов с локальным уменьшением

шага до 2µm. Согласно (2), толщина сдвигового ТК

потока соответствует h = δ ∼ 5µm, т. е. используемый в

расчетах минимальный шаг 2µm всего в 2.5 раза меньше

толщины ТК потока, что недостаточно для точного

численного воспроизведения потока. Применяемый в

модели наименьший временной шаг равен 1 µs, что бо-

лее чем на порядок превышает рекомендуемое значение.

Действительно, из (1) следует, что величина скорости

ТК потока равна V = 13.4m/s, а по критерию КФЛ

временной шаг не должен превышать 1x/V = 0.037µs.

Следовательно, применяемая в [85] дискретизация не

может обеспечить адекватное воспроизведение ТК по-

тока.

Авторы [86] представили модель вычислительной гид-

родинамики процесса селективного лазерного плавления

в режиме ГП с имитацией нестабильной каверны и

порообразования. Расчеты проплавления нержавеющей

стали выполнены с шагом расчетной сетки 1x = 4µm.

При d = 45µm толщина сдвигового ТК потока состав-

ляет h = δ ∼ 2µm, т. е. рекомендованный шаг сетки

составляет 1x ∼ 0.1h = 0.2µm или в ∼ 20 раз меньше

используемой величины 1x = 4µm, т. е. используемый

в [86] шаг сетки не может обеспечить адекватное вос-

произведение сдвигового ТК потока на передней стенке

каверны.

В [87] представлена модель аддитивного процесса

селективным лазерным плавлением стали AISI H13

в режиме глубокого проплавления при фокусировке

излучения в пятно диаметром 50µm. Для определения

надежности численной модели и подходящего размера

сетки проведен анализ сходимости сетки при изменении

размера расчетных ячеек от 3 до 10 µm. По результатам

исследований сетки на сходимость был выбран размер

4.5µm. Однако, как следует из табл. 3, при d = 50µm

толщина ТК потока не превышает h = δ ∼ 2.5−1.5µm,

а физически обоснованный шаг сетки составляет все-

го 1x ∼ 0.1h = 0.25−0.15µm. Следовательно, расчеты

в [87] выполнены при шаге сетки, в 20−30 раз превы-

шающем рекомендованные значения, и потому не могут

адекватно отражать гидродинамические процессы.

Приведенные примеры иллюстрируют типичную по-

грешность современных моделей режима ГП, связанную

с использованием шага расчетной сетки, значительно

превышающего максимально допустимую величину для

адекватного воспроизведения сдвигового ТК потока.

Результатом погрешности является недооценка вклада

ТК механизма и переоценка вклада абляционного ме-

ханизма и, как следствие, неверные результаты CAD-

инжиниринга.
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10. Генерация пор нестабильным
каналом при сканировании луча

Эволюцию канала проплавления при воздействии

неподвижного непрерывного излучения целесообразно

разделить на три стадии, отличающиеся спецификой

гидродинамических процессов (разд. 2, 6). При сканиро-

вании луча со скоростью W первые две стадии распреде-

ляются в пределах пятна облучения d и времени воздей-

ствия d/W . При этом для поддержания глубокого канала

необходимо исключить последнюю, третью стадию с

затеканием и исчезновением канала. Для этого скорость

сканирования не должна быть слишком малой, а время

воздействия d/W слишком большим. Набегание на луч

холодного металла создает асимметрию канала, форми-

рование которого (1-я стадия эволюции) соответствует

процессам плавления на передней стенке. Колебания в

канале (2-я стадия) соответствуют процессам в корне ка-

нала проплавления. Они описаны в работах [19,20,25–27]
и приводят к генерации нежелательных пор (рис. 15),
которые являются концентраторами напряжений и суще-

ственно снижают срок службы деталей при динамично

изменяющихся нагрузках. Устранение таких пор важно

в изделиях ответственного назначения. Особенно при

их аддитивном производстве селективным плавлением

металлических порошков лазерным или электронным

пучком, когда устранение пор позволяет достигать не

только максимальной плотности, но и повышенной проч-

ности изделий из-за высоких температурных градиентов

и скоростей кристаллизации, способствующих измельче-

нию зерна и изменению микроструктуры металла.

Разработка технологий, исключающих появление пор,

является сложной задачей. Для ее решения методом

проб и ошибок требуется выполнить порядка сотни

технологических проб, затратив время около года, при

значительных волевых усилиях и труднопредсказуемом

результате. Попытки сократить время и усилия с помо-

щью численного моделирования привели к публикациям

большого количества моделей, что, однако, не позволило

W

d

h

L

–W

Рис. 15. Колебания расплавленного слоя в канале проплавле-

ния приводят к колебаниям его корневой части и порообразо-

ванию.
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Рис. 17. Влияние скорости сканирования W на изменение

объема пор Vol(W), частоты генерации пор f (W) и параметра

пористости G(W) [26,27]. Все величины нормализованы по их

максимальным значениям.

пока воспроизвести в расчетах основные тенденции

порообразования.

Скорость сканирования луча W называют наиболее

важным фактором, определяющим основные тенденции

порообразования. Как отмечается в [88–90], в интер-

вале относительно невысоких значений W причиной

появления пор является нестабильность канала (keyhole
pores), а при высоких значениях W — дефицит расплава

(lack-of-fusion pores) (рис. 16). Между этими двумя ин-

тервалами W находится технологическое окно (process
window) с прекращением порообразования. Прогноз по-

ложения технологического окна на оси W желателен

для проектирования технологии (CAD-инжиниринга).
Интерпретация типичной тенденции изменения пори-

стости в зависимости от W , основанная на генерации

пор возбуждением в канале капиллярных волн, позво-

лила получить зависимости для изменения параметров

порообразования (объема пор и частоты их генерации,

сводного параметра пористости) от скорости сканирова-

ния [26,27]. Эти зависимости подтверждены сравнением
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с данными экспериментов и в нормализованном виде

представлены на рис. 17.

Установлено, что все характеристики пористости об-

ращаются в нуль при W = χ/d (или при числе Пекле

Pe = W d/χ = 1), т. е. условие технологического окна

выполняется при Pe = W d/χ = 1. Определены положе-

ния максимумов характеристик пор на оси изменения

нормализованной скорости сканирования Pe = W d/χ .

Объем пор Vol(W ) максимален при Pe = 0.25, а частота

появления пор f (W ) при Pe = 0.81. Содержание пор

в практической деятельности удобно оценивать через

изменение плотности G = 1− ρ0/ρn, где ρ0 — изме-

ренная плотность после плавления, ρn — номинальная

плотность. Такой показатель пористости пропорциона-

лен произведению объема пор на частоту появления

пор G ∼ f (W )Vol(W ) и характеризуется положением

максимума при Pe = 0.617.

Генерация пор капиллярными волнами (keyhole pores)
возможна при положительном балансе расплавленной

массы (h(W ) > 0), когда скорость сканирования соот-

ветствует числу Пекле Pe = W d/χ < 1 (или W < χ/d).
Если скорость W высока и соответствует Pe > 1 (т. е.
W > χ/d), наблюдается дисбаланс расплава в корневой

части канала, вызывающий появление пустот из-за дефи-

цита расплава (lack-of-fusion pores). Скорость W = χ/d

(или Pe = 1) соответствует технологическому
”
окну“ с

прекращением образования пор (рис. 16), которое в

принципе можно прогнозировать с необходимой точ-

ностью и использовать в проектировании технологии,

включая цифровое CAD-проектирование.

11. Электрокапиллярное ускорение ТК
потока расплава при ГП металлов

Выше мы показали, что ТК механизм обеспечива-

ет адекватную связь между физическими процессами

в режиме ГП и гидродинамическим потоком. Наряду

с этим, ТК механизм не раскрывает природу синер-

гетического эффекта при гибридном лазерно-дуговом

воздействии [34] и причину эмпирически наблюдаемых

корреляций глубины проплавления с давлением окружа-

ющей среды, характеристиками приповерхностной плаз-

мы, сигналом эмиссионного тока [35], направленностью
и напряженностью внешнего электрического поля [36].
По-нашему мнению, этот пробел может быть устранен

учетом возможного ускорения потока электрокапилляр-

ными (ЭК) силами, обусловленными зависимостью по-

верхностного натяжения от электрического потенциала

σ (ϕ), неоднородно распределенного вдоль поверхности.

В [37] даны базовые представления о физическом меха-

низме ЭК ускорения расплава в процессе ГП металлов

мощным лазерным излучением.

Переход в режим ГП сопровождается появлением в

пятне облучения лазерно-индуцированной плазмы и кон-

такта
”
расплав-плазма“ с образованием двойного элек-

трического слоя (ДЭС). Благодаря локальности лазер-

ϕ 0 –ϕ

Q

Q

σ, Q

σ σ

Рис. 18. Типичный вид ЭК кривой σ (ϕ) и изменения удельно-

го заряда Q(ϕ).

ного воздействия, это создает на поверхности расплава

неоднородные распределения электрического заряда и

потенциала, вызывающие ЭК эффект (из-за зависимости

поверхностного натяжения от электрического потенци-

ала σ (ϕ)), что приводит к появлению тангенциальных

ЭК сил. Образованию плазмы и ДЭС способствует

термоэмиссионные процессы. Термоэлектронная эмис-

сия характеризуется плотностью тока, согласно фор-

муле Ричардсона–Дешмана je = ART 2 exp(−ω/kT ), где

ω — работа выхода электрона из поверхности расплава,

k — постоянная Больцмана, AR — термоэмиссионная

постоянная. Для железа (ω = 4.31 eV) при характерной

для режима ГП температуре кипения величина эмисси-

онного тока равна je = 0.33A/mm2. Вследствие ухода

электронов на поверхности со стороны расплава индуци-

руются положительные заряды, которые электростати-

чески удерживают часть электронов над поверхностью,

образуя разделение зарядов ДЭС. Собственное электри-

ческое поле ДЭС противодействует выходу электронов

с поверхности расплава и стимулирует эмиссию поло-

жительных ионов с плотностью тока, согласно формуле

Ричардсона–Смита j i = APT 2 exp(−ωP/kT ), где AP —

константа, ωP — работа выхода положительного иона

из расплава. Совместная термоэмиссия электронов и

положительных ионов образует общий эмиссионный

ток, равный сумме разнонаправленных токов эмиссии

электронов и ионов J = S · j = S( je − j i), где S —

площадь пятна облучения. Нулевое значение общего то-

ка J наблюдается при je = j i и удельном заряде Q = 0,

соответствующем максимуму ЭК кривой (рис. 18).

Наложение внешнего электрического поля с на-

пряженностью E изменяет потенциальный барьер

выхода электронов и плотность эмиссионного то-
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ка согласно формуле Ричардсона–Дешмана с по-

правкой Шоттки je = ART 2 exp[−(ω − 1ω)/kT ], где

1ω = e(eE/4πε0)
1/2 — поправка Шоттки, e — заряд

электрона, ε0 = 8.85 · 10−12 F/m — электрическая по-

стоянная. Если направление поля E совпадает с на-

правлением поля ДЭС, то повышение потенциального

барьера выхода электронов приводит к уменьшению je .

Этим облегчается эмиссия положительных ионов и

увеличивается плотность ионного тока j i . Внешнее

поле E , усиливающее поле ДЭС, должно вызывать

концентрацию на поверхности (со стороны расплава)
отрицательного заряда. Ослабление поля ДЭС внешним

полем E приводит к концентрации на поверхности рас-

плава положительного заряда. Таким образом, внешнее

поле позволяет управлять зарядом на расплавленной

металлической поверхности, что можно использовать

для управления ЭК эффектом и гидродинамическими

процессами при ГП.

Рассмотрим ЭК эффект в виде течений, вызванных

градиентом поверхностного натяжения σ . Зависимость

σ (ϕ) отображается ЭК кривой с максимумом при

∂σ/∂ϕ = 0 с потенциалом нулевого заряда, что соответ-

ствует нулевому общему току J = S · j = S( je − j i) = 0

(рис. 18). На правой ветви ЭК кривой ϕ < 0 и выпол-

няется ∂σ/∂ϕ > 0. Левой ветви (ϕ > 0) соответствует

∂σ/∂ϕ < 0. Из теории ЭК явлений известно уравнение

Липпмана ∂σ/∂ϕ = −Q, устанавливающее для заданно-

го потенциала ϕ, взятым с обратным знаком, соотноше-

ние между наклоном ЭК кривой и зарядом Q, прихо-

дящимся на единицу площади поверхности. Для правой

ветви ЭК кривой Q < 0, для левой ветви Q > 0. Тогда

зависимость глубины проплавления от смены полярно-

сти E (знака Q) может отражать несимметричность ЭК

кривой относительно оси σ (ϕ = 0) с условием для двух

ее ветвей |∂σ/∂ϕ|ϕ,Q>0 < |∂σ/∂ϕ|ϕ,Q<0 .

Любое увеличение плотности заряда, положительное

или отрицательное, приведет к уменьшению поверхност-

ного натяжения. Такое поведение может быть объяснено

тем фактом, что все заряды на границе раздела ока-

зывают друг на друга кулоновские силы отталкивания,

направленные касательно свободной поверхности. Сле-

довательно, расширение границы раздела требует мень-

ше энергии, что приводит к снижению поверхностного

натяжения с ростом потенциала

При воздействии на металлы сфокусированного ла-

зерного излучения в режиме ГП температура и элек-

трический потенциал в пятне облучения должны из-

меняться вдоль поверхности металла, убывая от мак-

симальных значений в центре пятна к нулю на пери-

ферии (∂T/∂r < 0, ∂ϕ/∂r < 0). При этом поверхност-

ное натяжение будет, наоборот, увеличиваться, так как

∂σ/∂T < 0, ∂σ/∂ϕ < 0. Помимо ТК потоков, возника-

ют ЭК потоки, поскольку имеется несбалансированный

тангенциальный градиент поверхностного натяжения,

создаваемый тангенциальным градиентом напряжения,

который, в свою очередь, является результатом ненуле-

вой тангенциальной составляющей электрического поля.

В общем случае переменные T и ϕ являются зависи-

мыми, хотя их взаимосвязь пока не установлена. Для

упрощения задачи будем рассматривать частный случай

независимых переменных T и ϕ. Тогда баланс сил на

поверхности запишем как

η
∂Vr

∂z
= −

∂σ (T, ϕ)

∂r
= −

∂σ

∂T

∂T

∂r
−

∂σ

∂ϕ

∂ϕ

∂r
, (8)

где −∂σ/∂T = γ > 0 — температурный коэффициент

поверхностного натяжения, η — динамическая вязкость,

Vr — тангенциальная скорость течения расплава, r и

z — координаты тангенциально к поверхности и по

нормали. Так как термически и электрически индуци-

рованные члены (∂σ/∂T ) (∂T/∂r) и (∂σ/∂ϕ) (∂ϕ/∂r)
входят в баланс (8) с одинаковыми знаками, то ЭК силы

всегда (независимо от знака Q) направлены на ускоре-

ние ТК потока. Учитывая ∂σ/∂ϕ = −Q и ∂ϕ/∂r = −ET ,

(8) перепишем в виде

η
∂Vr

∂z
= γ

∂T

∂r
− QET . (9)

В соответствии с законом Гаусса поверхностная плот-

ность заряда Q связана с нормальной составляющей

напряженности электрического поля EZ соотношением

Q = 2ε0Ez = 2ε0(EN + ED), где EN и ED — нормальные

составляющие напряженности внешнего поля и поля

ДЭС соответственно (полагаем, что EN , ED = const).
Тангенциальная составляющая поля ET определяется

разностью потенциалов с максимумом ϕmax в центре

пятна облучения диаметром d и нулевым значени-

ем (ϕ = 0) на периферии. Для ET имеем оценочно:

ET ≈ −2ϕmax/d . Тогда (9) примет вид

η
∂Vr

∂z
∼= γ

TB − TM

d
+ 4ε0(EN + ED)

ϕmax

d
. (10)

Для скорости термически и электрически индуциро-

ванного сдвигового течения (характерного для режима

ГП) с вязким подслоем толщиной δ < d из (10) получим
оценку

Vr
∼=

δ

ηd
{γ(TB − TM) + 4ε0(EN + ED)ϕmax}. (11)

Формула (11) устанавливает связь между термоэмис-

сионными, электрокапиллярными и гидродинамически-

ми процессами в режиме ГП. Согласно (11), электроди-
намические характеристики на границе

”
металл-плазма“

влияют на ускорение ТК течения расплава в пятне

облучения и, как следствие, на увеличение глубины

проплавления. В режиме ГП оценка скорости ТК потока

при d = 0.5mm и характерных значениях δ ∼ 10µm

составляет Vr ∼ 10m/s [50]. На такую же величину

может возрасти скорость потока за счет ЭК эффекта при

соизмеримости ТК и ЭК компонент в (11), что косвенно

подтверждает наблюдаемое в [36] увеличение на 85%

глубины проплавления стали излучением лазера при на-

ложении внешнего электрического поля. Согласно (10)
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и (11), соизмеримость ТК и ЭК эффектов достигает-

ся при 4ε0(EN + ED)ϕmax ≈ γ(TB − TM). Оценивая для

конструкционных металлов γ(TB − TM) ≈ (0.2−0.6)V/m,

для соизмеримости эффектов получим приближенно

(EN + ED)ϕmax ≈ γ(TB − TM)/4ε0 ≈ 1010 V2/m.

Согласно (11), механизм корреляций глубины про-

плавления с характеристиками приповерхностной плаз-

мы и сигналом эмиссионного тока [35] можно рассмат-

ривать как результат изменений скорости ЭК потока

с флуктуациями поля ДЭС и максимального значения

электрического потенциала на поверхности металличе-

ского расплава.

Следует отметить, что при электронно-лучевом воз-

действии общий ток в зоне облучения включает, помимо

общего эмиссионного тока S · ( je − j i), ток установки

S · jb и составляет J = S · j = S · ( je − j i − jb). Высокий
ток электронно-лучевой установки S · jb > S ( je − j i)
обеспечивает дополнительный поток отрицательного за-

ряда в поверхность металла, способствуя эффективному

ЭК ускорению гидродинамических потоков и увеличе-

нию глубины проплавления. Аналогичное влияние на

плотность поверхностного заряда оказывает дуговой

разряд при гибридном лазерно-дуговом воздействии, что

может являться причиной синергетического эффекта

плавления [34] в виде нарушения аддитивности теп-

лового воздействия излучения и дуги на металл. При

этом энергия, используемая на его плавление, может

более чем в два раза превышать сумму соответствующих

энергий, выделяющихся в металле при использовании

каждого отдельно взятого источника тепла с соответ-

ствующим увеличением эффективного КПД процесса

обработки. Представленный механизм позволяет физи-

чески интерпретировать наблюдаемые в экспериментах

корреляции характеристик ГП с термоэмиссионными и

электрокапиллярными явлениями и указывает направле-

ние дальнейших исследований по совершенствованию и

моделированию лазерных технологических процессов.

Заключение

Кратко сформулируем важнейшие проблемы и выво-

ды, на обсуждении которых мы не имели возможности

остановиться подробнее и которые, по нашему мнению,

необходимо учитывать в дальнейших исследованиях

технологического процесса, при разработке технологий,

моделировании режима ГП и валидации моделей.

Из представленного разностороннего анализа экспе-

риментов следует, что удаление расплава из зоны об-

лучения контролируется ТК механизмом при незначи-

тельном влиянии абляционного механизма, а не наобо-

рот, как принято считать и реализовывать в расчетных

моделях. При этом диссипация мощности, поступающей

в металл, обеспечивается гидродинамическим потоком

расплава. С ростом мощности эту диссипацию обеспе-

чивают гидродинамические механизмы, сменяющиеся в

строго определенной последовательности. Для железа
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Рис. 19. Последовательность смены гидродинамических меха-

низмов диссипации с ростом плотности мощности, поступаю-

щей в железо (сталь).

(стали) такая последовательность смены механизмов

схематично представлена на рис. 19.

Этот переход вызван сменой механизма диссипации —

переходом от ТК конвекции, характерной для тепло-

проводностного режима плавления, к ТК формированию

канала проплавления в связи с ростом скорости ТК

потока. С дальнейшим увеличением мощности и увели-

чением испарения вклад абляционного механизма ста-

новится преобладающим за пределами технологического

диапазона. В компьютерных расчетах эта последователь-

ность механизмов диссипации обычно искажена, что, по-

видимому, и является причиной неудач воспроизведения

гидродинамической картины. Искажение появляется из-

за неучета особенности ТК потока в режиме ГП вслед-

ствие применения произвольной, физически необосно-

ванной дискретизации области формирования ТК потока

и времени. В результате недостаточной
”
разрешающей

способности“ модели
”
не видят“ ТК поток и его влия-

ние на образование канала. Как следствие, полученные

результаты и выводы оказываются искаженными, а вали-

дация моделей предельно упрощенной.

Осмысление роли гидродинамических механизмов ГП

неизбежно приводит к требованию более основатель-

ной валидации моделей. Для этого можно использовать

тестовую компьютерную визуализацию эволюции кана-

ла проплавления неподвижным излучением. Адекватная

модель должна продемонстрировать три основные ста-

дии эволюции канала (его рост, возбуждение колеба-

ний и коллапс). Специфика ТК потока в режиме ГП

определяет характер эволюции канала при длительном

воздействии неподвижным излучением с характерной

финишной (3-й) стадией затекания и исчезновения кана-

ла под действующим излучением. 3-я стадия обычно не

представляет интерес для технологических применений,

но позволяет явно определить основной гидродинами-

ческий механизм в режиме ГП и потому важна для

валидации моделей.

Результаты компьютерной визуализации полезно срав-

нивать с данными рентгеновской визуализации [43]
(рис. 9). Для контроля адекватности модели также
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важен численный расчет эволюции гидродинамических

параметров на начальной стадии плавления (по аналогии

с оценочным анализом в разд. 4). Целесообразна сверка

расчетной скорости ТК потока с измерениями [50]. Надо
отметить, что для корректного воспроизведения ТК

потока необходимо применить физически обоснованную

дискретизацию расчетной области и времени, что, по-

видимому, потребует значительных (суперкомпьютер-
ных) вычислительных ресурсов.

Для моделирования технологических процессов осо-

бое значение имеет воспроизведение сдвиговой структу-

ры ТК потока на стадии роста канала (1-я стадия эволю-

ции). Скорость такого потока максимальна на свободной

поверхности расплава (формула (1)) и равна нулю на

границе плавления. Толщина сдвигового ТК потока (или
вязкого подслоя) h = δ оценивается по формуле (2) и

определяется условием равенства скорости деформации

свободной поверхности и скорости движения фронта

плавления (VS = VM). Если граница плавления характе-

ризуется температурой плавления ТM, то поверхность

”
жидкость-газ“, согласно эксперименту [39], нагрета до

ТB. Таким образом, в слое расплава существует гра-

диент температур (TB − TM)/h, определяющий порого-

вый переход в режим ГП при Aqth(d) = λ(TB − TM)/h.

Корректность формулы (2) убедительно подтверждена

соответствием расчетов AP th(d) = Aqth(d)(πd2/4) дан-

ным 36 экспериментальных точек, полученных в 25

исследованиях для четырех металлов (железо, титан,

медь, алюминий) (рис. 12, 13). Это подтверждает, что

переход в режим ГП вызван высокой скоростью ТК

потока и быстрой деформацией свободной поверхности,

поддерживающий сдвиговую структуру ТК потока при

формировании канала проплавления, а не резким ростом

испарения, как принято считать. При сканировании луча

сдвиговую структуру ТК потока поддерживает поток

холодной массы, набегающей на пучок.

На основе понимания физических процессов в канале

на 2-й стадии его эволюции при учете влияния скоро-

сти сканирования пучка изложена физическая интерпре-

тация наблюдаемых в технологических экспериментах

тенденций порообразования в режиме ГП. Результаты

анализа порообразования дают ориентиры для компью-

терного моделирования этого процесса и валидации мо-

дели. Для практических применений полезен критерий

технологического окна с прекращением генерации пор

каналом как принципиальная возможность прогнозного

определения операционных параметров бездефектного

технологического процесса. Этот критерий может быть

использован для цифровизации трудоемкого процесса

разработки технологий производства изделий ответ-

ственного назначения, а также для гибкого изменения

операционных параметров технологического процесса в

рамках уже готовой технологии или для переноса гото-

вой технологии с одной установки на другую. Практи-

ческая реализация этих возможностей требует целевых

исследований параметров технологического окна.

В развитие представлений о роли капиллярных эффек-

тов в технологических процессах изложен механизм вли-

яния электродинамических процессов на ускорение ТК

течения расплава при ГП металлов мощным лазерным

излучением. Механизм устанавливает связь гидродина-

мических процессов с термоэмиссионными и электро-

капиллярными эффектами. Он качественно объясняет

экспериментально наблюдаемые закономерности и мо-

жет быть применен для совершенствования контроля за

технологическим процессом и управления им.

В настоящем обзоре мы постарались представить

кратко лишь некоторые аспекты явления ГП, которые

дают ключ к пониманию технологических процессов,

происходящих под контролем этого явления. Причем

физика явления оказывается весьма разнообразной и

далеко не полностью исследована как теоретически, так

и экспериментально. Остается еще достаточно
”
белых“

пятен, скрывающих полный потенциал соответствующих

технологий. Нелинейное развитие представлений о при-

роде явления ГП показывает, что для раскрытия его

технологического потенциала необходимо более тесное

и целенаправленное взаимодействие и консолидация

усилий специалистов разных областей знаний — физи-

ков, технологов, материаловедов, расчетчиков.
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