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и их влияния на магнитные свойства массивов нанопроволок
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Получены серии образцов металлополимерных композитов на основе массивов нанопроволок FexCo1−x

с различными соотношениями элементов и длин нанопроволок. Методами растровой электронной микро-

скопии, энергодисперсионной рентгеновской спектроскопии и рентгенофазового анализа подробно изучены

структура получаемых нанопроволок и динамика изменения кинетики осаждения в процессе роста массива,

а также изменение содержания Fe в нанопроволоках в зависимости от их длины. Установлен характер

зависимости магнитных свойств массива нанопроволок от их длин и структурных особенностей.
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Ферромагнитные бинарные сплавы металлов группы

Fe представляют особый интерес ввиду возможности

тонкого контроля их структурных и магнитных свойств

посредством изменения отношения элементов в их со-

ставе [1]. Так, бинарные наноразмерные сплавы FeCo об-

ладают высокой намагниченностью насыщения, слабой

магнитокристаллической анизотропией и высокой маг-

нитной восприимчивостью, что делает их перспективны-

ми для использования в сенсорике [2]. Одномерные на-

норазмерные структуры FeCo, такие как нанопроволоки,

металлополимерные композиты и трехмерные структу-

ры на их основе, напротив, обладают высокой магнитной

анизотропией формы и могут использоваться для созда-

ния постоянных магнитов [3–5] и в устройствах магнит-

ной записи [6]. Так, одномерные наноструктуры FeCo

с малым диаметром и максимальной намагниченностью

насыщения имеют одноосную анизотропию, обусловлен-

ную высоким вкладом магнитной анизотропии формы в

общую эффективную анизотропию. При этом значения

коэрцитивной силы (Hc) в FeCo-нанопроволоках могут

достигать значений порядка 1000Oe и выше [4,7,8].

Одним из наиболее распространенных методов полу-

чения одномерных наноструктур различных типов из ме-

таллов группы Fe является матричный синтез [9]. Метод

заключается в электрохимическом осаждении материала

в поры матрицы. Данный метод не требует больших

время- и трудозатрат, при этом позволяет получать

всевозможные комбинации бинарных [7] и тройных [10]
сплавов переходных металлов четвертого периода. Од-

нако существует ряд проблем, связанных с получени-

ем наноструктур данным методом. Ввиду особенностей

протекания процессов электрохимического осаждения

нанопроволоки могут обладать неоднородным составом

и, как следствие, структурными свойствами, что может

влиять на физические свойства наноструктур. Так, наи-

более значимым является эффект аномального сооса-

ждения Fe, который выражается в ускоренном осажде-

нии Fe в присутствии других металлов и, как следствие,

изменении элементного состава нанопроволок [11,12].
Кроме того, само осаждение материала в ограничен-

ное пространство пор оказывает сильное влияние на

кинетику осаждения ионов металлов [13,14], например
ускоряя или замедляя их скорость осаждения за счет

локального обеднения диффузионного слоя [15] рядом с

областью осаждения. Это может приводить к неоднород-

ностям по элементному составу, размерам кристалли-

тов, а также геометрическим параметрам наноструктур

по всему объему металлополимерного композита, состо-

ящего из полимерной матрицы с внедренным массивом

нанопроволок.

Целью настоящей работы является установление воз-

можных различий в магнитных свойствах массивов

нанопроволок из сплавов FeCo с различным соотно-

шением элементов, а также определение величин Hc

металлополимерного композита на основе нанопроволок

в зависимости от аспектного отношения последних.

Полученные данные позволят прогнозируемо получать

массивы одномерных наноструктур и материалы на их

основе с заданными магнитными свойствами.

В работе были получены массивы одномерных на-

ноструктур в виде нанопроволок FeCo в матрицах

из полиэтилентерефталата (ПЭТФ) с диаметром пор

100 nm производства ОИЯИ (Дубна). Для исследования

влияния концентрации Fe на структуру и свойства полу-
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Рис. 1. a — зависимость длины нанопроволок, полученных из электролитов с различной долей ионов Fe2+, от времени их

осаждения; b — распределение Fe по длинам; c — пример исследуемого массива нанопроволок.

чаемых нанопроволок использовалось три состава элек-

тролита, содержащих соли CoSO4·7H2O (16/16/2 g/l),
CoCl2·6H2O (40/40/4 g/l) и FeSO4·7H2O (4/48/72 g/l). Кон-
центрация солей варьировалась для достижения раз-

личного соотношения ионов металлов, а именно про-

центного отношения ионов Fe2+ или Co2+ к суммар-

ному количеству ионов металлов в электролите: Fe2+

(6%)/Co2+ (94%), Fe2+ (44%)/Co2+ (56%) и Fe2+

(92%)/Co2+ (8%) соответственно. В качестве доба-

вок использовали лаурилсульфат натрия (1 g/l), бор-

ную (25 g/l) и аскорбиновую (1 g/l) кислоты. Осаждение

проводилось в режиме, обеспечивающем постоянное

напряжение на ячейке, равное 1.5 V, с Fe-анодом по

двухэлектродной схеме [16]. В качестве катода высту-

пала пленка Cu, нанесенная на одну из сторон мат-

рицы. Площадь матрицы, задействованная в реакции,

составляла 2 cm2. Объем электролита был равен 30ml.

Площадь анода составляла 6 сm2, что во много раз

превышало площадь фактического катода (∼ 0.19 cm2).
Расстояние между катодом и анодом составляло 5.5 cm.

Для нанопроволок каждого состава была получена серия

образцов с различным временем роста для исследования

структурных и магнитных особенностей получаемых

структур в зависимости от их длины.

Морфология, длина и элементный состав нанопрово-

лок были исследованы методом растровой электронной

микроскопии (РЭМ) с использованием РЭМ JCM 6000

plus (JEOL, Япония) с приставкой для энергодисперси-

онной рентгеновской спектроскопии (ЭДС). Для про-

ведения РЭМ-исследований ПЭТФ-матрица стравлива-

лась в 6Н растворе NaOH. Структурные особенности

нанопроволок были исследованы с помощью рентге-

нофазового анализа (РФА) на порошковом рентгенов-

ском дифрактометре Miniflex 600 (Rigaku, Япония). Для
проведения рентгеновских исследований стравливался

катодный слой Cu для исключения рефлексов Cu, обу-

словленных наличием подложки. Съемка производилась

в геометрии по Брэггу−Брентано с использованием

CuKα-излучения (0.154 nm). Значения Hc образцов бы-

ли получены методом вибрационной магнитометрии

(МВ-07, Россия) в двух направлениях поля относительно

полимерной матрицы: в направлении вдоль нормали к

плоскости (OOP) и перпендикулярно ей (IP).

РЭМ-исследования позволили оценить зависимость

средних длин массива нанопроволок от времени их

осаждения (рис. 1, а). Пример микрофотографий масси-

вов одномерных наноструктур представлен на рис. 1, с.

Зависимости длин нанопроволок от времени их ро-

ста h(t) имеют нелинейный характер, хорошо аппрок-

симирующийся экспоненциальной зависимостью типа

h(t) = A1 exp(t/t0) + h0. Такой характер роста нанопро-

волок может быть обусловлен рядом факторов, таких

как нелинейная кинетика осаждения Fe и Co в огра-

ниченном объеме пор, что приводит к изменениям в

концентрации ионов в прикатодном пространстве.

Данное предположение может быть подтверждено ре-

зультатами ЭДС-анализа (рис. 1, b), которые показывают
изменение содержания Fe от начала к концу нанопрово-

лок в сторону увеличения концентрации Fe.

Неоднородное распределение Fe по длине нанопрово-

лок может быть связано с неравномерным поступлением

ионов Fe2+ в рабочую зону. В начале роста возникает

обеднение ионами рабочей зоны за счет их осаждения,

после чего формируется диффузионный слой в поровых

каналах и на поверхности матрицы, что приводит к

обеспечению притока ионов в рабочую зону осаждения

из общего объема электролита. Следует отметить факт

различной скорости диффузии ионов в поровых каналах

и протекания реакции осаждения ионов Co2+ и Fe2+, а

также дополнительного увеличения концентрации ионов

Fe2+ за счет растворения анода [17]. Разница в величинах
изменений для различных составов может быть связана

с разной концентрацией ионов осаждаемых металлов,

которая почти в 2 раза выше для состава с содержанием

Fe2+ 44%. Однако сам характер изменения схож для

каждого состава электролита.
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Рис. 2. Дифрактограммы нанопроволок трех составов, а также штрих-диаграммы ОЦК- и ГЦК-фаз на основе системы Fe−Co.

2θ = 20−90◦ (а) и 40−55◦ (b).

Для более подробного исследования структурных осо-

бенностей FeCo для полученных образцов был про-

веден анализ дифрактограмм массивов нанопроволок,

имеющих максимальную длину (рис. 2). В случае на-

нопроволок, полученных из электролита с Fe2+ 44

и 92%, наблюдаются пики, характерные для фаз на

основе ОЦК Fe. В случае нанопроволок, полученных из

электролита с содержанием Fe2+ 6%, наблюдаются пики

ГЦК FeCo. Полученные данные РФА позволили оценить

методом Уильямсона–Холла размер кристаллитов L,

величины областей когерентного рассеяния (ОКР) D и

величины микронапряжений ε (см. таблицу).

Как видно из рис. 2 и таблицы, размер кристаллитов

и ОКР сильно зависит от содержания Fe в нанопроволо-

ках. Увеличение концентрации ионов Fe в электролите

может приводить к увеличению вклада эффектов ано-

мального соосаждения Fe, что в свою очередь оказывает

влияние на кинетику роста и размер кристаллитов

массива. Увеличение микронапряжений при уменьшении

концентрации ионов Fe в электролите может быть свя-

зано с размерами кристаллитов в ограниченном объеме

пор, в результате чего в случае больших кристаллитов

может возникать большее давление на поры и соседние

кристаллиты.

В результате обработки данных вибрационной магни-

тометрии для нанопроволок трех составов были получе-

Структурные параметры получаемых нанопроволок

Содержание Fe2+
Размер

Величина ОКР ε · 103

в электролите, %
кристаллитов

D, nm
L, nm

6 17 12 7.4

44 10 8 5.3

92 7 7 1.6

ны зависимости Hc от длины (рис. 3), которые имеют

немонотонное поведение. При этом следует отметить,

что значение Hc больше для всех составов в поло-

жении IP, соответствующем направлению, перпендику-

лярному оси нанопроволок, что указывает на сильное

магнитодипольное взаимодействие нанопроволок друг с

другом [18].
Немонотонная зависимость Hc в достаточно сложной

системе массива нанопроволок, заключенных в полимер-

ную трековую мембрану со случайным расположением

пор [19], может быть обусловлена множеством факторов.

Так, например, на магнитную анизотропию может силь-

но влиять взаимодействие нанопроволок друг с другом

при их различных длинах [20]. Кроме того, немаловаж-

ным фактором является изменение элементного состава

и кристалличности по длине нанопроволок, что было

подтверждено методами ЭДС и РФА.

В результате проведенных исследований выявлены

особенности осаждения сплавов FeCo с разным соотно-

шением элементов. Обнаружено, что распределение Fe

по длине нанопроволок нелинейно изменяется в сторону

увеличения концентрации Fe по мере роста нанопро-

волок. Также установлено, что размер кристаллитов

и величины микронапряжений сильно зависят от со-

держания Fe в массиве нанопроволок. С увеличением

содержания Fe наблюдается тенденция к уменьшению

размера кристаллитов и величин микронапряжений. Дан-

ные эффекты связаны с диффузионными особенностями

ионов Fe2+ и локальным изменением концентрации этих

ионов вблизи рабочей зоны за счет обеднения при

начале роста и с последующим увеличением за счет

растворения анода. Результаты магнитометрии показа-

ли, что значения Hc для всех составов нанопроволок

немонотонно зависят от их длины, что может быть

обусловлено изменением элементного состава и сред-

него размера кристаллитов по длинам нанопроволок, а

Письма в ЖТФ, 2026, том 52, вып. 5
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Рис. 3. Зависимость коэрцитивной силы нанопроволок различного состава от их длины. а — 6% Fe2+, b — 44% Fe2+,

c — 92% Fe2+ .

также их магнитными взаимодействиями друг с другом.

Кроме того, отметим, что ось легкого намагничивания

массивов нанопроволок лежит в плоскости IP, что может

быть связано также с сильными магнитостатическими

взаимодействиями внутри массива.

Полученные данные расширяют представления о ки-

нетике электрохимического осаждения сплавов группы

Fe в ограниченном объеме и могут быть применены

для получения массивов одномерных наноструктур с

заданными параметрами магнитных характеристик и их

анизотропией для различных приложений.
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