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Синтезирована серия объемных сверхпроводящих образцов YBa2Cu3O7−δ (YBCO), допированных анти-

ферромагнитными наночастицами NiO. Образцы подвергались высокотемпературному отжигу в течение 18 h.

Для образцов YBCO, допированных наночастицами со средним размером 8, 12 и 23 nm, проведено сравнение

характерных величин 1M петель магнитного гистерезиса и установлен оптимальный размер наночастиц NiO.

Исследовано влияние концентрации наночастиц NiO со средним размером 8nm на петли магнитного

гистерезиса YBCO и критическую плотность тока при T = 4.2K. Максимальное увеличение критической

плотности внутригранульных токов достигается при добавлении 0.5wt.% наночастиц NiO.
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Высокотемпературные сверхпроводящие ленты второ-

го поколения на основе (RE)Ba2Cu3O7−δ представляют

собой ключевой материал для современных энергети-

ческих и исследовательских установок из-за способ-

ности переносить критические токи в тысячи ампер

при температурах ниже 20K в сильных магнитных

полях [1–4]. Планирующиеся мегапроекты ускорителей

частиц и термоядерных реакторов выдвигают все более

растущие требования к токонесущей способности сверх-

проводников [5]. Применяемой стратегией увеличения

пиннинга магнитного потока и критической плотности

тока является внедрение искусственных центров пин-

нинга на этапе роста [6–8], замена редкоземельного

элемента или изменение его стехиометрии [9] и об-

лучение лент различными ионами [10,11]. Внедрение

магнитных наночастиц в сверхпроводник может быть

наиболее эффективным методом увеличения пиннин-

га [12–15], так как магнитные дефекты обеспечивают

существенно более сильное взаимодействие с вихрями

Абрикосова по сравнению с немагнитными центрами

пиннинга. Технология магнитного пиннинга для сверх-

проводящих лент второго поколения в настоящее время

не освоена. Основными проблемами являются внедрение

магнитных наночастиц в многослойную структуру лент

и минимизация возможного негативного влияния на

сверхпроводящий слой.

Некоторые особенности влияния магнитных наноча-

стиц на свойства сверхпроводников могут быть иссле-

дованы с использованием доступной технологии твердо-

фазного синтеза. Ранее мы определили, что при быстром

спекании порошка YBa2Cu3O7−δ (YBCO) с наночасти-

цами ε-Fe2O3 и NiO удается получить образцы с уве-

личенной критической плотностью внутригранульного

тока [16,17]. Так как данный метод может не подходить

для внедрения в технологию приготовления 2G-лент,

необходимо рассмотреть пути увеличения магнитного

пиннинга при длительном отжиге образцов.

Исследования свойств допированных наночастица-

ми сверхпроводников в работах [16,17] проводились

при температуре кипения азота. Однако эффективность

использования высокотемпературных сверхпроводников

значительно возрастает при температурах 4.2−20K.

При этих температурах длина когерентности и эф-

фективный размер центров пиннинга меньше, чем

при 77K. Следовательно, увеличение пиннинга может

быть достигнуто при использовании наночастиц мень-

шего размера.

В настоящей работе приводятся результаты исследо-

вания влияния концентрации ультрамалых антиферро-

магнитных наночастиц NiO на критическую плотность

тока сверхпроводящих гранул в поликристаллическом

YBCO при T = 4.2K.

Синтез YBa2Cu3O7−δ проводился по стандартной тех-

нологии твердофазного синтеза из порошков Y2O3,

BaCO3 и CuO. Наночастицы NiO со средними размерами

8, 12 и 23 nm приготовлены в Институте катализа

СО РАН [18]. Размер наночастиц NiO определен в

работе [18] на основе микрофотографий, полученных

с помощью просвечивающей электронной микроскопии

высокого разрешения. Для приготовления образцов в

диспергированный в спирте порошок YBCO добавлялась

спиртовая взвесь наночастиц. Затем спирт выпаривался

при слабом нагреве на плите. Сухой порошок тща-

тельно перетирался и подвергался гидростатическому

прессованию (∼ 100MPa). Полученные прессованные

таблетки нагревались в печи до температуры 920 ◦C и

отжигались при этой температуре в течение 18 h. Затем

образцы выдерживались 10 h при температуре 400 ◦C.
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Приготовлена серия образцов с различным содержа-

нием наночастиц NiO от 0 до 6wt.% (0 ≤ x ≤ 0.06).
Температура начала сверхпроводящего перехода, выше

которой намагниченность M становится положительной,

для всех образцов одинакова: Tc ≈ 93K. Измерения

петель магнитного гистерезиса проводились на вибраци-

онном магнитометре, созданном в лаборатории сильных

магнитных полей ИФ СО РАН, в диапазоне магнитных

полей ±7Т при T = 4.2K.

Сравнение петель магнитного гистерезиса для образ-

цов YBCO c 1wt.% наночастиц с размером 8, 12 и 23 nm

позволило выбрать размер наночастиц NiO, при котором

обеспечивается наиболее эффективный пиннинг маг-

нитного потока при T = 4.2K. Величина захваченного

магнитного потока пропорциональна расстоянию между

ветвями петель магнитного гистерезиса при возрастании

и убывании поля (1M). Значения 1M в поле H = 0

для образцов с разными размерами наночастиц NiO

приведены в табл. 1.

В образце YBCO с размером наночастиц NiO 23 nm

наблюдалось уменьшение 1M в 1.1 раза по сравнению с

величиной 1M для недопированного YBCO. В образце

YBCO с размером NiO 12 nm рост 1M в сравнении с

недопированным YBCO составлял менее 2%. В образце

YBCO с размером наночастиц NiO 8 nm происходило

увеличение 1M в 1.1 раза в сравнении с недопи-

рованным YBCO. Дальнейшее исследование влияния

концентрации наночастиц NiO на намагниченность и

критическую плотность тока проводилось для образцов

YBCO, допированных наночастицами NiO со средним

размером 8 nm.

На рис. 1, a показаны петли магнитного гистерезиса

образцов, измеренные при температуре T = 4.2K. Зави-

симость 1M от массовой доли наночастиц x приведена

на рис. 1, b. Максимальное значение 1M, превышающее

в 1.4 раза величину 1M для недопированного YBCO,

наблюдается для образца с x = 0.005. Выше критической

температуры сверхпроводника (Tc = 93K) зависимости

M(H) для всех образцов обратимые, так что учета

магнитных вкладов при анализе сверхпроводящего ги-

стерезиса не требуется.

Плотность критического тока определялась по форму-

ле Jc(H) = 31M(H)/D, где D — характерный масштаб

циркуляции токов. В поликристаллических сверхпро-

водниках значение D определяется размерами гранул

и параметрами их распределения [19–21]. Также раз-

мер D можно оценить из асимметрии петель гистере-

Таблица 1. Значения 1M при допировании YBCO наночасти-

цами NiO разного размера (x = 0.01)

Образец 1M, emu/g (H = 0)

Недопированный YBCO 35.2

YBCO+ 23 nm NiO 31.9

YBCO+ 12 nm NiO 35.8

YBCO+ 8 nm NiO 38.9
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Рис. 1. Петли магнитного гистерезиса образцов с различным

содержанием наночастиц при T = 4.2K (а) и зависимость 1M

в поле H = 0 от x (b). Штриховой линией отмечено значение

1M для недопированного YBCO. Цветной вариант рисунка

представлен в электронной версии статьи.

зиса намагниченности [22]. Значения намагниченности

при увеличении поля M
+ по модулю больше значений

намагниченности при уменьшении поля M
−. Асиммет-

рия намагничивания вызвана равновесной намагничен-

ностью приповерхностного слоя с глубиной λ. Значение

масштаба циркуляции тока определялось по формуле

D ≈ 2λ/[1− (1M/2|M−

m
|)1/3], где M

−

m
— минимальное

значение намагниченности, т. е. максимальная величина

диамагнитного сигнала. В вычислениях использовалось

значение λ = 0.15µm. Для недопированного YBCO по-

лучено значение D = 4.2µm. При увеличении доли

NiO величина D растет до 6.8µm для x = 0.001, а

затем уменьшается до 6.1µm для x = 0.06. Отметим,

что значения D одинаковы для образцов, допированных

наночастицами разного размера с x = 0.01.

В табл. 2 приведены полученные значения D и зна-

чения Jc в полях 0 и 6Т. Погрешность определения Jc

составляет около ±105 A/cm2. Зависимости критической

плотности тока образцов от магнитного поля приведены
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Таблица 2. Параметры образцов, оцененные на основе петель

магнитного гистерезиса

x

1M, emu/g
D, µm

Jc , 10
6 A/cm2

(H = 0) H = 0 µ0H = 6 T

0 35.2 4.2 16.0 6.0

0.001 39.2 4.5 16.6 6.1

0.005 48.9 5.6 17.1 6.9

0.01 38.9 6.8 10.9 4.1

0.02 37.4 6.7 10.5 4.0

0.04 29.5 6.6 8.5 3.2

0.06 28.3 6.1 8.9 3.3
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Рис. 2. Зависимости критической плотности тока от магнит-

ного поля при T = 4.2K (а) и зависимость Jc в H = 0 от x (b).
Штриховой линией отмечено значение Jc для недопированного

YBCO. Цветной вариант рисунка представлен в электронной

версии статьи.

на рис. 2, a. На рис. 2, b показано изменение Jc в H = 0

при увеличении x .

Как и ожидалось из данных 1M, для образца, допиро-

ванного 0.5wt.% NiO (8 nm), наблюдается максимальное

значение Jc . Однако значение Jc для этого образца

лишь в 1.07 раза больше, чем для недопированного

YBCO. Для образцов, допированных 1wt.% NiO и более,

наблюдается уменьшение критической плотности тока

по сравнению с недопированным YBCO. В сильных

магнитных полях (6T) значение Jc для образца, допи-

рованного 0.5wt.% NiO (8 nm), в 1.15 раза больше, чем

для недопированного YBCO. К увеличению критической

плотности тока приводит рост поверхностного пиннинга

из-за наночастиц NiO на поверхности гранул, а также

дополнительные дефекты в кристаллической решетке

YBCO, вызванные внедрением Ni [12,15].

Во многих экспериментальных работах увеличение

1M становится основанием для вывода о перспектив-

ности допирования данным видом наночастиц для уве-

личения критической плотности тока. Однако, как мы

показали в нашем исследовании, увеличение 1M может

не коррелировать с изменением Jc . Таким образом,

корректное сравнение Jc для разных сверхпроводящих

образцов требует учета характерных структурных раз-

меров этих образцов [20,21].

В заключение отметим, что обнаружено значительное

увеличение 1M (в 1.4 раза) при допировании YBCO уль-

трамалыми наночастицами NiO (8 nm) с концентрацией

0.5wt.%. Размер сверхпроводящих гранул увеличивается

в 1.3 раза, а критическая плотность внутригранульного

тока в данном допированном образце увеличивается в

1.07 раза в нулевом поле и в 1.15 раза в сильных

магнитных полях.
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